
On the Recursive Teaching Dimension
of VC Classes

Xi Chen
Department of Computer Science

Columbia University
xichen@cs.columbia.edu

Yu Cheng
Department of Computer Science
University of Southern California

yu.cheng.1@usc.edu

Bo Tang
Department of Computer Science

Oxford University
tangbonk1@gmail.com

Abstract

The recursive teaching dimension (RTD) of a concept class C ⊆ {0, 1}n, introduced
by Zilles et al. [ZLHZ11], is a complexity parameter measured by the worst-case
number of labeled examples needed to learn any target concept of C in the recursive
teaching model. In this paper, we study the quantitative relation between RTD and
the well-known learning complexity measure VC dimension (VCD), and improve
the best known upper and (worst-case) lower bounds on the recursive teaching
dimension with respect to the VC dimension.
Given a concept class C ⊆ {0, 1}n with VCD(C) = d, we first show that RTD(C)
is at most d · 2d+1. This is the first upper bound for RTD(C) that depends only on
VCD(C), independent of the size of the concept class |C| and its domain size n.
Before our work, the best known upper bound for RTD(C) is O(d2d log log |C|),
obtained by Moran et al. [MSWY15]. We remove the log log |C| factor.
We also improve the lower bound on the worst-case ratio of RTD(C) to VCD(C).
We present a family of classes {Ck}k≥1 with VCD(Ck) = 3k and RTD(Ck) = 5k,
which implies that the ratio of RTD(C) to VCD(C) in the worst case can be as
large as 5/3. Before our work, the largest ratio known was 3/2 as obtained by
Kuhlmann [Kuh99]. Since then, no finite concept class C has been known to satisfy
RTD(C) > (3/2) · VCD(C).

1 Introduction

In computational learning theory, one of the fundamental challenges is to understand how different
information complexity measures arising from different learning models relate to each other. These
complexity measures determine the worst-case number of labeled examples required to learn any
concept from a given concept class. For example, one of the most notable results along this line
of research is that the sample complexity in PAC-learning is linearly related to the VC dimension
[BEHW89]. Recall that the VC dimension of a concept class C ⊆ {0, 1}n [VC71], denoted by
VCD(C), is the maximum size of a shattered subset of [n] = {1, . . . , n}, where we say Y ⊆ [n] is
shattered if for every binary string b of length |Y |, there is a concept c ∈ C such that c |Y = b. Here
we use c |X to denote the projection of c on X . As the best-studied information complexity measure,
VC dimension is known to be closely related to many other complexity parameters, and it serves as a
natural parameter to compare against across various models of learning and teaching.
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Instead of the PAC-learning model where the algorithm takes random samples, we consider an
interactive learning model where a helpful teacher selects representative examples and present them
to the learner, with the objective of minimizing the number of examples needed. The notion of a
teaching set was introduced in mathematical models for teaching. The teaching set of a concept c ∈ C
is a set of indices (or examples) X ⊆ [n] that uniquely identifies c from C. Formally, given a concept
class C ⊆ {0, 1}n (a set of binary strings of length n), X ⊆ [n] is a teaching set for a concept c ∈ C
(a binary string in C) if X satisfies

c|X 6= c′|X , for all other concepts c′ ∈ C.

The teaching dimension of a concept class C is the smallest number t such that every c ∈ C has a
teaching set of size no more than t [GK95, SM90]. However, teaching dimension does not always
capture the cooperation in teaching and learning (as we will see in Example 2), and a more optimistic
and realistic notion of recursive teaching dimension has been introduced and studied extensively in
the literature [Kuh99, DSZ10, ZLHZ11, WY12, DFSZ14, SSYZ14, MSWY15].

Definition 1. The recursive teaching dimension of a class C ⊆ {0, 1}n, denoted by RTD(C), is the
smallest number t where one can order all the concepts of C as an ordered sequence c1, . . . , c|C| such
that every concept ci, i < |C|, has a teaching set of size no more than t in {ci, . . . , c|C|}.

