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Abstract

Online optimization covers problems such as online resource allocation, online
bipartite matching, adwords (a central problem in e-commerce and advertising),
and adwords with separable concave returns. We analyze the worst case com-
petitive ratio of two primal-dual algorithms for a class of online convex (conic)
optimization problems that contains the previous examples as special cases defined
on the positive orthant. We derive a sufficient condition on the objective function
that guarantees a constant worst case competitive ratio (greater than or equal to
1
2 ) for monotone objective functions. We provide new examples of online prob-
lems on the positive orthant that satisfy the sufficient condition. We show how
smoothing can improve the competitive ratio of these algorithms, and in particular
for separable functions, we show that the optimal smoothing can be derived by
solving a convex optimization problem. This result allows us to directly optimize
the competitive ratio bound over a class of smoothing functions, and hence design
effective smoothing customized for a given cost function.

1 Introduction

Given a proper convex cone K ⊂ Rn, let ψ : K 7→ R be an upper semi-continuous concave function.
Consider the optimization problem

maximize ψ (
∑m
t=1Atxt)

subject to xt ∈ Ft, ∀t ∈ [m],
(1)

where for all t ∈ [m] := {1, 2, . . . ,m}, xt ∈ Rl are the optimization variables and Ft are compact
convex constraint sets. We assume At ∈ Rn×l maps Ft to K; for example, when K = Rn+ and
Ft ⊂ Rl+, this assumption is satisfied if At has nonnegative entries. We consider problem (1) in the
online setting, where it can be viewed as a sequential game between a player (online algorithm) and
an adversary. At each step t, the adversary reveals At, Ft and the algorithm chooses x̂t ∈ Ft. The
performance of the algorithm is measured by its competitive ratio, i.e., the ratio of objective value
at x̂1, . . . , x̂m to the offline optimum. Problem (1) covers (convex relaxations of) various online
combinatorial problems including online bipartite matching [14], the “adwords” problem [16], and
the secretary problem [15]. More generally, it covers online linear programming (LP) [6], online
packing/covering with convex cost [3, 4, 7], and generalization of adwords [8]. In this paper, we
study the case where ∂ψ(u) ⊂ K∗ for all u ∈ K, i.e., ψ is monotone with respect to the cone K.

The competitive performance of online algorithms has been studied mainly under the worst-case
model (e.g., in [16]) or stochastic models (e.g., in [15]). In the worst-case model one is interested
in lower bounds on the competitive ratio that hold for any (A1, F1), . . . , (Am, Fm). In stochas-
tic models, adversary choses a probability distribution from a family of distributions to generate



(A1, F1), . . . , (Am, Fm), and the competitive ratio is calculated using the expected value of the
algorithm’s objective value. Online bipartite matching and its generalization, the “adwords” problem,
are the two main problems that have been studied under the worst case model. The greedy algorithm
achieves a competitive ratio of 1/2 while the optimal algorithm achieves a competitive ratio of 1−1/e
(as bid to budget ratio goes to zero) [16, 5, 14, 13]. A more general version of Adwords in which
each agent (advertiser) has a concave cost has been studied in [8].

The majority of algorithms proposed for the problems mentioned above rely on a primal-dual
framework [5, 6, 3, 8, 4]. The differentiating point among the algorithms is the method of updating
the dual variable at each step, since once the dual variable is updated the primal variable can be
assigned using a simple complementarity condition. A simple and efficient method of updating
the dual variable is through a first order online learning step. For example, the algorithm stated in
[9] for online linear programming uses mirror descent with entropy regularization (multiplicative
weight updates algorithm) once written in the primal dual language. Recently, the work in [9] was
independently extended to random permutation model in [12, 2, 11]. In [2], the authors provide
competitive difference bound for online convex optimization under random permutation model as a
function of the regret bound for the online learning algorithm applied to the dual.

