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Abstract

In topic modeling, many algorithms that guarantee identifiability of the topics have
been developed under the premise that there exist anchor words – i.e., words that
only appear (with positive probability) in one topic. Follow-up work has resorted
to three or higher-order statistics of the data corpus to relax the anchor word
assumption. Reliable estimates of higher-order statistics are hard to obtain, however,
and the identification of topics under those models hinges on uncorrelatedness of
the topics, which can be unrealistic. This paper revisits topic modeling based on
second-order moments, and proposes an anchor-free topic mining framework. The
proposed approach guarantees the identification of the topics under a much milder
condition compared to the anchor-word assumption, thereby exhibiting much
better robustness in practice. The associated algorithm only involves one eigen-
decomposition and a few small linear programs. This makes it easy to implement
and scale up to very large problem instances. Experiments using the TDT2 and
Reuters-21578 corpus demonstrate that the proposed anchor-free approach exhibits
very favorable performance (measured using coherence, similarity count, and
clustering accuracy metrics) compared to the prior art.

1 Introduction
Given a large collection of text data, e.g., documents, tweets, or Facebook posts, a natural question is
what are the prominent topics in these data. Mining topics from a text corpus is motivated by a number
of applications, from commercial design, news recommendation, document classification, content
summarization, and information retrieval, to national security. Topic mining, or topic modeling, has
attracted significant attention in the broader machine learning and data mining community [1].

In 2003, Blei et al. proposed a Latent Dirichlet Allocation (LDA) model for topic mining [2], where
the topics are modeled as probability mass functions (PMFs) over a vocabulary and each document
is a mixture of the PMFs. Therefore, a word-document text data corpus can be viewed as a matrix
factorization model. Under this model, posterior inference-based methods and approximations were
proposed [2, 3], but identifiability issues – i.e., whether the matrix factors are unique – were not
considered. Identifiability, however, is essential for topic modeling since it prevents the mixing of
topics that confounds interpretation.

In recent years, considerable effort has been invested in designing identifiable models and estimation
criteria as well as polynomial time solvable algorithms for topic modeling [4, 5, 6, 7, 8, 9, 10, 11].
Essentially, these algorithms are based on the so-called separable nonnegative matrix factorization
(NMF) model [12]. The key assumption is that every topic has an ‘anchor word’ that only appears
in that particular topic. Based on this assumption, two classes of algorithms are usually employed,
namely linear programming based methods [5, 7] and greedy pursuit approaches [11, 6, 8, 10]. The
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former class has a serious complexity issue, as it lifts the number of variables to the square of the size
of vocabulary (or documents); the latter, although computationally very efficient, usually suffers from
error propagation, if at some point one anchor word is incorrectly identified. Furthermore, since all
the anchor word-based approaches essentially convert topic identification to the problem of seeking
the vertices of a simplex, most of the above algorithms require normalizing each data column (or row)
by its `1 norm. However, normalization at the factorization stage is usually not desired, since it may
destroy the good conditioning of the data matrix brought by pre-processing and amplify noise [8].

Unlike many NMF-based methods that work directly with the word-document data, the approach
proposed by Arora et al. [9, 10] works with the pairwise word-word correlation matrix, which has
the advantage of suppressing sampling noise and also features better scalability. However, [9, 10]
did not relax the anchor-word assumption or the need for normalization, and did not explore the
symmetric structure of the co-occurrence matrix – i.e., the algorithms in [9, 10] are essentially the
same asymmetric separable NMF algorithms as in [4, 6, 8].

The anchor-word assumption is reasonable in some cases, but using models without it is more
appealing in more critical scenarios, e.g., when some topics are closely related and many key words
overlap. Identifiable models without anchor words have been considered in the literature; e.g.,
[13, 14, 15] make use of third or higher-order statistics of the data corpus to formulate the topic
modeling problem as a tensor factorization problem. There are two major drawbacks with this
approach: i) third- or higher-order statistics require a lot more samples for reliable estimation relative
to their lower-order counterparts (e.g., second-order word correlation statistics); and ii) identifiability
is guaranteed only when the topics are uncorrelated – where a super-symmetric parallel factor analysis
(PARAFAC) model can be obtained [13, 14]. Uncorrelatedness is a restrictive assumption [10]. When
the topics are correlated, the model becomes a Tucker model which is not identifiable in general;
identifiability needs more assumptions, e.g., sparsity of topic PMFs [15].

