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Abstract

Decision trees and random forests are well established models that not only offer
good predictive performance, but also provide rich feature importance information.
While practitioners often employ variable importance methods that rely on this
impurity-based information, these methods remain poorly characterized from a
theoretical perspective. We provide novel insights into the performance of these
methods by deriving finite sample performance guarantees in a high-dimensional
setting under various modeling assumptions. We further demonstrate the effective-
ness of these impurity-based methods via an extensive set of simulations.

1 Introduction

Known for their accuracy and robustness, decision trees and random forests have long been a
workhorse in machine learning [1]. In addition to their strong predictive accuracy, they are equipped
with measures of variable importance that are widely used in applications where model interpretability
is paramount. Importance scores are used for model selection: predictors with high-ranking scores
may be chosen for further investigation, or for building a more parsimonious model.

One common approach naturally couples the model training process with feature selection [2, 5].
This approach, which we call TREEWEIGHT, calculates the feature importance score for a variable
by summing the impurity reductions over all nodes in the tree where a split was made on that
variable, with impurity reductions weighted to account for the size of the node. For ensembles, these
quantities are averaged over constituent trees. TREEWEIGHT is particularly attractive because it can
be calculated without any additional computational expense above the standard training procedure.

However, as the training procedure in random forests combines several complex ingredients—bagging,
random selection of predictor subsets at nodes, line search for optimal impurity reduction, recursive
partitioning—theoretical investigation into TREEWEIGHT is extremely challenging. We propose a
new method called DSTUMP that is inspired by TREEWEIGHT but is more amenable to analysis.
DSTUMP assigns variable importance as the impurity reduction at the root node of a single tree.

In this work we characterize the finite sample performance of DSTUMP under an additive regression
model, which also yields novel results for variable selection under a linear model, both with correlated
and uncorrelated design. We corroborate our theoretical analyses with extensive simulations in which
we evaluate DSTUMP and TREEWEIGHT on the task of feature selection under various modeling
assumptions. We also compare the performance of these techniques against established methods
whose behaviors have been theoretically characterized, including Lasso, SIS, and SpAM [12, 3, 9].
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Our work provides the first finite-sample high-dimensional analyses of tree-based variable selection
techniques, which are commonly used in practice but lacking in theoretical grounding. Although
we focus on DSTUMP, which is a relatively simple tree-based variable selection approach, our
novel proof techniques are highly non-trivial and suggest a path forward for studying more general
multi-level tree-based techniques such as TREEWEIGHT. Moreover, our simulations demonstrate
that such algorithmic generalizations exhibit impressive performance relative to competing methods
under more realistic models, e.g., non-linear models with interaction terms and correlated design.

2 Related Work

Our analysis is distinct from existing work in analyzing variable importance measures of trees and
forests in several ways. To our knowledge, ours is the first analysis to consider the high-dimensional
setting, where the number of variables, p, and the size of the active set s, grow with the sample size
n, and potentially p� n.

The closest related work is the analysis of [8], which considers a fixed set of variables, in the limit of
infinite data (n =∞). Unlike DSTUMP’s use of the root node only, [8] does consider importance
scores derived from the full set of splits in a tree as in TREEWEIGHT. However, they make crucial
simplifying (and unrealistic) assumptions that are distinct from those of our analysis: (1) each variable
is split on only once in any given path from the root to a leaf of the tree; (2) at each node a variable is
picked uniformly at random among those not yet used at the parent nodes, i.e., the splits themselves
are not driven by impurity reduction; and (3) all predictors are categorical, with splits being made on
all possible levels of a variable, i.e., the number of child nodes equals the cardinality of the variable
being split. Our analysis instead considers continuous-valued predictors, the split is based on actual
impurity reduction, and our results are nonasymptotic, i.e. they give high-probability bounds on
impurity measures for active and inactive variables that hold in finite samples.

A second line of related work is motivated by a permutation-based importance method [1] for feature
selection. In practice, this method is computationally expensive as it determines variable importance
by comparing the predictive accuracy of a forest before and after random permutation of a predictor.
Additionally, due to the algorithmic complexity of the procedure, it is not immediately amenable to
theoretical analysis, though the asymptotic properties of a simplified variant of the procedure have
been studied in [6].