In this paper, we consider two versions of the greedy algorithm for problem (1), a sequential
update and a simultaneous update algorithm. The simultaneous update algorithm, Algorithm 2,
provides a direct saddle-point representation of what has been described informally in the literature
as “continuous updates” of primal and dual variables. This saddle point representation allows us to
generalize this type of updates to non-smooth function. In section 2, we bound the competitive ratios
of the two algorithms. A sufficient condition on the objective function that guarantees a non-trivial
worst case competitive ratio is introduced. We show that the competitive ratio is at least 1

2 for a
monotone non-decreasing objective function. Examples that satisfy the sufficient condition (on
the positive orthant and the positive semidefinite cone) are given. In section 3, we derive optimal
algorithms, as variants of greedy algorithm applied to a smoothed version of ψ. For example, Nesterov
smoothing provides optimal algorithm for the adwords problem. The main contribution of this paper
is to show how one can derive the optimal smoothing function (or from the dual point of view the
optimal regularization function) for separable ψ on positive orthant by solving a convex optimization
problem. This gives an implementable algorithm that achieves the optimal competitive ratio derived
in [8]. We also show how this convex optimization can be modified for the design of smoothing
function specifically for the sequential algorithm. In contrast, [8] only considers continuous updates.

The algorithms considered in this paper and their general analysis are the same as those we considered
in [10]. In [10], the focus is on non-monotone functions and online problems on the positive
semidefinite cone. However, the focus of this paper is on monotone functions on the positive orthant.
In [10], we only considered Nesterov smoothing and only derived competitive ratio bounds for the
simultaneous algorithm.

Notation. Given a function ψ : Rn 7→ R, ψ∗ denotes the concave conjugate of ψ defined as
ψ∗(y) = infu〈y, u〉 − ψ(u), for all y ∈ Rn. For a concave function ψ, ∂ψ(u) denotes the set of
supergradients ofψ at u, i.e., the set of all y ∈ Rn such that ∀u′ ∈ Rn : ψ(u′) ≤ 〈y, u′ − u〉+ψ(u).
The set ∂ψ is related to the concave conjugate function ψ∗ as follows. For an upper semi-continuous
concave function ψ we have ∂ψ(u) = argminy〈y, u〉 − ψ∗(y). A differentiable function ψ has
a Lipschitz continuous gradient with respect to ‖·‖ with continuity parameter 1/µ > 0 if for all
u, u′ ∈ Rn, ‖∇ψ(u′)−∇ψ(u)‖∗ ≤ 1/µ ‖u− u′‖, where ‖·‖∗ is the dual norm to ‖·‖.
The dual cone K∗ of a cone K ⊂ Rn is defined as K∗ = {y | 〈y, u〉 ≥ 0 ∀u ∈ K}. Two examples
of self-dual cones are the positive orthant Rn+ and the cone of n× n positive semidefinite matrices
Sn+. A proper cone (pointed convex cone with nonempty interior) K induces a partial ordering on Rn
which is denoted by ≤K and is defined as x ≤K y ⇔ y − x ∈ K.

1.1 Two primal-dual algorithms

The (Fenchel) dual problem for problem (1) is given by

minimize
∑m
t=1 σt(A

T
t y)− ψ∗(y), (2)

where the optimization variable is y ∈ Rn, and σt denotes the support function for the set Ft defined
as σt(z) = supx∈Ft〈x, z〉. A pair (x∗, y∗) ∈ (F1 × . . .× Fm)×K∗ is an optimal primal-dual pair
if and only if
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x∗t ∈ argmax
x∈Ft

〈x,ATt y∗〉, y∗ ∈ ∂ψ(

m∑
t=1

Atx
∗
t ), ∀t ∈ [m].

Based on these optimality conditions, we consider two algorithms. Algorithm 1 updates the primal
and dual variables sequentially, by maintaining a dual variable ŷt and using it to assign x̂t ∈
argmaxx∈Ft〈x,A

T
t ŷt〉. The then algorithm updates the dual variable based on the second optimality

condition. By the assignment rule, we have Atx̂t ∈ ∂σt(ŷt), and the dual variable update can be
viewed as ŷt+1 ∈ argminy〈

∑t
s=1Asx̂s, y〉 − ψ∗(y). Therefore, the dual update is the same as the

update in dual averaging [18] or Follow The Regularized Leader (FTRL) [20, 19, 1] algorithm with
regularization −ψ∗(y).

Algorithm 1 Sequential Update

Initialize ŷ1 ∈ ∂ψ(0)
for t← 1 to m do

Receive At, Ft
x̂t ∈ argmaxx∈Ft〈x,A

T
t ŷt〉

ŷt+1 ∈ ∂ψ(
∑t
s=1Asx̂s)

end for

Algorithm 2 updates the primal and dual variables simultaneously, ensuring that

x̃t ∈ argmax
x∈Ft

〈x,ATt ỹt〉, ỹt ∈ ∂ψ(

t∑
s=1

Asx̃s).