Contributions. In this work, our interest lies in topic mining using word-word correlation matrices
like in [9, 10], because of its potential scalability and noise robustness. We propose an anchor-free
identifiable model and a practically implementable companion algorithm. Our contributions are two-
fold: First, we propose an anchor-free topic identification criterion. The criterion aims at factoring
the word-word correlation matrix using a word-topic PMF matrix and a topic-topic correlation matrix
via minimizing the determinant of the topic-topic correlation matrix. We show that under a so-called
sufficiently scattered condition, which is much milder than the anchor-word assumption, the two
matrices can be uniquely identified by the proposed criterion. We emphasize that the proposed
approach does not need to resort to higher-order statistics tensors to ensure topic identifiability, and
it can naturally deal with correlated topics, unlike what was previously available in topic modeling,
to the best of our knowledge. Second, we propose a simple procedure for handling the proposed
criterion that only involves eigen-decomposition of a large but sparse matrix, plus a few small linear
programs – therefore highly scalable and well-suited for topic mining. Unlike greedy pursuit-based
algorithms, the proposed algorithm does not involve deflation and is thus free from error propagation;
it also does not require normalization of the data columns / rows. Carefully designed experiments
using the TDT2 and Reuters text corpora showcase the effectiveness of the proposed approach.

2 Background
Consider a document corpusD ∈ RV×D, where each column ofD corresponds to a document and
D(v, d) denotes a certain measurement of word v in document d, e.g., the word-frequency of term v
in document d or the term frequency–inverse document frequency (tf-idf) measurement that is often
used in topic mining. A commonly used model is

D ≈ CW , (1)
where C ∈ RV×F is the word-topic matrix, whose f -th column C(:, f) represents the probability
mass function (PMF) of topic f over a vocabulary of words, andW (f, d) denotes the weight of topic
f in document d [2, 13, 10]. Since matrixC andW are both nonnegative, (1) becomes a nonnegative
matrix factorization (NMF) model – and many early works tried to use NMF and variants to deal with
this problem [16]. However, NMF does not admit a unique solution in general, unless bothC andW
satisfy some sparsity-related conditions [17]. In recent years, much effort has been put in devising
polynomial time solvable algorithms for NMF models that admit unique factorization. Such models
and algorithms usually rely on an assumption called “separability” in the NMF literature [12]:

Assumption 1 (Separability / Anchor-Word Assumption) There exists a set of indices Λ =
{v1, . . . , vF } such that C(Λ, :) = Diag(c), where c ∈ RF .
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In topic modeling, it turns out that the separability condition has a nice physical interpretation, i.e.,
every topic f for f = 1, . . . , F has a ‘special’ word that has nonzero probability of appearing in topic
f and zero probability of appearing in other topics. These words are called ‘anchor words’ in the
topic modeling literature. Under Assumption 1, the task of matrix factorization boils down to finding
these anchor words v1, . . . , vF sinceD(Λ, :) = Diag(c)W — which is already a scaled version of
W — and then C can be estimated via (constrained) least squares.

Algorithm 1:
Successive Projection Algorithm [6]
input : D; F .
Σ = 1TDT

X = DT Σ−1 (normalization);
Λ = ∅;
for f = 1, . . . , F do

v̂f ← arg maxv∈{1,...,V } ‖X(:, v)‖2;
Λ← [Λ, v̂f ];
Θ← arg minΘ ‖X −X(:,Λ)Θ‖2F ;
X ← X −X(:,Λ)Θ;

end
output :Λ

Many algorithms have been proposed to tackle this index-
picking problem in the context of separable NMF, hyper-
spectral unmixing, and text mining. The arguably simplest
algorithm is the so-called successive projection algorithm
(SPA) [6] that is presented in Algorithm 1. SPA-like algo-
rithms first define a normalized matrixX = DTΣ−1 where
Σ = Diag(1TDT ) [11]. Note that X = GS where G(:

, f) = WT(f,:)/‖W (f,:)‖1 and S(f, v) = C(v,f)‖W (f,:)‖1
‖C(v,:)‖1‖D(v,:)‖1 .