Hence, RTD(C) measures the worst-case number of labeled examples needed to learn any target
concept in C, if the teacher and the learner are cooperative. We would like to emphasize that an
optimal ordered sequence (as in Definition 1) can be derived by the teacher and learner separately
without any communication: They can put all concepts in C that have the smallest teaching dimension
appear at the beginning of the sequence, then remove these concepts from C and proceeds recursively.
By definition, RTD(C) is always bounded from above by the teaching dimension of C but can be
much smaller than the teaching dimension. We use the following example to illustrate the difference
between the teaching dimension and the recursive teaching dimension.

Example 2. Consider the class C ⊆ {0, 1}n with n+ 1 concepts: the empty concept 0 and all the
singletons. For example when n = 3, C = {000, 100, 010, 001}. Each singleton concept has teaching
dimension 1, while the teaching dimension for the empty concept 0 is n, because the teacher has to
reveal all labels to distinguish 0 from the other concepts. However, if the teacher and the learner
are cooperative, every concept can be taught with one label: If the teacher reveals a “0” label, the
learner can safely assume that the target concept must be 0, because otherwise the teacher would
present a “1” label instead for the other concepts. Equivalently, in the setting of Definition 1, the
teacher and the learner can order the concepts so that the singleton concepts appear before the empty
concept 0. Then every concept has a teaching set of size 1 to distinguish it from the later concepts in
the sequence, and thus the recursive teaching dimension of C is 1.

In this paper, we study the quantitative relationship between the recursive teaching dimension (RTD)
and the VC dimension (VCD). A bound on the RTD that depends only on the VCD would imply a
close connection between learning from random samples and teaching (under the recursive teaching
model). The same structural properties that make a concept class easy to learn would also give a
bound on the number of examples needed to teach it. Moreover, the recursive teaching dimension is
known to be closely related to sample compression schemes [LW86, War03, DKSZ16], and a better
understanding of the relationship between RTD and VCD might help resolve the long-standing sample
compression conjecture [War03], which states that every concept class has a sample compression
scheme of size linear in its VCD.

1.1 Our Results

Our main result (Theorem 3) is an upper bound of d · 2d+1 on RTD(C) when VCD(C) = d. This
is the first upper bound for RTD(C) that depends only on VCD(C), but not on |C|, the size of the
concept class, or n, the domain size. Previously, Moran et al. [MSWY15] showed an upper bound of
O(d2d log log |C|) for RTD(C); our result removes the log log |C| factor, and answers positively an
open problem posed in [MSWY15].

Our proof tries to reveal examples iteratively to minimize the number of the remaining concepts.
Given a concept class C ⊆ {0, 1}n, we pick a set of examples Y ⊆ [n] and their labels b ∈ {0, 1}Y , so
that the set of remaining concepts (with the projection c |Y = b) is nonempty and has the smallest size
among all choices of Y and b. We then prove by contradiction (with the assumption of VCD(C) = d)
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that, if the size of Y is large enough (but still depends on only VCD(C)), the remaining concepts
must have VC dimension at most d− 1. This procedure gives us a recursive formula, which we solve
and obtain the claimed upper bound on RTD of classes of VC dimension d.

We also improve the lower bound on the worst-case factor by which RTD may exceed VCD. We
present a family of classes {Ck}k≥1 (Figure 4) with VCD(Ck) = 3k and RTD(Ck) = 5k, which shows
that the worst-case ratio between RTD(C) and VCD(C) is at least 5/3. Before our work, the largest
known multiplicative gap between RTD(C) and VCD(C) was a ratio of 3/2, given by Kuhlmann
[Kuh99]. (Later Doliwa et al. [DFSZ14] showed the smallest class CW with RTD(CW ) = (3/2) ·
VCD(CW ) (Warmuth’s class)). Since then, no finite concept class C with RTD(C) > (3/2) ·VCD(C)
has been found.