This algorithm is inherently more complicated than algorithm 1, since finding x̃t involves solving a
saddle-point problem. This can be solved by a first order method like mirror descent algorithm for
saddle point problems. In contrast, the primal and dual updates in algorithm 1 solve two separate
maximization and minimization problems 1.

Algorithm 2 Simultaneous Update

for t← 1 to m do
Receive At, Ft
(ỹt, x̃t) ∈ arg miny maxx∈Ft 〈y,Atx+

∑t−1
s=1Asx̃s〉 − ψ∗(y)

end for

2 Competitive ratio bounds and examples for ψ

In this section, we derive bounds on the competitive ratios of Algorithms 1 and 2 by bounding their
respective duality gaps. We begin by stating a sufficient condition on ψ that leads to non-trivial
competitive ratios, and we assume this condition holds in the rest of the paper. Roughly, one can
interpret this assumption as having “diminishing returns” with respect to the ordering induced by a
cone. Examples of functions that satisfy this assumption will appear later in this section.

Assumption 1 Whenever u ≥K v, there exists y ∈ ∂ψ(u) that satisfies y ≤K∗ z for all z ∈ ∂ψ(v).

When ψ is differentiable, assumption 1 simplifies to u ≥K v ⇒ ∇ψ(u) ≤K∗ ∇ψ(v). That is, the
gradient, as a map from Rn (equipped with≤K ) to Rn (equipped with≤K∗ ), is order-reversing.When
ψ is twice differentiable, assumption 1 is equivalent to 〈w,∇2ψ(u)v〉 ≤ 0, for all u, v, w ∈ K. For
example, this is equivalent to Hessian being element-wise non-positive when K = Rn

+.

Let define ỹm+1 to be the minimum element in ∂ψ(
∑m
t=1Atx̃t) with respect to ordering ≤K∗ (such

an element exists in the superdifferential by Assumption (1)). Let Pseq = ψ (
∑m
t=1Atx̂t) and Psim =

ψ (
∑m
t=1Atx̃t) denote the primal objective values for the primal solution produced by the algorithms

1Also if the original problem is a convex relaxation of an integer program, meaning that each Ft = convFt

where Ft ⊂ Zl, then x̂t can always be chosen to be integral while integrality may not hold for the solution of
the second algorithm.
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1 and 2, andDseq =
∑m
t=1 σt(A

T
t ŷt)−ψ∗(ŷm+1) andDsim =

∑m
t=1 σt(A

T
t ỹt)−ψ∗(ỹm+1) denote

the corresponding dual objective values.

The next lemma provides a lower bound on the duality gaps of both algorithms.

Lemma 1 The duality gaps for the two algorithms can be lower bounded as

Psim −Dsim ≥ ψ∗(ỹm+1) + ψ(0), Pseq −Dseq ≥ ψ∗(ŷm+1) + ψ(0) +

m∑
t=1

〈Atx̂t, ŷt+1 − ŷt〉

Furthermore, if ψ has a Lipschitz continuous gradient with parameter 1/µ with respect to ‖·‖,

Pseq −Dseq ≥ ψ∗(ŷm+1) + ψ(0)− 1
2µ

∑m
t=1 ‖Atx̂t‖

2
. (3)

Note that right hand side of (3) is exactly the regret bound of the FTRL algorithm (with a negative
sign) [19]. The proof is given in the appendix. To simplify the notation in the rest of the paper, we
assume ψ(0) = 0 by replacing ψ(u) with ψ(u) − ψ(0). To quantify the competitive ratio of the
algorithms, we define αψ as

αψ = sup {c | ψ∗(y) ≥ cψ(u), y ∈ ∂ψ(u), u ∈ K}, (4)

Since ψ∗(y) + ψ(u) = 〈y, u〉 for all y ∈ ∂ψ(u), αψ is equivalent to

αψ = sup{c | 〈y, u〉 ≥ (c+ 1)ψ(u), y ∈ ∂ψ(u) u ∈ K}. (5)

Note that −1 ≤ αψ ≤ 0, since for any u ∈ K and y ∈ ∂ψ(u), by concavity of ψ and the fact
that y ∈ K∗, we have 0 ≤ 〈y, u〉 ≤ ψ(u) − ψ(0). If ψ is a linear function then αψ = 0, while if
0 ∈ ∂ψ(u) for some u ∈ K, then αψ = −1.