While our work is the first investigation of finite-sample model selection performance of tree-based
regression methods, alternative methods performing both linear and nonparametric regression in high
dimensions have been studied in the literature. Considering model selection consistency results, most
of the attention has been focused on the linear setting, whereas the nonparametric (nonlinear) setup
has been mostly studied in terms of the prediction consistency. Under a high-dimensional linear
regression model, LASSO has be extensively studied and is shown to be minimax optimal for variable
selection under appropriate regularity conditions, including the uncorrelated design with a moderate
βmin condition. Remarkably, while not tailored to the linear setting, we show that DSTUMP is nearly
minimax optimal for variable selection in the same uncorrelated design setting (cf. Corollary 1). In
fact, DSTUMP can be considered a nonlinear version of SIS [4], itself a simplified form of the LASSO
when one ignores correlation among features (cf. Section 3 for more details).

The Rodeo framework [7] performs automatic bandwidth selection and variable selection for local
linear smoothers, and is tailored to a more general nonparametric model with arbitrary interactions.
It was shown to possess model selection consistency in high dimensions; however, the results are
asymptotic and focus on achieving optimal prediction rate. In particular, there is no clear βmin
threshold as a function of n, s, and p. RODEO is also computationally burdensome for even modest-
sized problems (we thus omit it our experimental results in Section 4).

Among the nonlinear methods, SPAM is perhaps the most well-understood in terms of model
selection properties. Under a general high-dimensional sparse additive model, SPAM possesses the
sparsistency property (a term for model selection consistency); the analysis is reduced to a linear
setting by considering expansions in basis functions, and selection consistency is proved under an
irrepresentible condition on the coefficients in those bases. We show that DSTUMP is model selection
consistent in the sparse additive model with uncorrelated design. Compared to SPAM results, our
conditions are stated directly in terms of underlying functions and are not tied to a particular basis;

2



hence our proof technique is quite different. There is no implicit reduction to a linear setting via basis
expansions. Empirically, we show that DSTUMP indeed succeeds in the settings our theory predicts.

3 Selection consistency

The general model selection problem for non-parametric regression can be stated as follows: we
observe noisy samples yi = f(xi1, . . . , xip) + wi, i = 1, . . . , n where {wi} is an i.i.d. noise
sequence. Here, p is the total number of features (or covariates) and n is the total number of
observations (or the sample size). In general, f belongs to a class F of functions from Rp → R.
One further assumes that the functions in F depend on at most s of the features, usually with s� p.
That is, for every f ∈ F , there is some f0 : Rs → R and a subset S ⊂ [p] with |S| ≤ s such
that f(z1, . . . , zp) = f0(zS) where zS = (zi, i ∈ S). The subset S, i.e., the set of active features,
is unknown in advance and the goal of model selection is to recover it given {(yi, xi)}ni=1. The
problem is especially challenging in the high-dimensional setting where p� n. We will consider
various special cases of this general model when we analyze DSTUMP. For theoretical analysis it is
common to assume s to be known and we will make this assumption throughout. In practice, one
often considers s to be a tunable parameter that can be selected, e.g., via cross-validation or greedy
forward selection.

We characterize the model selection performance of DSTUMP by establishing its sample complexity:
that is, the scaling of n, p, and s that is sufficient to guarantee that DSTUMP identifies the active
set of features with probability converging to 1. Our general results, proved in the technical report,
allow for a correlated design matrix and additive nonlinearities in the true regression function. Our
results for the linear case, derived as a special case of the general theory, allow us to compare the
performance of DSTUMP to the information theoretic limits for sample complexity established in
[11], and to the performance of existing methods more tailored to this setting, such as the Lasso [12].

Given a generative model and the restriction of DSTUMP to using root-level impurity reduction, the
general thrust of our result is straightforward: impurity reduction due to active variables concentrates
at a significantly higher level than that of inactive variables. However, there are significant technical
challenges in establishing this result, mainly deriving from the fact that the splitting procedure
renders the data in the child nodes non-i.i.d., and hence standard concentration inequalities do not
immediately apply. We leverage the fact that the DSTUMP procedure considers splits at the median
of a predictor. Given this median point, the data in each child node is i.i.d., and hence we can
apply standard concentration inequalities in this conditional distribution. Removing this conditioning
presents an additional technical subtlety. For ease of exposition, we first present our results for the
linear setting in Section 3.1, and subsequently summarize our general results in Section 3.2. We
provide a proof of our result in the linear setting in Section 3.3, and defer the proof of our general
result to the supplementary material.