Instead of exhaustively searching through all small concept classes, our improvement on the lower
bound is achieved by formulating the existence of a concept class with the desired RTD, VCD and
domain size, as a boolean satisfiability problem. We then run the state-of-the-art SAT solvers on
these formulae to discover a concept class C0 with VCD(C0) = 3 and RTD(C0) = 5. Based on the
concept class C0, one can produce a family of concept classes {Ck}k≥1 with VCD(Ck) = 3k and
RTD(Ck) = 5k, by taking the Cartesian product of k copies of C0: Ck = C0 × . . .× C0.

2 Upper Bound on the Recursive Teaching Dimension

In this section, we prove the following upper bound on RTD(C) with respect to VCD(C).
Theorem 3. Let C ⊆ {0, 1}n be a class with VCD(C) = d. Then RTD(C) ≤ 2d+1(d− 2) + d+ 4.

Given a class C, we use TSmin(C) to denote the smallest integer t such that at least one concept c ∈ C
has a teaching set of size t. Notice that TSmin(C) is different from teaching dimension. Teaching
dimension is defined as the smallest t such that every c ∈ C has a teaching set of size at most t.)
Theorem 3 follows directly from Lemma 4 and the observation that the VC dimension of a concept
class does not increase after a concept is removed. (After removing a concept from C, the new class
C′ still has VCD(C′) ≤ d, and one can apply Lemma 4 again to obtain another concept that has a
teaching set of the desired size in C′ and repeat this process.)
Lemma 4. Let C ⊆ {0, 1}n be a class with VCD(C) = d. Then TSmin(C) ≤ 2d+1(d− 2) + d+ 4.

We start with some intuition by reviewing the proof of Kuhlmann [Kuh99] that every class C with
VCD(C) = 1 must have a concept c ∈ C with a teaching set of size 1. Given an index i ∈ [n] and a
bit b ∈ {0, 1}, we use Cib to denote the set of concepts c ∈ C such that ci = b. The proof starts by
picking an index i and a bit b such that Cib is nonempty and has the smallest size among all choices of
i and b. The proof then proceeds to show that Cib contains a unique concept, which by the definition of
Cib has a teaching set {i} of size 1. To see why Cib must be a singleton set, we assume for contradiction
that it contains more than one concept. Then there exists an index j 6= i and two concepts c, c′ ∈ Cib
such that cj = 0 and c′j = 1. Since C has VCD(C) = 1, {i, j} cannot be shattered and thus, all the
concepts c∗ ∈ C with c∗i = 1− b must share the same c∗j , say c∗j = 0. As a result, it is easy to verify
that Cj1 is a nonempty proper subset of Cib, contradicting the choice of i and b at the beginning.

Moran et al. [MSWY15] used a similar approach to show that every so-called (3, 6)-class C has
TSmin(C) at most 3. They define a class C ⊆ {0, 1}n to be a (3, 6)-class if for any three indices
i, j, k ∈ [n], the projection of C onto {i, j, k} has at most 6 patterns. (In contrast, VCD(C) = 2
means that the projection of C has at most 7 patterns. So C being a (3, 6)-class is a stronger condition
than VCD(C) = 2.) The proof of [MSWY15] starts by picking two indices i, j ∈ [n] and two bits
b1, b2 ∈ {0, 1} such that Ci,jb1,b2

, i.e., the set of c ∈ C such that ci = b1 and cj = b2, is nonempty
and has the smallest size among all choices of i, j and b1, b2. They then prove by contradiction that
VCD(Ci,jb1,b2

) = 1, and combine with [Kuh99] to conclude that TSmin(C) ≤ 3.

Our proof extends this approach further. Given a concept class C ⊆ {0, 1}n with VCD(C) = d, let
k = 2d(d− 1) + 1 and we pick a set Y ∗ ⊂ [n] of k indices and a string b∗ ∈ {0, 1}k such that CY ∗b∗ ,
the set of c ∈ C such that the projection c |Y ∗ = b∗, is nonempty and has the smallest size among all
choices of Y and b. We then prove by contradiction (with the assumption of VCD(C) = d) that CY ∗b∗

must have VC dimension at most d− 1. This gives us a recursive formula that bounds the TSmin of
classes of VC dimension d, which we solve to obtain the upper bound stated in Lemma 4.