The next theorem provides lower bounds on the competitive ratio of the two algorithms.

Theorem 1 If Assumption 1 holds, we have

Psim ≥
1

1− αψ
D?, Pseq ≥

1

1− αψ
(D? +

m∑
t=1

〈Atx̂t, ŷt+1 − ŷt〉)

where D? is the dual optimal objective. If ψ has a Lipschitz continuous gradient with parameter 1/µ
with respect to ‖·‖,

Pseq ≥ 1
1−αψ (D? − 1

2µ

∑m
t=1 ‖Atx̂t‖

2
). (6)

Proof: Consider the simultaneous update algorithm. We have
∑t
s=1Asx̃s ≤K

∑m
s=1Asx̃s for all

t, since AsFs ⊂ K for all s. Since ỹt ∈ ∂ψ(
∑t
s=1Asx̃s) and ỹm+1 was picked to be the minimum

element in ∂ψ(
∑m
s=1Asx̃s) with respect to ≤K∗ , by Assumption 1, we have ỹt ≥K∗ ỹm+1. Since

Atx ∈ K for all x ∈ Ft, we get 〈Atx, ỹt〉 ≥ 〈Atx, ỹm+1〉; therefore, σt(ATt ỹt) ≥ σt(ATt ỹm). Thus

Dsim =

m∑
t=1

σt(A
T
t ỹt)− ψ∗(ỹm) ≥

m∑
t=1

σt(A
T
t ỹm+1)− ψ∗(ỹm) ≥ D∗.

Now Lemma 1 and definition of αψ give the desired result. The proof for Algorithm 1 follows similar
steps. �

We now consider examples of ψ that satisfy Assumption 1 and derive lower bound on αψ for those
examples.

Examples on positive orthant. Let K = Rn+ and note that K∗ = K. To simplify the notation we
use ≤ instead of ≤Rn+ . Assumption 1 is satisfied for a twice differentiable function if and only if
the Hessian is element-wise non-positive over Rn+. If ψ is separable, i.e., ψ(u) =

∑n
i=1 ψi(ui),

Assumption 1 is satisfied since by concavity for each ψi we have ∂ψi(ui) ≤ ∂ψi(vi) when ui ≤ vi.

In the basic adwords problem, for all t, Ft = {x ∈ Rl+ | 1Tx ≤ 1}, At is a diagonal matrix with
non-negative entries, and

ψ(u) =
∑n
i=1 ui −

∑n
i=1(ui − 1)+, (7)
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where (·)+ = max{·, 0}. In this problem, ψ∗(y) = 1T (y − 1). Since 0 ∈ ∂ψ(1) we have αψ = −1
by (5); therefore, the competitive ratio of algorithm 2 is 1

2 . Let r = maxt,i,j At,i,j , then we have∑m
t=1〈Atx̂t, ŷt+1 − ŷt〉 ≤ nr. Therefore, the competitive ratio of algorithm 1 goes to 1

2 as r (bid to
budget ratio) goes to zero. In adwords with concave returns studied in [8], At is diagonal for all t and
ψ is separable 2.

For any p ≥ 1 let Bp be the lp-norm ball. We can rewrite the penalty function −
∑n
i=1(ui − 1)+ in

the adwords objective using the distance from B∞: we have
∑n
i=1(ui − 1)+ = d1(u,B∞), where

d1(·, C) is the l1 norm distance from set C. For p ∈ [1,∞) the function −d1(u,Bp) although not
separable it satisfies Assumption 1. The proof is given in the supplementary materials.

Examples on the positive semidefinite cone. Let K = Sn+ and note that K∗ = K. Two examples
that satisfy Assumption 1 are ψ(U) = log det(U + A0), and ψ(U) = trUp with p ∈ (0, 1). We
refer the reader to [10] for examples of online problems that entails log det in the objective function
and competitive ratio analysis of the simultanuous algorithm for these problems.