Algorithm 1 DSTUMP

input {xk ∈ Rn}k=p
k=1, y ∈ Rn, # top features s

m = n
2

for k = 1, . . . , p do
I(xk) = SortFeatureValues(xk)
yk = SortLabelByFeature(y, I(xk))
yk[m], y

k
[n]\[m] = SplitAtMidpoint(yk)

ik = ComputeImpurity(yk[m], y
k
[n]\[m])

end for
S = FindTopImpurityReductions({ik}, s)

output top s features sorted by impurity reduction

The DSTUMP algorithm. In order to de-
scribe DSTUMP more precisely, let us introduce
some notation. We write [n] := {1, . . . , n}.
Throughout, y = (yi, i ∈ [n]) ∈ Rn will be the
response vector observed for a sample of size
n. For an ordered index set I = (i1, i2, . . . , ir),
we set yI = (yi1 , yi2 . . . , yir ). A similar nota-
tion is used for unordered index sets. We write
xj = (x1j , x2j , . . . , xnj) ∈ Rn for the vector
collecting values of the jth feature; xj forms the
jth column of the design matrix X ∈ Rn×p.

Let I(xj) := (i1, i2 . . . , in) be an ordering of
[n] such that xi1j ≤ xi2j ≤ · · · ≤ xinj and let
sor(y, xj) := yI(xj) ∈ Rn; this is an operator
that sorts y relative to xj . DSTUMP proceeds as

follows: Evaluate yk := sor(y, xk) = sor
(∑

j∈S βjxj + w, xk
)
, for k = 1, . . . , p. Let m := n/2.

For each k, consider the midpoint split of yk into yk[m] and yk[n]\[m] and evaluate the impurity of the
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left-half, using empirical variance as impurity:

imp(yk[m]) := 1(
m
2
) ∑

1≤i<j≤m

1
2(yki − ykj )2. (1)

Let imp(yk[m]) be the score of feature k, and output the s features with the smallest scores (corre-
sponding to maximal reduction in impurity). If the generative model is linear, the choice of the
midpoint is justified by our assumption of the uniform distribution for the features (Zi), and we
further show that this simple choice is effective even under a nonlinear model. The choice of the
left-half in our analysis is for convenience; a similar analysis applies if we take the impurity to be that
of the sum of both halves (or their maximum). DSTUMP is summarized in Algorithm 1. Impurity
reduction imp(y[m])− imp(yk[m]) can be considered a form of nonlinear correlation between y and
feature xk. The SIS algorithm is equivalent to replacing this nonlinear correlation with the (absolute)
linear correlation | 1nx

T
k y|. That is, both procedures assign a score to each feature by considering it

against the response separately, ignoring other features. In the uncorrelated (i.e. orthogonal design)
setting, this is more or less optimal, and as is the case with SIS, we show that DSTUMP also retains
some model selection performance even under correlated designs. In contrast to SIS, we show that
DSTUMP also enjoys performance guarantees in non-linear settings.

The models. We present our consistency results for models of various complexity. We start with the
well-known and extensively studied setting of a linear model with IID design. This basic setup serves
as the benchmark for comparison of model selection procedures. As will become clear in the course
of the proof, analyzing DSTUMP (or impurity-based feature selection in general) is challenging even
in this case, in contrast to linear model based approaches such as SIS or Lasso. Once we have a good
understanding of DSTUMP under the baseline model, we extend the analysis to correlated design and
nonlinear additive models. The structure of our proof is also most clearly seen in this simple case, as
outlined in Section 3.3. We now introduce our general models:

Model 1 (Sparse linear model with ICA-type design). A linear regression model y = Xβ + w with
ICA-type (random) design X ∈ Rn×p has the following properties: (i) X = X̃M where X̃ ∈ Rn×p
and each row of X̃ is an independent draw from a (column) vector Z = (Z1, . . . , Zp) with IID
entries drawn uniformly from [0, 1]. (ii) The noise vector w = (w1, . . . , wn) has IID sub-Gaussian
entries with variance with variance var(wi) = v2

w and sub-Gaussian norm ‖wi‖ψ2 ≤ σw, . (iii) The
β ∈ Rp is s-sparse, namely, βj 6= 0 for j ∈ S = {1, . . . , s} and zero otherwise.