Consequently, we have 1TS = 1T if W ≥ 0, meaning the
columns ofX all lie on the simplex spanned by the columns
ofG, and the vertices of the simplex correspond to the anchor
words. Also, the columns of S all live in the unit simplex.

After normalization, SPA sequentially identifies the vertices of the data simplex, in conjunction with
a deflation procedure. The algorithms in [8, 10, 11] can also be considered variants of SPA, with
different deflation procedures and pre-/post-processing. In particular, the algorithm in [8] avoids
normalization — for real-word data, normalization at the factorization stage may amplify noise
and damage the good conditioning of the data matrix brought by pre-processing, e.g., the tf-idf
procedure [8]. To pick out vertices, there are also algorithms using linear programming and sparse
optimization [7, 5], but these have serious scalability issues and thus are less appealing.

In practice D may contain considerable noise, and this has been noted in the literature. In [9, 10,
14, 15], the authors proposed to use second and higher-order statistics for topic mining. Particularly,
Arora et al. [9, 10] proposed to work with the following matrix:

P = E{DDT } = CECT , (2)
where E = E{WW T } can be interpreted as a topic-topic correlation matrix. The matrix P is by
definition a word-word correlation matrix, but also has a nice interpretation: ifD(v, d) denotes the
frequency of word v occurring in document d, P (i, j) is the likelihood that term i and j co-occur
in a document [9, 10]. There are two advantages in using P : i) if there is zero-mean white noise, it
will be significantly suppressed through the averaging process; and ii) the size of P does not grow
with the size of the data if the vocabulary is fixed. The latter is a desired property when the number
of documents is very large, and we pick a (possibly limited but) manageable vocabulary to work
with. Problems with similar structure to that of P also arise in the context of graph models, where
communities and correlations appear as the underlying factors. The algorithm proposed in [10] also
makes use of Assumption 1 and is conceptually close to Algorithm 1. The work in [13, 14, 15]
relaxed the anchor-word assumption. The methods there make use of three or higher-order statistics,
e.g., P ∈ RV×V×V whose (i, j, k)th entry represents the co-occurrence of three terms. The work in
[13, 14] showed that P is a tensor satisfying the parallel factor analysis (PARAFAC) model and thus
C is uniquely identifiable, if the topics are uncorrelated, which is a restrictive assumption (a counter
example would be politics and economy). When the topics are correlated, additional assumptions like
sparsity are needed to restore identifiability [15]. Another important concern is that reliable estimates
of higher-order statistics require much larger data sizes, and tensor decomposition is computationally
cumbersome as well.
Remark 1 Among all the aforementioned methods, the deflation-based methods are seemingly more
efficient. However, if the deflation procedure in Algorithm 1 (the update of Θ) has constraints like
in [8, 11], there is a serious complexity issue: solving a constrained least squares problem with
FV variables is not an easy task. Data sparsity is destroyed after the first deflation step, and thus
even first-order methods or coordinate descent as in [8, 11] do not really help. This point will be
exemplified in our experiments.

3 Anchor-Free Identifiable Topic Mining
In this work, we are primarily interested in mining topics from the matrix P because of its noise
robustness and scalability. We will formulate topic modeling as an optimization problem, and show
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that the word-topic matrix C can be identified under a much more relaxed condition, which includes
the relatively strict anchor-word assumption as a special case.

3.1 Problem Formulation
Let us begin with the model P = CECT , subject to the constraint that each column ofC represents
the PMF of words appearing in a specific topic, such that CT1 = 1, C ≥ 0. Such a symmetric
matrix decomposition is in general not identifiable, as we can always pick a non-singular matrix
A ∈ RF×F such that AT1 = 1, A ≥ 0, and define C̃ = CA, Ẽ = A−1CA−1, and then
P = C̃ẼC̃

T
with C̃

T
1 = 1, C̃ ≥ 0. We wish to find an identification criterion such that under

some mild conditions the corresponding solution can only be the ground-truth E and C up to some
trivial ambiguities such as a common column permutation. To this end, we propose the following
criterion:

minimize
E∈RF×F ,C∈RV×F

|detE|, subject to P = CECT ,CT1 = 1,C ≥ 0. (3)

The first observation is that if the anchor-word assumption is satisfied, the optimal solutions of the
above identification criterion are the ground-truth C and E and their column-permuted versions.
Formally, we show that:

Proposition 1 Let (C?,E?) be an optimal solution of (3). If the separability / anchor-word assump-
tion (cf. Assumption 1) is satisfied and rank(P ) = F , then C? = CΠ and E? = ΠTEΠ , where
Π is a permutation matrix.