We now prove Lemma 4.
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Proof of Lemma 4. We prove by induction on d. Let
f(d) = max

C :VCD(C)≤d
TSmin(C).

Our goal is to prove the following upper bound for f(d):

f(d) ≤ 2d+1(d− 2) + d+ 4, for all d ≥ 1. (1)
The base case of d = 1 follows directly from [Kuh99].

For the induction step, we show that condition (1) holds for some d > 1, assuming that it holds for
d− 1. Take any concept class C ⊆ {0, 1}n with VCD(C) ≤ d. Let k = 2d(d− 1) + 1. If n ≤ k then
we are already done because

TSmin(C) ≤ n ≤ k = 2d(d− 1) + 1 ≤ 2d+1(d− 2) + d+ 4,

where the last inequality holds for all d ≥ 1. Assume in the rest of the proof that n > k. Then any set
of k indices Y ⊂ [n] partitions C into 2k (possibly empty) subsets, denoted by

CYb = {c ∈ C : c |Y = b}, for each b ∈ {0, 1}k.
We follow the approach of [Kuh99] and [MSWY15] to choose a set of k indices Y ∗ ⊂ [n] as well as
a string b∗ ∈ {0, 1}k such that CY ∗b∗ is nonempty and has the smallest size among all nonempty CYb ,
over all choices of Y and b. Without loss of generality we assume below that Y ∗ = [k] and b∗ = 0
is the all-zero string. For notational convenience, we also write Cb to denote CY ∗b for b ∈ {0, 1}k.

Notice that if Cb∗ = CY
∗

b∗ has VC dimension at most d− 1, then we have

TSmin(C) ≤ k + f(d− 1) ≤ 2d+1(d− 2) + d+ 4,

using the inductive hypothesis. This is because according to the definition of f , one of the concepts
c ∈ Cb∗ has a teaching set T ⊆ [n] \Y ∗ of size at most f(d− 1) to distinguish it from other concepts
of Cb∗ . Thus, [k] ∪ T is a teaching set of c in the original class C, of size at most k + f(d− 1).

0 0 0 0 0

0 0
0 1
1 0
1 1

1 ���XXX0 0

1 ���XXX0 1

1 ���XXX1 0

1 ���XXX1 1

1 ���XXX0 0

Figure 1: An illustration for the proof of Lemma 4, TSmin(C) ≤ 6 when d = 2. We prove by
contradiction that the smallest nonempty set CY ∗b∗ , after fixing five bits, has VCD(CY ∗b∗ ) = 1, where
Y ∗ = {1, 2, 3, 4, 5} and b∗ = 0. In this example, we have Z = {6, 7}, Y ′ = {2, 3, 4, 6, 7} and
b′ = 0. Note that CY ′0 is indeed a nonempty proper subset of CY ∗0 .

Finally, we prove by contradiction that Cb∗ has VC dimension at most d− 1. Assume that Cb∗ has
VC dimension d. Then by definition there exists a set Z ⊆ [n] \ Y ∗ of d indices that is shattered by
Cb∗ (i.e., all the 2d possible strings appear in Cb∗ on Z). Observe that for each i ∈ Y ∗, the union of
all Cb with bi = 1 (recall that b∗ is the all-zero string) must miss at least one string on Z, which we
denote by pi (choose one arbitrarily if more than one are missing); otherwise, C has a shattered set
of size d+ 1, i.e., Z ∪ {i}, contradicting with the assumption that VCD(C) ≤ d. (See Figure 1 for
an example when d = 2 and k = 5.) However, given that there are only 2d possibilities for each pi
(and |Y ∗| = k = 2d(d− 1) + 1), it follows from the pigeonhole principle that there exists a subset
K ⊂ Y ∗ of size d such that pi = p for every i ∈ K, for some p ∈ {0, 1}d. Let Y ′ = (Y ∗ \K) ∪ Z
be a new set of k indices and let b′ = 0k−d ◦ p. Then CY ′b′ is a nonempty and proper subset of CY ∗b∗ , a
contradiction with our choice of Y ∗ and b∗.