3 Smoothing of ψ for improved competitive ratio

The technique of “smoothing” an (potentially non-smooth) objective function, or equivalently adding
a strongly convex regularization term to its conjugate function, has been used in several areas. In
convex optimization, a general version of this is due to Nesterov [17], and has led to faster convergence
rates of first order methods for non-smooth problems. In this section, we study how replacing ψ
with a appropriately smoothed function ψS helps improve the performance of the two algorithms
discussed in section 1.1, and show that it provides optimal competitive ratio for two of the problems
mentioned in section 2, adwords and online LP. We then show how to maximize the competitive
ratio of both algorithms for a separable ψ and compute the optimal smoothing by solving a convex
optimization problem. This allows us to design the most effective smoothing customized for a given
ψ: we maximize the bound on the competitive ratio over the set of smooth functions.(see subsection
3.2 for details).

Let ψS denote an upper semi-continuous concave function (a smoothed version of ψ), and suppose
ψS satisfies Assumption 1. The algorithms we consider in this section are the same as Algorithms
1 and 2, but with ψ replacing ψS . Note that the competitive ratio is computed with respect to the
original problem, that is the offline primal and dual optimal values are still the same P ? and D? as
before.

From Lemma 1, we have that Dsim ≤ ψS (
∑m
t=1Atx̃t)−ψ∗(ỹm+1) andDseq ≤ ψS (

∑m
t=1Atx̂t)−

ψ∗(ŷm+1)−
∑m
t=1〈Atx̂t, ŷt+1 − ŷt〉. To simplify the notation, assume ψS(0) = 0 as before. Define

αψ,ψS = sup{c |ψ∗(y) ≥ ψS(u) + (c− 1)ψ(u), y ∈ ∂ψS(u), u ∈ K}.
Then the conclusion of Theorem 1 for Algorithms 1 and 2 applied to the smoothed function holds
with αψ replaced by αψ,ψS .

3.1 Nesterov Smoothing

We first consider Nesterov smoothing [17], and apply it to examples on non-negative orthant. Given a
proper upper semi-continuous concave function φ : Rn 7→ R ∪ {−∞}, let

ψS = (ψ∗ + φ∗)∗.

Note that ψS is the supremal convolution of ψ and φ. If ψ and φ are separable, then ψS satisfies
Assumption 1 for K = Rn+. Here we provide example of Nesterov smoothing for functions on
non-negative orthant.

Adwords: The optimal competitive ratio for the Adwords problem is 1− e−1. This is achieved by
smoothing ψ with φ∗(y) =

∑m
i=1(yi − e

e−1 ) log(e− (e− 1)yi)− 2yi, which gives

ψS,i(ui)− ψS,i(0) =

{
eui−exp (ui)+1

e−1 ui ∈ [0, 1]
1
e−1 ui > 1,

2Note that in this case one can remove the assumption that ∂ψi ⊂ R+ since if ỹt,i = 0 for some t and i,
then x̃s,i = 0 for all s ≥ t.
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3.2 Computing optimal smoothing for separable functions on Rn+

We now tackle the problem of finding the optimal smoothing for separable functions on the positive
orthant, which as we show in an example at the end of this section is not necessarily given by Nesterov
smoothing. Given a separable monotone ψ(u) =

∑n
i=1 ψi(ui) and ψS(u) =

∑n
i=1 ψS,i(ui) on Rn+

we have that αψ,ψS ≥ mini αψi,ψS,i .

To simplify the notation, drop the index i and consider ψ : R+ 7→ R. We formulate the problem
of finding ψS to maximize αψ,ψS as an optimization problem. In section 4 we discuss the relation
between this optimization method and the optimal algorithm presented in [8]. We set ψS(u) =∫ u
0
y(s)ds with y a continuous function (y ∈ C[0,∞)), and state the infinite dimensional convex

optimization problem with y as a variable,
minimize β

subject to
∫ u
0
y(s)ds− ψ∗(y(u)) ≤ βψ(u), ∀u ∈ [0,∞)

y ∈ C[0,∞),

(8)

where β = 1 − αψ,ψS (theorem 1 describes the dependence of the competitive ratios on this
parameter). Note that we have not imposed any condition on y to be non-increasing (i.e., the
corresponding ψS to be concave). The next lemma establishes that every feasible solution to the
problem (8) can be turned into a non-increasing solution.

Lemma 2 Let (y, β) be a feasible solution for problem (8) and define ȳ(t) = infs≤t y(s). Then
(ȳ, β) is also a feasible solution for problem (8).