The proof of Proposition 1 can be found in the supplementary material. Proposition 1 is merely a
‘sanity check’ of the identification criterion in (3): It shows that the criterion is at least a sound one
under the anchor-word assumption. Note that, when the anchor-word assumption is satisfied, SPA-
type algorithms are in fact preferable over the identification criterion in (3), due to their simplicity.
The point of the non-convex formulation in (3) is that it can guarantee identifiability of C and E
even when the anchor-word assumption is grossly violated. To explain, we will need the following.

Assumption 2 (sufficiently scattered) Let cone(CT )∗ denote the polyhedral cone {x : Cx ≥ 0},
and K denote the second-order cone {x : ‖x‖2 ≤ 1Tx}. Matrix C is called sufficiently scattered
if it satisfies that: (i) cone(CT )∗ ⊆ K, and (ii) cone(CT )∗ ∩ bdK = {λef : λ ≥ 0, f = 1, . . . , F},
where bdK denotes the boundary of K, i.e., bdK = {x : ‖x‖2 = 1Tx}.

Our main result is based on this assumption, whose first consequence is as follows:

Lemma 1 IfC ∈ RV×F is sufficiently scattered, then rank(C) = F . In addition, given rank(P ) =

F , any feasible solution Ẽ ∈ RF×F of Problem (3) has full rank and thus |det Ẽ| > 0.

Lemma 1 ensures that any feasible solution pair (C̃, Ẽ) of Problem (3) has full rank F when the
ground-truth C is sufficiently scattered, which is important from the optimization perspective –
otherwise |det Ẽ| can always be zero which is a trivial optimal solution of (3). Based on Lemma 1,
we further show that:

Theorem 1 Let (C?,E?) be an optimal solution of (3). If the ground truthC is sufficiently scattered
(cf. Assumption 2) and rank(P ) = F , then C? = CΠ and E? = ΠTEΠ , where Π is a
permutation matrix.

The proof of Theorem 1 is relegated to the supplementary material. In words, for a sufficiently
scattered C and an arbitrary square matrix E, given P = CECT , C and E can be identified up to
permutation via solving (3). To understand the sufficiently scattered condition and Theorem 2, it is
better to look at the dual cones. The notation cone(CT )∗ = {x : Cx ≥ 0} comes from the fact that
it is the dual cone of the conic hull of the row vectors of C, i.e., cone(CT ) = {CTθ : θ ≥ 0}. A
useful property of dual cone is that for two convex cones, if K1 ⊆ K2, then K∗2 ⊆ K∗1 , which means
the first requirement of Assumption 2 is equivalent to

K∗ ⊆ cone(CT ). (4)

Note that the dual cone ofK is another second-order cone [12], i.e.,K∗ = {x|xT1 ≥
√
F − 1‖x‖2},

which is tangent to and contained in the nonnegative orthant. Eq. (4) and the definition of K∗ in
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(a) separable / anchor word (b) sufficiently scattered (c) not identifiable

Figure 1: A graphical view of rows of C (blue dots) and various cones in R3, sliced at the plane
1Tx = 1. The triangle indicates the non-negative orthant, the enclosing circle is K, and the smaller
circle is K∗. The shaded region is cone(CT ), and the polygon with dashed sides is cone(CT )∗. The
matrix C can be identified up to column permutation in the left two cases, and clearly separability is
more restrictive than (and a special case of) sufficiently scattered.

fact give a straightforward comparison between the proposed sufficiently scattered condition and
the existing anchor-word assumption. An illustration of Assumptions 1 and 2 is shown in Fig. 1
(a)-(b) using an F = 3 case, where one can see that sufficiently scattered is much more relaxed
compared to the anchor-word assumption: if the rows of the word-topic matrix C are geometrically
scattered enough so that cone(CT ) contains the inner circle (i.e., the second-order cone K∗), then
the identifiability of the criterion in (3) is guaranteed. However, the anchor-word assumption requires
that cone(CT ) fulfills the entire triangle, i.e., the nonnegative orthant, which is far more restrictive.
Fig. 1(c) shows a case where rows of C are not “well scattered” in the non-negative orthant, and
indeed such a matrix C cannot be identified via solving (3).