Model 1 serves both the correlated and uncorrelated design cases. Each row of the design matrix
X is a draw from the vector MTZ, which has covariance cMTM for some constant c. Thus, the
choice of M = I leads to an uncorrelated design. The choice of the interval [0, 1] for covariates
is for convenience; it can be replaced with any other compact interval, in the linear setting, since
variance impurity is invariant to a shift. Similarly the choice of the (active) support indices, S, is for
convenience. For simplicity, we often assume v2

w = σ2 and σw ≤ Cσ (only σw would affect the
results as examining of our proofs shows).

Model 2 (Sparse additive model with uncorrelated design). An additive regression model yi =∑p
j=1 fj(xij) + wi, is one with random design X = (xij) and the noise (wi) as in Model 1, with

M = I (uncorrelated design). We assume (fk) to be s-sparse, namely, fj 6= 0 for j ∈ S = {1, . . . , s}
and zero otherwise.

3.1 Linear Setting

Uncorrelated design. Our baseline result is the following feature selection consistency guarantee
for DSTUMP, for the caseM = I of Model 1. Throughout, we let p̌ := p−s, andC,C1, . . . , c, c1, . . .
are absolute positive constants which can be different in each occurrence. For any vector x, let
|x|min := mini |xi|, the minimum absolute value of its entries. The quantity |βS |2min = mink∈S β2

k
appearing in Theorem 1 is a well-known parameter controlling hardness of subset recovery. All our
results are stated in terms of constants δ, α and ξ that are related as:

δ ∈ (0, 1/8), α = log(1/(8δ)), ξ = 1− (1− δ)2. (2)
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Theorem 1. Assume Model 1 with M = I , and (2). The DSTUMP algorithm, which selects
the “s” least impure features at the root, succeeds in feature selection, with probability at least
1− p̌−c − 2e−αn/2 if log p̌/n ≤ C1 and

|βS |2min ≥
C

ξ
(‖β‖2

2 + σ2)
√

log p̌
n

(3)

The result can be read by setting, e.g., δ = 1/16 leading to numerical constants for α and ξ. The
current form allows the flexibility to trade-off the constant (α) in the probability bound with the
constant (ξ) in the gap condition (3). Although Theorem 1 applies to a general β, it is worthwhile to
see its consequence in a special regime of interest where |βS |2min � 1/s, corresponding to ‖β‖2 � 1.
We get the following immediate corollary:
Corollary 1. Assume |βS |2min � 1/s, σ2 � 1 and log p̌/n = O(1). Then DSTUMP succeeds with
high probability if n & s2 log p̌.

The minimax optimal threshold for support recovery in the regime of Corollary 1 is known to be
n � s log p̌ [11], and achieved by LASSO [12]. Although this result is obtained for Gaussian design,
the same argument goes through for our uniform ensemble. Compared to the optimal threshold, using
DSTUMP we pay a small factor of s in the sample complexity. However, DSTUMP is not tied to the
linear model and as we discuss in Section 3.2, we can generalize the performance of DSTUMP to
nonlinear settings.

Correlated design. We take the following approach to generalize our result to the correlated case:
(1) We show a version of Theorem 1, which holds for an “approximately sparse” parameter β̃ with
uncorrelated design. (2) We derive conditions on M such that the correlated case can be turned into
the uncorrelated case with approximate sparsity. The following theorem details Step 1:

Theorem 2. Assume Model 1(i)-(ii) with M = I , but instead of (iii) let β = β̃, a general vector in
Rp. Let S be any subset of [p] of cardinality s. The DSTUMP algorithm, which selects the “s” least
impure features at the root, recovers S, with probability at least 1− p̌−c − 2e−αn/2 if log p̌/n ≤ C1
and ξ|β̃S |2min − ‖β̃Sc‖2

∞ > C(‖β̃‖2
2 + σ2)

√
(log p̌)/n.

