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Abstract

We propose new algorithms for topic modeling when the number of topics is
unknown. Our approach relies on an analysis of the concentration of mass and
angular geometry of the topic simplex, a convex polytope constructed by taking
the convex hull of vertices representing the latent topics. Our algorithms are shown
in practice to have accuracy comparable to a Gibbs sampler in terms of topic
estimation, which requires the number of topics be given. Moreover, they are one
of the fastest among several state of the art parametric techniques.1 Statistical
consistency of our estimator is established under some conditions.

1 Introduction

A well-known challenge associated with topic modeling inference can be succinctly summed up
by the statement that sampling based approaches may be accurate but computationally very slow,
e.g., Pritchard et al. (2000); Griffiths & Steyvers (2004), while the variational inference approaches
are faster but their estimates may be inaccurate, e.g., Blei et al. (2003); Hoffman et al. (2013). For
nonparametric topic inference, i.e., when the number of topics is a priori unknown, the problem
becomes more acute. The Hierarchical Dirichlet Process model (Teh et al., 2006) is an elegant
Bayesian nonparametric approach which allows for the number of topics to grow with data size, but
its sampling based inference is much more inefficient compared to the parametric counterpart. As
pointed out by Yurochkin & Nguyen (2016), the root of the inefficiency can be traced to the need for
approximating the posterior distributions of the latent variables representing the topic labels — these
are not geometrically intrinsic as any permutation of the labels yields the same likelihood.

A promising approach in addressing the aforementioned challenges is to take a convex geometric
perspective, where topic learning and inference may be formulated as a convex geometric problem: the
observed documents correspond to points randomly drawn from a topic polytope, a convex set whose
vertices represent the topics to be inferred. This perspective has been adopted to establish posterior
contraction behavior of the topic polytope in both theory and practice (Nguyen, 2015; Tang et al.,
2014). A method for topic estimation that exploits convex geometry, the Geometric Dirichlet Means
(GDM) algorithm, was proposed by Yurochkin & Nguyen (2016), which demonstrates attractive
behaviors both in terms of running time and estimation accuracy. In this paper we shall continue to
amplify this viewpoint to address nonparametric topic modeling, a setting in which the number of
topics is unknown, as is the distribution inside the topic polytope (in some situations).

We will propose algorithms for topic estimation by explicitly accounting for the concentration of
mass and angular geometry of the topic polytope, typically a simplex in topic modeling applications.
The geometric intuition is fairly clear: each vertex of the topic simplex can be identified by a ray
emanating from its center (to be defined formally), while the concentration of mass can be quantified

1Code is available at https://github.com/moonfolk/Geometric-Topic-Modeling.
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for the cones hinging on the apex positioned at the center. Such cones can be rotated around the
center to scan for high density regions inside the topic simplex — under mild conditions such cones
can be constructed efficiently to recover both the number of vertices and their estimates.

We also mention another fruitful approach, which casts topic estimation as a matrix factorization
problem (Deerwester et al., 1990; Xu et al., 2003; Anandkumar et al., 2012; Arora et al., 2012). A
notable recent algorithm coming from the matrix factorization perspective is RecoverKL (Arora et al.,
2012), which solves non-negative matrix factorization (NMF) efficiently under assumptions on the
existence of so-called anchor words. RecoverKL remains to be a parametric technique — we will
extend it to a nonparametric setting and show that the anchor word assumption appears to limit the
number of topics one can efficiently learn.

Our paper is organized as follows. In Section 2 we discuss recent developments in geometric topic
modeling and introduce our approach; Sections 3 and 4 deliver the contributions outlined above;
Section 5 demonstrates experimental performance; we conclude with a discussion in Section 6.