Remark 2 A salient feature of the criterion in (3) is that it does not need to normalize the data
columns to a simplex — all the arguments in Theorem 1 are cone-based. The upshot is clear: there is
no risk of amplifying noise or changing the conditioning of P at the factorization stage. Furthermore,
matrix E can be any symmetric matrix; it can contain negative values, which may cover more
applications beyond topic modeling where E is always nonnegative and positive semidefinite. This
shows the surprising effectiveness of the sufficiently scattered condition.

The sufficiently scattered assumption appeared in identifiability proofs of several matrix factorization
models [17, 18, 19] with different identification criteria. Huang et al. [17] used this condition
to show the identifiability of plain NMF, while Fu et al. [19] related the sufficiently scattered
condition to the so-called volume-minimization criterion for blind source separation. Note that volume
minimization also minimizes a determinant-related cost function. Like the SPA-type algorithms,
volume minimization works with data that live in a simplex, therefore applying it still requires data
normalization, which is not desired in practice. Theorem 1 can be considered as a more natural
application of the sufficiently scattered condition to co-occurrence/correlation based topic modeling,
which explores the symmetry of the model and avoids normalization.

3.2 AnchorFree: A Simple and Scalable Algorithm
The identification criterion in (3) imposes an interesting yet challenging optimization problem. One
way to tackle it is to consider the following approximation:

minimize
E,C

∥∥P −CECT
∥∥2

F
+ µ|detE|, subject to C ≥ 0, CT1 = 1, (5)

where µ ≥ 0 balances the data fidelity and the minimal determinant criterion. The difficulty is
that the term CECT makes the problem tri-linear and not easily decoupled. Plus, tuning a good
µ may also be difficult. In this work, we propose an easier procedure of handling the determinant-
minimization problem in (3), which is summarized in Algorithm 2, and referred to as AnchorFree.
To explain the procedure, first notice that P is symmetric and positive semidefinite. Therefore, one
can apply square root decomposition to P = BBT , where B ∈ RV×F . We can take advantage
of well-established tools for eigen-decomposition of sparse matrices, and there is widely available
software that can compute this very efficiently. Now, we haveB = CE1/2Q,QTQ = QQT = I ,
and E = E1/2E1/2; i.e., the representing coefficients of CE1/2 in the range space of B must be
orthonormal because of the symmetry of P . We also notice that

minimize
E,C,Q

|detE1/2Q|, subject toB = CE1/2Q, CT1 = 1, C ≥ 0, QTQ = I, (6)
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has the same optimal solutions as (3). SinceQ is unitary, it does not affect the determinant, so we
further letM = QTE−1/2 and obtain the following optimization problem

maximize
M

|detM |, subject toMTBT1 = 1,BM ≥ 0. (7)

By our reformulation, C has been marginalized and we have only F 2 variables left, which is
significantly smaller compared to the variable size of the original problem V F + F 2, where V is
the vocabulary size. Problem (7) is still non-convex, but can be handled very efficiently. Here, we
propose to employ the solver proposed in [18], where the same subproblem (7) was used to solve
a dynamical system identification problem. The idea is to apply the co-factor expansion to deal
with the determinant objective function, first proposed in the context of non-negative blind source
separation [20]: if we fix all the columns ofM except the f th one, detM becomes a linear function
with respect to M(:, f), i.e., detM =

∑F
k=1(−1)f+kM(k, f) detM̄k,f = aTM(:, f), where

a = [a1, . . . , aF ]T , ak = (−1)f+k detM̄k,f , ∀ k = 1, ..., F , and M̄k,f is a matrix obtained by
removing the kth row and f th column of M . Maximizing |aTx| subject to linear constraints is
still a non-convex problem, but we can solve it via maximizing both aTx and −aTx, followed by
picking the solution that gives larger absolute objective. Then, cyclically updating the columns ofM
results in an alternating optimization (AO) algorithm. The algorithm is computationally lightweight:
each linear program only involves F variables, leading to a worst-case complexity of O(F 3.5) flops
even when the interior-point method is employed, and empirically it takes 5 or less AO iterations
to converge. In the supplementary material, simulations on synthetic data are given, showing that
Algorithm 2 can indeed recover the ground truth matrix C and E even when matrix C grossly
violates the separability / anchor-word assumption.