The theorem holds for any β̃ and S, but the gap condition required is likely to be violated unless β̃
is approximately sparse w.r.t. S. Going back to Model 1, we see that setting β̃ = Mβ transforms
the model with correlated design X , and exact sparsity on β, to the model with uncorrelated design
X̃ , and approximate sparsity on β̃. The following corollary gives sufficient conditions on M , so
that Theorem 2 is applicable. Recall the usual (vector) `∞ norm, ‖x‖∞ = maxi |xi|, the matrix
`∞ → `∞ operator norm |||A|||∞ = maxi

∑
j |Aij | , and the `2 → `2 operator norm |||A|||2.

Corollary 2. Consider a general ICA-type Model 1 with β and M satisfying

‖βS‖∞ ≤ γ|βS |min, |||MSS − I|||∞ ≤
1− ρ
γ

, |||MScS |||∞ ≤
ρ

γ

√
ξ(1− κ) (4)

for some ρ, κ ∈ (0, 1] and γ ≥ 1. Then, the conclusion of Theorem 1 holds, for DSTUMP applied to
input (y, X̃), under the gap condition (3) with C/ξ replaced with C|||MSS |||22/(κ ξ ρ2).

Access to decorrelated features, X̃ , is reasonable in cases where one can perform consistent ICA.
This assumption is practically plausible, especially in the low-dimensional regimes, though it would
be desirable if this assumption can be removed theoretically. Moreover, we note that the response y
is based on the correlated features.

In this result, C|||MSS |||22/(κ ξ ρ2) plays the role of a new constant. There is a hard bound on how big
ξ can be, which via (4) controls how much correlation between off-support and on-support features
are tolerated. For example, taking δ = 1/9, we have α = log(9/8) ≈ 0.1, ξ = 17/81 ≈ 0.2 and√
ξ ≈ 0.45 and this is about as big as it can get (the maximum we can allow is ≈ 0.48). κ can be

arbitrarily close to 0, relaxing the assumption (4), at the expense of increasing the constant in the
threshold. γ controls deviation of |βj |, j ∈ S from uniform: in case of equal weights on the support,
i.e., |βj | = 1/

√
s for j ∈ S, we have γ = 1. Theorem 1 for the uncorrelated design is recovered, by

taking ρ = κ = 1.
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3.2 General Additive Model Setting

To prove results in this more general setting, we need some further regularity conditions on (fk): Fix
some δ ∈ (0, 1), let U ∼ unif(0, 1) and assume the following about the underlying functions (fk):
(F1) ‖fk(αU)‖2

ψ2
≤ σ2

f,k, ∀α ∈ [0, 1]. (F2) var[fk(αU)] ≤ var[fk((1− δ)U)], ∀α ≤ 1− δ.

Next, we define σ2
f,∗ :=

∑p
k=1 σ

2
f,k =

∑
k∈S σ

2
f,k along with the following key gap quantities:

gf,k(δ) := var[fk(U))]− var[fk((1− δ)U)].

Theorem 3. Assume additive Model 2 with (F1) and (F2). Let α = log 1
8δ for δ ∈ (0, 1/8). The

DSTUMP algorithm, which selects the “s” least impure features at the root, succeeds in model
selection, with probability at least 1− p̌−c − 2e−αn/2 if log p̌/n ≤ C1 and

min
k∈S

gf,k(δ) ≥ C(σ2
f,∗ + σ2)

√
log p̌
n

(5)

In the supplementary material, we explore in detail the class of functions that satisfy conditions (F1)
and (F2), as well as the gap condition in (5). (F1) is relatively mild and satisfied if f is Lipschitz
or bounded. (F2) is more stringent and we show that it is satisfied for convex nondecreasing and
concave nonincreasing functions.2 The gap condition is less restrictive than (F2) and is related to the
slope of the function near the endpoint, i.e., x = 1. Notably, we study one such function that satisfies
all of these conditions, i.e., exp(·) on [−1, 1], in our simulations in Section 4.

3.3 Proof of Theorem 1

We provide the high-level proof of Theorem 1. For brevity, the proofs of the lemmas have been
omitted and can be found in the supplement, where we in fact prove them for the more general setup
of Theorem 3. The analysis boils down to understanding the behavior of yk = sor(y, xk) as defined
earlier. Let ỹk be obtained from yk by random reshuffling of its left half yk[m] (i.e., rearranging the
entries according to a random permutation). This reshuffling has no effect on the impurity, that is,
imp(ỹk[m]) = imp(yk[m]), and the reason for it becomes clear when we analyze the case k ∈ S.