In particular if (y, β) is an optimal solution, then so is (ȳ, β). The proof is given in the supplement. Re-
visiting the adwords problem, we observe that the optimal solution is given by y(u) =

(
e−exp(u)
e−1

)
+

,

which is the derivative of the smooth function we derived using Nesterov smoothing in section 3.1.
The optimality of this y can be established by providing a dual certificate, a measure ν correspond-
ing to the inequality constraint, that together with y satisfies the optimality condition. If we set
dν = exp (1− u)/(e− 1) du, the optimality conditions are satisfied with β = (1− 1/e)−1. Also
note that if ψ plateaus (e.g., as in the adwords objective), then one can replace problem (8) with a
problem over a finite horizon.

Theorem 2 Suppose ψ(t) = c on [u′,∞) (ψ plateaus). Then problem (8) is equivalent to

minimize β

subject to
∫ u
0
y(s)ds− ψ∗(y(u)) ≤ βψ(u), ∀u ∈ [0, u′]

y(u′) = 0, y ∈ C[0, u′].

(9)

So for a function ψ with a plateau, one can discretize problem (9) to get a finite dimensional problem,

minimize β

subject to h
∑t
s=1 y[s]− ψ∗(y[t]) ≤ βψ(ht) ∀t ∈ [d]

y[d] = 0,

(10)

where h = u′/d is the discretization step. Figure 1a shows the optimal smoothing for the piecewise
linear function ψ(u) = min(.75, u, .5u + .25) by solving problem (10). We point out that the
optimal smoothing for this function is not given by Nesterov’s smoothing (even though the optimal
smoothing can be derived by Nesterov’s smoothing for a piecewise linear function with only two
pieces, like the adwords cost function). Figure 1d shows the difference between the conjugate of the
optimal smoothing function and ψ∗ for the piecewise linear function, which we can see is not concave.
We simulated the performance of the simultaneous algorithm on a dataset with n = m, Ft simplex,
and At diagonal. We varied m in the range from 1 to 30 and for each m calculated the the smallest
competitive ratio achieved by the algorithm over (10m)2 random permutation of A1, . . . , Am. Figure
1i depicts this quantity vs. m for the optimal smoothing and the Nesterov smoothing. For the Nesterov
smoothing we used the function φ∗(y) = (y −

√
e√
e−1 ) log(

√
e− (

√
e− 1)y)− 3

2y.

In cases where a bound umax on
∑m
t=1AtFt is known, we can restrict t to [0, umax] and discretize

problem (8) over this interval. However, the conclusion of Lemma 2 does not hold for a finite horizon
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and we need to impose additional linear constraints y[t] ≤ y[t − 1] to ensure the monotonicity of
y. We find the optimal smoothing for two examples of this kind: ψ(u) = log(1 + u) over [0, 100]
(Figure 1b), and ψ(u) =

√
u over [0, 100] (Figure 1c). Figure 1e shows the competitive ratio achieved

with the optimal smoothing of ψ(u) = log(1 + u) over [0, umax] as a function of umax. Figure 1f
depicts this quantity for ψ(u) =

√
u.

3.3 Competitive ratio bound for the sequential algorithm

In this section we provide a lower bound on the competitive ratio of the sequential algorithm
(Algorithm 1). Then we modify Problem (8) to find a smoothing function that optimizes this
competitive ratio bound for the sequential algorithm.

Theorem 3 Suppose ψS is differentiable on an open set containing K and satisfies Assumption 1. In
addition, suppose there exists c ∈ K such that AtFt ≤K c for all t, then

Pseq ≥
1

1− αψ,ψS + κc,ψ,ψS
D?,

where κ is given by

κc,ψ,ψS = inf{r | 〈c,∇ψS(0)−∇ψS(u)〉 ≤ rψ(u), u ∈ K}

Proof: Since ψS satisfies Assumption 1, we have ŷt+1 ≤K∗ ŷt. Therefore, we can write:∑m
t=1〈Atx̂t, ŷt − ŷt+1〉 ≤

∑m
t=1〈c, ŷt − ŷt+1〉 = 〈c, ŷ0 − ŷm+1〉 (11)

Now by combining the duality gap given by Lemma 1 with 11, we get Dseq ≤ ψS (
∑m
t=1Atx̂t)−

ψ∗(ŷm+1)+〈c,∇ψS(0)−∇ψS (
∑m
t=1Atx̂t)〉. The conclusion follows from the definition of αψ,ψS ,

κc,ψ,ψS and the fact that Dseq ≥ D?. �

Based on the result of the previous theorem we can modify the optimization problem set up in Section
3.2 for separable functions on Rn