Algorithm 2: AnchorFree
input : D, F .
P ← Co-Occurrence(D);
P = BBT , M ← I;
repeat

for f = 1, . . . , F do
ak = (−1)f+k detM̄k,f , ∀ k = 1, ..., F ;
// remove k-th row and f-th column of M to obtain M̄k,f

mmax = arg maxx aTx s.t. Bx ≥ 0, 1TBx = 1;
mmin = arg minx aTx s.t. Bx ≥ 0, 1TBx = 1;
M(:, f) = arg maxmmax,mmin (|aTmmax|, |aTmmin|);

end
until convergence;
C? = BM ;
E? = (CT

? C?)−1CT
? PC?(CT

? C?)−1;
output :C?, E?

4 Experiments
Data In this section, we apply the proposed algorithm and the baselines to two popular text mining
datasets, namely, the NIST Topic Detection and Tracking (TDT2) and the Reuters-21578 corpora.
We use a subset of the TDT2 corpus consisting of 9,394 documents which are single-category
articles belonging to the largest 30 categories. The Reuters-21578 corpus is the ModApte version
where 8,293 single-category documents are kept. The original vocabulary sizes of the TDT2 and
the Reuters dataset are 36, 771 and 18, 933, respectively, and stop words are removed for each trial
of the experiments. We use the standard tf-idf data as the D matrix, and estimate the correlation
matrix using the biased estimator suggested in [9]. A standard pre-processing technique, namely,
normalized-cut weighted (NCW) [21], is applied toD; NCW is a well-known trick for handling the
unbalanced-cluster-size problem. For each trial of our experiment, we randomly draw F categories
of documents, form the P matrix, and apply the proposed algorithm and the baselines.

Baselines We employ several popular anchor word-based algorithms as baselines. Specifically,
the successive projection algorithm (SPA) [6], the successive nonnegative projection algorithm
(SNPA) [11], the XRAY algorithm [8], and the fast anchor words (FastAnchor) [10] algorithm.
Since we are interested in word-word correlation/co-occurrence based mining, all the algorithms are

6



Table 1: Experiment results on the TDT2 corpus.
Coh SimCount ClustAcc

F FastAchor SPA SNPA XRAY AnchorFree FastAchor SPA SNPA XRAY AnchorFree FastAchor SPA SNPA XRAY AnchorFree
3 -612.72 -613.43 -613.43 -597.16 -433.87 7.98 7.98 7.98 8.94 1.84 0.71 0.74 0.75 0.73 0.98
4 -648.20 -648.04 -648.04 -657.51 -430.07 10.60 11.18 11.18 13.70 2.88 0.70 0.69 0.69 0.69 0.94
5 -641.79 -643.91 -643.91 -665.20 -405.19 13.06 13.36 13.36 22.56 4.40 0.63 0.63 0.62 0.64 0.92
6 -654.18 -645.68 -645.68 -674.30 -432.96 18.94 18.10 18.10 31.56 7.18 0.65 0.58 0.59 0.60 0.91
7 -668.92 -665.55 -665.55 -664.38 -397.77 20.14 18.84 18.84 39.06 4.48 0.62 0.60 0.59 0.58 0.90
8 -681.35 -674.45 -674.45 -657.78 -450.63 24.82 25.14 25.14 40.30 9.12 0.57 0.56 0.58 0.57 0.87
9 -688.54 -671.81 -671.81 -690.39 -416.44 27.50 29.10 29.10 53.68 9.70 0.61 0.58 0.58 0.53 0.86
10 -732.39 -724.64 -724.64 -698.59 -421.25 31.08 29.86 29.86 53.16 13.02 0.59 0.55 0.54 0.49 0.85
15 -734.13 -730.19 -730.19 -773.17 -445.30 51.62 52.62 52.62 59.96 41.88 0.51 0.50 0.50 0.42 0.80
20 -756.90 -747.99 -747.99 -819.36 -461.64 66.26 65.00 65.00 82.92 79.60 0.47 0.47 0.47 0.38 0.77
25 -792.92 -792.29 -792.29 -876.28 -473.95 69.46 66.00 66.00 101.52 133.42 0.46 0.47 0.47 0.37 0.74