Understanding the distribution of yk. If k /∈ S, the ordering according to which we sort y is
independent of y (since xk is independent of y), hence the sorted version, before and after reshuffling
has the same distribution as y. Thus, each entry of ỹk is an IID draw from the same distribution as
the pre-sort version:

ỹki
iid∼ W0 :=

∑
j∈S

βjZj + w1, i = 1, . . . , n. (6)

On the other hand, if k ∈ S, then for i = 1, . . . , n

yki = βkx(i)k + rki , where rki
iid∼ Wk :=

∑
j∈S\{k}

βjZj + w1.

Here x(i)k is the ith order statistic of xk, that is, x(1)k ≤ x(2)k ≤ · · · ≤ x(n)k. Note that the residual
terms are still IID since they gather the covariates (and the noise) that are independent of the kth one
and hence its ordering. Note also that rki is independent of the first term βkx(i)k.

Recall that we split at the midpoint and focus on the left split, i.e., we look at yk[n/2] =
(yk1 , yk2 , . . . , ykn/2), and its reshuffled version ỹk[n/2] = (ỹk1 , ỹk2 , . . . , ỹkn/2). Intuitively, we would
like to claim that the “signal part” of the ỹk[n/2] are approximately IID draws from βkUnif(0, 1/2).
Unfortunately this is not true, in the sense that the distribution cannot be accurately approximated by
Unif(0, 1− δ) for any δ (Lemma 1). However, we show that the distribution can be approximated by
an infinite mixture of IID uniforms of reduced range (Lemma 2).

Let U(1) ≤ U(2) ≤ · · · ≤ U(n) be the order statistics obtained by ordering an IID sample Ui ∼
Unif(0, 1), i = 1, . . . , n. Recall that m := n/2 and let Ũ := (Ũ1, Ũ2 . . . , Ũm) be obtained from

2We also observe that this condition holds for functions beyond these two categories.
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(U(1), . . . , U(m)) by random permutation. Then, Ũ has an exchangeable distribution. We can write
for k ∈ S,

ỹki = βk ũ
k
i + r̃ki , ũk ∼ Ũ , and r̃ki

iid∼ Wk, i ∈ [m]

where the m-vectors ũk = (ũki , i ∈ [m]) and r̃k = (r̃ki , i ∈ [m]) are also independent.

We have the following result regarding the distribution of Ũ :

Lemma 1. The distribution of Ũ is a mixture of IID unif(0, γ) m-vectors with mixing variable
γ ∼ Beta(m,m+ 1).

Note that Beta(m,m + 1) has mean = m/(2m + 1) = (1 + o(1))/2 as m → ∞, and variance
= O(m−1). Thus, Lemma 1 makes our intuition precise in the sense that the distribution of Ũ
is a “range mixture” of IID uniform distributions, with the range concentrating around 1/2. We
now provide a reduced range, finite sample approximation in terms of the total variation distance
dTV(Ũ , Û) between the distributions of random vectors Ũ and Û .

Lemma 2. Let Û be distributed according to a mixture of IID Unif(0, γ̂)m-vectors with γ̂ distributed
as a Beta(m,m+ 1) truncated to (0, 1− δ) for δ = e−α/8 and α > 0. With Ũ as in Lemma 1, we
have dTV(Ũ , Û) ≤ 2 exp(−αm).

The approximation of the distribution of the Ũ by a truncated version, Û , is an essential technique in
our proof. As will become clear in the proof of Lemma 3, we will need to condition on the mixing
variable Ũ , or its truncated approximation Ũ , to allow for the use of concentration inequalities for
independent variables. The resulting bounds should be devoid of randomness so that by taking
expectation, we can get similar bounds for the exchangeable case. The truncation allows us to
maintain a positive gap in impurities (between on and off support features) throughout this process.
We expect the loss due to truncation to be minimal, only impacting the constants.