+ to maximize the lower bound on the competitive ratio of the
sequential algorithm. Note that when ψ and ψS are separable, we have κc,ψ,ψS ≤ maxi κci,ψi,ψSi .
Therefore, similar to the previous section to simplify the notation we drop the index i and assume
ψ is a function of a scalar variable. The optimization problem for finding ψS that minimizes
κc,ψ,ψS − αψ,ψS is as follows:

minimize β

subject to
∫ u
0
y(s)ds+ c(ψ′(0)− y(u))− ψ∗(y(u)) ≤ βψ(u), ∀u ∈ [0,∞)

y ∈ C[0,∞).

(12)

For adwords, the optimal solution is given by β = 1
1−exp(− 1

c+1 )
and y(u) = β

(
1− exp

(
u−1
1+c

))
+
,

which gives a competitive ratio of 1 − exp
(
−1
c+1

)
. In Figure 1h we have plotted the competitive

ratio achieved by solving problem 12 for ψ(u) = log det(1 + u) with umax = 100 as a function
of c. Figure 1g shows the competitive ratio as a function of c for the piecewise linear function
ψ(u) = min(.75, u, .5u+ .25).

4 Discussion and Related Work

We discuss results and papers from two communities, computer science theory and machine learning,
related to this work.

Online optimization. In [8], the authors proposed an optimal algorithm for adwords with differ-
entiable concave returns (see examples in section 2). Here, “optimal” means that they construct
an instance of the problem for which competitive ratio bound cannot be improved, hence showing
the bound is tight. The algorithm is stated and analyzed for a twice differentiable, separable ψ(u).
The assignment rule for primal variables in their proposed algorithm is explained as a continuous
process. A closer look reveals that this algorithm falls in the framework of algorithm 2, with the only
difference being that at each step, (x̃t, ỹt) are chosen such that

x̃t ∈ argmax〈x,ATt ỹt〉
∀i ∈ [n] : ỹt,i = ∇ψi(vi(ui)), ui = (

∑t
t=1Asx̃s)i,
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(i)

Figure 1: Optimal smoothing for ψ(u) = min(.75, u, .5u+.25) (a), ψ(u) = log(1+u) over [0, 100]
(b), and ψ(u) =

√
u over [0, 100] (c). The competitive ratio achieved by the optimal smoothing as a

function of umax for ψ(u) = log(1 + u) (e) and ψ(u) =
√
u (f). ψ∗S − ψ∗ for the piecewise linear

function (d). The competitive ratio achieved by the optimal smoothing for the sequential algorithm as
a function of c for ψ(u) = min(.75, u, .5u+ .25) (g) and ψ(u) = log(1 + u) with umax = 100 (h).
i, Competitive ratio of the simultaneous algorithm for ψ(u) = min(.75, u, .5u+ .25) as a function
of m with optimal smoothing and Nesterov smoothing (see text).

where vi : R+ 7→ R+ is an increasing differentiable function given as a solution of a nonlinear
differential equation that involves ψi and may not necessarily have a closed form. The competitive
ratio is also given based on the differential equation. They prove that this gives the optimal competitive
ratio for the instances where ψ1 = ψ2 = . . . = ψm.

Note that this is equivalent of setting ψS,i(ui) = ψ(vi(ui))). Since vi is nondecreasing ψS,i is a
concave function. On the other hand, given a concave function ψS,i(R+) ⊂ ψi(R+), we can set
vi : R+ 7→ R+ as vi(u) = inf{z | ψi(z) ≥ ψS,i(u)}. Our formulation in section 3.2 provides a
constructive way of finding the optimal smoothing. It also applies to non-smooth ψ.

Online learning. As mentioned before, the dual update in Algorithm 1 is the same as in Follow-the-
Regularized-Leader (FTRL) algorithm with −ψ∗ as the regularization. This primal dual perspective
has been used in [20] for design and analysis of online learning algorithms. In the online learning
literature, the goal is to derive a bound on regret that optimally depends on the horizon, m. The goal
in the current paper is to provide competitive ratio for the algorithm that depends on the function ψ.
Regret provides a bound on the duality gap, and in order to get a competitive ratio the regularization
function should be crafted based on ψ. A general choice of regularization which yields an optimal
regret bound in terms of m is not enough for a competitive ratio argument, therefore existing results
in online learning do not address our aim.
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