Table 2: Experiment results on the Reuters-21578 corpus.
Coh SimCount ClustAc

F FastAchor SPA SNPA XRAY AnchorFree FastAchor SPA SNPA XRAY AnchorFree FastAchor SPA SNPA XRAY AnchorFree
3 -652.67 -647.28 -647.28 -574.72 -830.24 10.98 11.02 11.02 3.86 7.36 0.66 0.69 0.69 0.66 0.79
4 -633.69 -637.89 -637.89 -586.41 -741.35 16.74 16.92 16.92 9.92 12.66 0.51 0.61 0.61 0.60 0.73
5 -650.49 -652.53 -652.53 -581.73 -762.64 21.74 21.66 21.66 13.06 15.48 0.51 0.55 0.55 0.52 0.65
6 -654.74 -644.34 -644.34 -586.00 -705.60 39.9 39.54 39.54 27.42 19.98 0.47 0.49 0.50 0.46 0.64
7 -733.73 -732.01 -732.01 -612.97 -692.12 47.02 45.24 45.24 34.64 35.62 0.43 0.57 0.57 0.54 0.65
8 -735.23 -738.54 -738.54 -616.32 -726.37 85.04 83.86 83.86 82.52 62.02 0.40 0.53 0.54 0.47 0.61
9 -761.27 -755.46 -755.46 -640.36 -713.81 117.48 118.98 118.98 119.28 72.38 0.37 0.56 0.56 0.47 0.59
10 -764.18 -759.40 -759.40 -656.71 -709.48 119.54 121.74 121.74 130.82 86.02 0.35 0.52 0.52 0.42 0.59
15 -800.51 -801.17 -801.17 -585.18 -688.39 307.86 309.7 309.7 227.02 124.6 0.33 0.40 0.40 0.42 0.53
20 -859.48 -860.70 -860.70 -615.62 -683.64 539.58 538.54 538.54 502.82 225.6 0.31 0.36 0.36 0.38 0.52
25 -889.55 -890.16 -890.16 -633.75 -672.44 674.78 673 673 650.96 335.24 0.26 0.33 0.32 0.37 0.47

combined with the framework provided in [10] and the efficient RecoverL2 process is employed for
estimating the topics after the anchors are identified.

Evaluation To evaluate the results, we employ several metrics. First, coherence (Coh) is used
to measure the single-topic quality. For a set of words V , the coherence is defined as Coh =∑
v1,v2∈V log (freq(v1,v2)+ε/freq(v2)) , where v1 and v2 denote the indices of two words in the vocab-

ulary, freq(v2) and freq(v1, v2) denote the numbers of documents in which v1 appears and v1 and v2

co-occur, respectively, and ε = 0.01 is used to prevent taking log of zero. Coherence is considered
well-aligned to human judgment when evaluating a single topic — a higher coherence score means
better quality of a mined topic. However, coherence does not evaluate the relationship between
different mined topics; e.g., if the mined F topics are identical, the coherence score can still be high
but meaningless. To alleviate this, we also use the similarity count (SimCount) that was adopted in
[10] — for each topic, the similarity count is obtained simply by adding up the overlapped words of
the topics within the leading N words, and a smaller SimCount means the mined topics are more
distinguishable. When the topics are very correlated (but different), the leading words of the topics
may overlap with each other, and thus using SimCount might still not be enough to evaluate the
results. We also include clustering accuracy (ClustAcc), obtained by using the mined C? matrix
to estimate the weightsW of the documents, and applying k-means toW . Since the ground-truth
labels of TDT2 and Reuters are known, clustering accuracy can be calculated, and it serves as a good
indicator of topic mining results.

Table 1 shows the experiment results on the TDT2 corpus. From F = 3 to 25, the proposed algorithm
(AnchorFree) gives very promising results: for the three considered metrics, AnchorFree consistently
gives better results compared to the baselines. Particularly, the ClustAcc’s obtained by AnchorFree
are at least 30% higher compared to the baselines for all cases. In addition, the single-topic quality of
the topics mined by AnchorFree is the highest in terms of coherence scores; the overlaps between
topics are the smallest except for F = 20 and 25.