For k ∈ S, let ûk = (ûki , i ∈ [m]) be drawn from the distribution of Û described in Lemma 2,
independently of anything else in the model, and let γ̂k be its corresponding mixing variable, which
has a Beta distribution truncated to (0, 1 − δ). Let us define ŷki = βk û

k
i + r̃ki , i ∈ [m] where

r̃k = (r̃ki ) is as before. This construction provides a simple coupling between ỹk[m] and ŷk[m] giving
the same bound on the their total variation distance. Hence, we can safely work with ŷk[m] instead
of ỹk[m], and pay a price of at most 2 exp(−αm) in probability bounds. To simplify discussion, let
ŷki = ỹki for k /∈ S.

Concentration of empirical impurity. We will focus on ŷk[m] due the discussion above. We would
like to control imp(ŷk[m]), the empirical variance impurity of ŷk[m] which is defined as in (1) with yk[m]
replaced with ŷk[m]. The idea is to analyze E[imp(ŷk[m])], or proper bounds on it, and then show that
imp(ŷk[m]) concentrates around its mean. Let us consider the concentration first. (1) is a U-statistic of
order 2 with kernel h(u, v) = 1

2 (u−v)2. The classical Hoeffding inequality guarantees concentration
if h is uniformly bounded and the underlying variables are IID. Instead, we use a version of Hanson–
Wright concentration inequality derived in [10], which allows us to derive a concentration bound for
the empirical variance, for general sub-Gaussian vectors, avoiding the boundedness assumption:

Corollary 3. Let w = (w1, . . . , wm) ∈ Rm be a random vector with independent components wi
which satisfy Ewi = µ and ‖wi − µ‖ψ2 ≤ K. Let imp(w) :=

(
m
2
)−1∑

1≤i<j≤m(wi − wj)2 be the
empirical variance of w. Then, for u ≥ 0,

P
(∣∣ imp(w)− E imp(w)

∣∣ > K2u
)
≤ 2 exp

{
−c (m− 1) min(u, u2)

}
. (7)

We can immediately apply this result when k /∈ S. However, for k ∈ S, a more careful application is
needed since we can only guarantee an exchangeable distribution for ŷk[m] in this case. The following
lemma summarizes the conclusions:
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Lemma 3. Let Îm,k = imp(ŷk[m]) and recall that δ was introduced in the definition of ŷki . Let
κ2

1 := 1
12 be the variance of Unif(0, 1). Recall that p̌ := p− s. Let L = ‖β‖2. There exist absolute

constants C1, C2, c such that if log p̌/m ≤ C1, then with probability at least 1− p̌−c,

Îm,k ≤ I1
k + εm, ∀k ∈ S, and, Îm,k ≥ I0 − εm, ∀k /∈ S

where, letting ξ := 1− (1− δ)2,

I1
k := κ2

1(−ξβ2
k + L2) + σ2, I0 := κ2

1L
2 + σ2, and εm := C2(L2 + σ2)

√
log p̌/m.

The key outcome of Lemma 3 is that, on average, there is a positive gap I0 − I1
k = κ2

1ξβ
2
k in

impurities between a feature on the support and those off of it, and that due to concentration, the
fluctuations in impurities will be less than this gap for large m. Combined with Lemma 2, we can
transfer the results to Ĩm,k := imp(ỹk[m]).

Corollary 4. The conclusion of Lemma 3 holds for Ĩm,k in place of Îm,k, with probability at least
1− p̌−c − 2e−αm for α = log 1

8δ .

Note that for δ < 1/8, the bound holds with high probability. Thus, as long as I0 − I1
k > 2εm, the

selection algorithm correctly favors the kth feature in S, over the inactive ones (recall that lower
impurity is better). We have our main result after substituting n/2 for m.

4 Simulations

(a) (b) (c)

(d) (e) (f)

Figure 1: Support recovery performance in a linear regression model augmented with possible
nonlinearities for n = 1024. (a) Linear case with uncorrelated design. (b) Linear case with correlated
design. (c) Nonlinear additive model with exponentials of covariates and uncorrelated design. (d)
Nonlinear model with interaction terms and uncorrelated design. (e) Nonlinear additive model with
exponentials of covariates, interaction terms, and uncorrelated design. (f) Nonlinear additive model
with exponentials of covariates, interaction terms, and correlated design.