This finishes the induction and the proof of the lemma.
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3 Lower Bound on the Worst-Case Recursive Teaching Dimension

We also improve the lower bound on the worst-case factor by which RTD may exceed VCD.

In this section, we present an improved lower bound on the worst-case factor by which RTD(C) may
exceed VCD(C). Recall the definition of TSmin(C), which denotes the number of examples needed
to teach some concept in c ∈ C. By definition we always have RTD(C) ≥ TSmin(C) for any class C.

Kuhlmann [Kuh99] first found a class C such that RTD(C) = TSmin(C) = 3 and VCD(C) = 2, with
domain size n = 16 and |C| = 24. Since then, no class C with RTD(C) > (3/2) · VCD(C) has been
found. Recently, Doliwa et al. [DFSZ14] gave the smallest such class CW (Warmuth’s class, as shown
in Figure 2), with RTD(CW ) = TSmin(CW ) = 3, VCD(CW ) = 2, n = 5, and |CW | = 10. We can
view CW as taking all five possible rotations of the two concepts (0, 0, 0, 1, 1) and (0, 1, 0, 1, 1).

x1 x2 x3 x4 x5

0 0 0 1 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0
1 0 0 0 1
0 1 0 1 1
1 0 1 1 0
0 1 1 0 1
1 1 0 1 0
1 0 1 0 1

(a)

x1 x2 x3 x4 x5

0 0 0 1 1
0 1 0 1 1

(b)

Figure 2: (a) Warmuth’s class CW with RTD(CW ) = 3 and VCD(CW ) = 2; (b) The succinct
representation of CW with one concept selected from each rotation-equivalent set of concepts.
The teaching set of each concept is marked with underline.

Given CW one can obtain a family of classes {Ck}k≥1 by taking the Cartesian product of k copies:

Ck = CkW = CW × · · · × CW ,

and it follows from the next lemma that RTD(Ck) = TSmin(Ck) = 3k and VCD(Ck) = 2k.
Lemma 5 (Lemma 16 of [DFSZ14]). Given two concept classes C1 and C2.

Let C1 × C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2}. Then

TSmin(C1 × C2) = TSmin(C1) + TSmin(C2),
RTD(C1 × C2) ≤ RTD(C1) + RTD(C2), and
VCD(C1 × C2) = VCD(C1) + VCD(C2).

Lemma 5 allows us to focus on finding small concept classes with RTD(C) > (3/2) · VCD(C). The
first attempt to find such classes is to exhaustively search over all possible binary matrices and then
compute and compare their VCD and RTD. But brute-force search quickly becomes infeasible as the
domain size n gets larger. For example, even the class CW has fifty 0/1 entries. Instead, we formulate
the existence of a class with certain desired RTD, VCD, and domain size, as a boolean satisfiability
problem, and then run state-of-the-art Boolean Satisfiability (SAT) solvers to see whether the boolean
formula is satisfiable or not.

We briefly describe how to construct an equivalent boolean formula in conjunctive normal form
(CNF). For a fixed domain size n, we have 2n basic variables xc, each describing whether a concept
c ∈ {0, 1}n is included in C or not. We need VC dimension to be at most VCD, which is equivalent to
requiring that every set S ⊆ [n] of size |S| = VCD + 1 is not shattered by C. So we define auxiliary
variables y(S,b) for each set S of size |S| = VCD + 1, and every string b ∈ {0, 1}S , indicating
whether a specific pattern b appears in the projection of C on S or not. These auxiliary variables are
decided by the basic variables, and for every S, at least one of the 2|S| patterns must be missing on S.
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For the minimum teaching dimension to be at least RTD, we cannot teach any row with RTD − 1
labels. So for every concept c, and every set of indices T ⊆ [n] of size |T | = RTD − 1, we need
at least one other concept c′ 6= c satisfying c |T = c′ |T so that c′ is there to “confuse” c on T . As
an example, we list one clause of each type, from the SAT instance with n = 5, VCD = 2, and
RTD = 3:

x01011 → y({1,2,3},010),
∨
b

¬ y({1,2,3},b), x01011 →
∨

b6=011

x(01,b).