Table 2 shows the results on the Reuters-21578 corpus. In this experiment, we can see that XRAY is
best in terms of single-topic quality, while AnchorFree is second best when F > 6. For SimCount,
AnchorFree gives the lowest values when F > 6. In terms of clustering accuracy, the topics obtained
by AnchorFree again lead to much higher clustering accuracies in all cases.

In terms of the runtime performance, one can see from Fig. 2(a) that FastAnchor, SNPA, XRAY and
AnchorFree perform similarly on the TDT2 dataset. SPA is the fastest algorithm since it has a recursive
update [6]. The SNPA and XRAY both perform nonnegative least squares-based deflation, which is
computationally heavy when the vocabulary size is large, as mentioned in Remark 1. AnchorFree
uses AO and small-scale linear programming, which is conceptually more difficult compared to SNPA
and XRAY. However, since the linear programs involved only have F variables and the number of AO
iterations is usually small (smaller than 5 in practice), the runtime performance is quite satisfactory
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Figure 2: Runtime performance of the algorithms under various settings.

Table 3: Twenty leading words of mined topics from an F = 5 case of the TDT2 experiment.
FastAnchor AnchorFree

anchor anchor
predicts slipping cleansing strangled tenday

allegations poll columbia gm bulls lewinsky gm shuttle bulls jonesboro
lewinsky cnnusa shuttle motors jazz monica motors space jazz arkansas
clinton gallup space plants nba starr plants columbia nba school

lady allegations crew workers utah grand flint astronauts chicago shooting
white clinton astronauts michigan finals white workers nasa game boys
hillary presidents nasa flint game jury michigan crew utah teacher
monica rating experiments strikes chicago house auto experiments finals students

starr lewinsky mission auto jordan clinton plant rats jordan westside
house president stories plant series counsel strikes mission malone middle

husband approval fix strike malone intern gms nervous michael 11year
dissipate starr repair gms michael independent strike brain series fire
president white rats idled championship president union aboard championship girls

intern monica unit production tonight investigation idled system karl mitchell
affair house aboard walkouts lakers affair assembly weightlessness pippen shootings

infidelity hurting brain north win lewinskys production earth basketball suspects
grand slipping system union karl relationship north mice win funerals
jury americans broken assembly lewinsky sexual shut animals night children

sexual public nervous talks games ken talks fish sixth killed
justice sexual cleansing shut basketball former autoworkers neurological games 13year

obstruction affair dioxide striking night starrs walkouts seven title johnson

and is close to those of SNPA and XRAY which are greedy algorithms. The runtime performance
on the Reuters dataset is shown in Fig. 2(b), where one can see that the deflation-based methods are
faster. The reason is that the vocabulary size of the Reuters corpus is much smaller compared to that
of the TDT2 corpus (18,933 v.s. 36,771).

Table 3 shows the leading words of the mined topics by FastAnchor and AnchorFree from an F = 5
case using the TDT2 corpus. We only present the result of FastAnchor since it gives qualitatively
the best benchmark – the complete result given by all baselines can be found in the supplementary
material. We see that the topics given by AnchorFree show clear diversity: Lewinsky scandal,
General Motors strike, Space Shuttle Columbia, 1997 NBA finals, and a school shooting in Jonesboro,
Arkansas. FastAnchor, on the other hand, exhibit great overlap on the first and the second mined
topics. Lewinsky also shows up in the fifth topic mined by FastAnchor, which is mainly about the
1997 NBA finals. This showcases the clear advantage of our proposed criterion in terms of giving
more meaningful and interpretable results, compared to the anchor-word based approaches.

5 Conclusion
In this paper, we considered identifiable anchor-free correlated topic modeling. A topic estimation
criterion based on the word-word co-occurrence/correlation matrix was proposed and its identifiability
conditions were proven. The proposed approach features topic identifiability guarantee under much
milder conditions compared to the anchor-word assumption, and thus exhibits better robustness to
model mismatch. A simple procedure that only involves one eigen-decomposition and a few small
linear programs was proposed to deal with the formulated criterion. Experiments on real text corpus
data showcased the effectiveness of the proposed approach.
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