In order to corroborate the theoretical analysis, we next present various simulation results. We
consider the following model: y = Xβ + f(XS) + w, where f(XS) is a potential nonlinearity, and
S is the true support of β. We generate the training data as X = X̃M where X̃ ∈ Rn×p is a random
matrix with IID Unif(−1, 1) entries, and M ∈ Rp×p is an upper-triangular matrix that determines
whether the design is IID or correlated. In the IID case we set M = I . To achieve a correlated design
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we randomly assign values from {0,−ρ,+ρ} to the upper triangular cells of M , with probabilities
(1− 2α, α, α). We observed qualitatively similar results for various values of ρ and α and here we
present results with α = 0.04, and ρ = 0.1. The noise is generated as w ∼ N(0, σ2In). We fix
p = 200, σ = 0.1, and let βi = ±1/

√
s over its support i ∈ S, where |S| = s. That is, only s of the

p = 200 variables are predictive of the response. The nonlinearity, f , optionally contains additive
terms in the form of exponentials of on-support covariates. It can also contain interaction terms across
on-support covariates, i.e., terms of the form 2√

s
xixj for some randomly selected pairs of i, j ∈ S.

Notably, the choice of f is unknown to the variable selection methods. We vary s ∈ [5, 100] and note
that ‖β‖2 = 1 remains fixed.

The plots in Figure 1 show the fraction of the true support recovered3 as a function of s, for various
methods under different modeling setups: f = 0 (linear), f = 2 exp(·) (additive), f = interaction
(interactions), and f = interaction + 2 exp(·) (interactions+additive) with IID or correlated designs.
Each data point is an average over 100 trials (see supplementary material for results with 95%
confidence intervals). In addition to DSTUMP, we evaluate TREEWEIGHT, SPAM, LASSO, SIS and
random guessing for comparison. SIS refers to picking the indices of the top s largest values of XT y
in absolute value. When X is orthogonal and the generative model is linear, this approach is optimal,
and we use it as a surrogate for the optimal approach in our nearly orthogonal setup (i.e., the IID
linear case), due to its lack of any tuning parameters. Random guessing is used as a benchmark, and
as expected, on average recovers the fraction s/p = s/200 of the support.

The plots show that, in the linear setting, the performance of DSTUMP is comparable to, and only
slightly worse than, that of SIS or Lasso which are considered optimal in this case. Figure 1(b) shows
that under mildly correlated design the gap between DSTUMP and LASSO widens. In this case, SIS
loses its optimality and performs at the same level as DSTUMP. This matches our intuition as both
SIS and DSTUMP are both greedy methods that consider covariates independently.

DSTUMP is more robust to nonlinearities, as characterized theoretically in Theorem 3 and evidenced
in Figure 1(c). In contrast, in the presence of exponential nonlinearities, SIS and Lasso are effective in
the very sparse regime of s� p, but quickly approach random guessing as s grows. In the presence
of interaction terms, TREEWEIGHT and to a lesser extent SPAM outperform all other methods, as
shown in Figure 1(d), 1(e), and 1(f). We also note that the permutation-based importance method [1],
denoted by TREEWEIGHTPERMUTATION in the plots in Figure 1, performs substantially worse than
TREEWEIGHT across the various modelling settings.

Overall, these simulations illustrate the promise of multi-level tree-based methods like TREEWEIGHT
under more challenging and realistic modeling settings. Future work involves generalizing our
theoretical analyses to extend to these more complex multi-level tree-based approaches.

5 Discussion

We presented a simple model selection algorithm for decision trees, which we called DSTUMP,
and analyzed its finite-sample performance in a variety of settings, including the high-dimensional,
nonlinear additive model setting. Our theoretical and experimental results show that even a simple
tree-based algorithm that selects at the root can achieve high dimensional selection consistency.

We hope these results pave the way for the finite-sample analysis of more refined tree-based model
selection procedures. Inspired by the empirical success of TREEWEIGHT in nonlinear settings, we are
actively looking at extensions of DSTUMP to a multi-stage algorithm capable of handling interactions
with high-dimensional guarantees.

Moreover, while we mainly focused on the regression problem, our proof technique based on
concentration of impurity reductions is quite general. We expect analogous results to hold, for example
for classification. However, aspects of the proof would be different, since impurity measures used for
classification are different than those of regression. One major hurdle involves deriving concentration
inequalities for the empirical versions of these measures, which are currently unavailable, and would
be of independent interest.

3In the supplementary material we report analogous results using a more stringent performance metric,
namely the probability of exact support recovery. The results are qualitatively similar.
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