Note that there are many ways to formulate our problem as a SAT instance. For example, we could
directly use a boolean variable for each entry of the matrix. But in our experiments, the SAT solvers
run faster using the formulation described above. The SAT solvers we use are Lingeling [Bie15]
and Glucose [AS14] (based on MiniSAT [ES03]). We are able to rediscover CW and rule out the
existence of concept classes for certain small values of (VCD,RTD, n); see Figure 3.

VCD(C) RTD(C) n (domain size) Satisfiable Concept Class

2 3 5 Yes CW (Figure 2)
2 4 7 No
3 5 7 No
3 6 8 No
4 6 7 No
4 7 8 No

3 5 12 Yes Figure 4

Figure 3: The satisfiability of the boolean formulae for small values of VCD(C), RTD(C), and n.

Unfortunately for n > 8, even these SAT solvers are no longer feasible. We use another heuristic
to speed up the SAT solvers when we conjecture the formula to be satisfiable — adding additional
clauses to the SAT formula so that it has fewer solutions (but hopefully still satisfiable), and faster
to solve. More specifically, we bundle all the rotation-equivalent concepts, that is if we include a
concept, we must also include all its rotations. Note that with this restriction, we can reduce the
number of variables by having one for each rotation-equivalent set; we can also reduce the number of
clauses, since if S is not shattered, then we know all rotations of S are also not shattered.

We manage to find a class C0 with RTD(C0) = TSmin(C0) = 5 and VCD(C) = 3, and domain size
n = 12. A succinct representation of C0 is given in Figure 4, where all rotation-equivalent concepts
(i.e. rows) are omitted. The first 8 rows each represents 12 concepts, and the last row represents 4
concepts (because it is more symmetric), with a total of |C0| = 100 concepts. We also include a text
file with the entire concept class C0 (as a 100× 12 matrix) in the supplemental material. Applying
Lemma 5, we obtain a family of concept classes {Ck}k≥1, where Ck = C0 × · · · × C0 is the Cartesian
product of k copies of C0, that satisfy RTD(Ck) = 5k and VCD(Ck) = 3k.

4 Conclusion and Open Problem

We improve the best known upper and lower bounds for the worst-case recursive teaching dimension
with respect to VC dimension. Given a concept class C with d = VCD(C) we improve the upper
bound RTD(C) = O(d2d log log |C|) of Moran et al. [MSWY15] to 2d+1(d− 2) + d+ 4, removing
the log log |C| factor as well as the dependency on |C|. In addition, we improve the lower bound
maxC(RTD(C)/VCD(C)) ≥ 3/2 of Kuhlmann [Kuh99] to maxC(RTD(C)/VCD(C)) ≥ 5/3.

Our results are a step towards answering the following question:

Is RTD(C) = O(VCD(C))?

posed by Simon and Zilles [SZ15].

While Kuhlmann [Kuh99] showed that RTD(C) = 1 when VCD(C) = 1, the simplest case that is still
open is to give a tight bound on RTD(C) when VCD(C) = 2: Doliwa et al. [DFSZ14] presented a
concept class C (Warmuth’s class) with RTD(C) = 3, while our Theorem 3 shows that RTD(C) ≤ 6.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 1 1 1 0 1 0 1

0 0 0 0 1 1 0 1 0 1 0 1

0 0 0 1 0 1 1 1 0 1 0 1

0 0 0 1 1 1 0 1 0 1 0 1

0 0 1 1 0 1 0 1 0 1 0 1

0 0 1 1 0 1 1 1 0 1 0 1

0 1 0 1 0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1 0 1 1 1

Figure 4: The succinct representation of a concept class C0 with RTD(C0) = 5 and VCD(C0) = 3.
The teaching set of each concept is marked with underline.
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