2 Geometric topic modeling

Background and related work In this section we present the convex geometry of the Latent
Dirichlet Allocation (LDA) model of Blei et al. (2003), along with related theoretical and algorithmic
results that motivate our work. Let V be vocabulary size and ∆V−1 be the corresponding vocabulary
probability simplex. Sample K topics (i.e., distributions on words) βk ∼ DirV (η), k = 1, . . . ,K,
where η ∈ RV+ . Next, sample M document-word probabilities pm residing in the topic simplex
B := Conv(β1, . . . , βK) (cf. Nguyen (2015)), by first generating their barycentric coordinates
(i.e., topic proportions) θm ∼ DirK(α) and then setting pm :=

∑
k βkθmk for m = 1, . . . ,M and

α ∈ RK+ . Finally, word counts of the m-th document can be sampled wm ∼ Mult(pm, Nm), where
Nm ∈ N is the number of words in document m. The above model is equivalent to the LDA when
individual words to topic label assignments are marginalized out.

Nguyen (2015) established posterior contraction rates of the topic simplex, provided that αk ≤ 1 ∀k
and either number of topics K is known or topics are sufficiently separated in terms of the Euclidean
distance. Yurochkin & Nguyen (2016) devised an estimate for B, taken to be a fixed unknown
quantity, by formulating a geometric objective function, which is minimized when topic simplex B
is close to the normalized documents w̄m := wm/Nm. They showed that the estimation of topic
proportions θm given B simply reduces to taking barycentric coordinates of the projection of w̄m
onto B. To estimate B given K, they proposed a Geometric Dirichlet Means (GDM) algorithm,
which operated by performing a k-means clustering on the normalized documents, followed by a
geometric correction for the cluster centroids. The resulting algorithm is remarkably fast and accurate,
supporting the potential of the geometric approach. The GDM is not applicable when K is unknown,
but it provides a motivation which our approach is built on.

The Conic Scan-and-Cover approach To enable the inference of B when K is not known, we
need to investigate the concentration of mass inside the topic simplex. It suffices to focus on two
types of geometric objects: cones and spheres, which provide the basis for a complete coverage of the
simplex. To gain intuition of our procedure, which we call Conic Scan-and-Cover (CoSAC) approach,
imagine someone standing at a center point of a triangular dark room trying to figure out all corners
with a portable flashlight, which can produce a cone of light. A room corner can be identified with
the direction of the farthest visible data objects. Once a corner is found, one can turn the flashlight to
another direction to scan for the next ones. See Fig. 1a, where red denotes the scanned area. To make
sure that all corners are detected, the cones of light have to be open to an appropriate range of angles
so that enough data objects can be captured and removed from the room. To make sure no false
corners are declared, we also need a suitable stopping criterion, by relying only on data points that lie
beyond a certain spherical radius, see Fig. 1b. Hence, we need to be able to gauge the concentration
of mass for suitable cones and spherical balls in ∆V−1. This is the subject of the next section.

3 Geometric estimation of the topic simplex

We start by representing B in terms of its convex and angular geometry. First, B is centered at a point
denoted byCp. The centered probability simplex is denoted by ∆V−1

0 := {x ∈ RV |x+Cp ∈ ∆V−1}.
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Figure 1: Complete coverage of topic simplex by cones and a spherical ball for K = 3, V = 3.

Then, write bk := βk − Cp ∈ ∆V−1
0 for k = 1, . . . ,K and p̃m := pm − Cp ∈ ∆V−1

0 for
m = 1, . . . ,M . Note that re-centering leaves corresponding barycentric coordinates θm ∈ ∆K−1

unchanged. Moreover, the extreme points of centered topic simplex B̃ := Conv{b1, . . . , bK} can
now be represented by their directions vk ∈ RV and corresponding radii Rk ∈ R+ such that
bk = Rkvk for any k = 1, . . . ,K.

3.1 Coverage of the topic simplex

The first step toward formulating a CoSAC approach is to show how B̃ can be covered with
exactly K cones and one spherical ball positioned at Cp. A cone is defined as set Sω(v) :=

{p ∈ ∆V−1
0 |dcos(v, p) < ω}, where we employ the angular distance (a.k.a. cosine distance)

dcos(v, p) := 1− cos(v, p) and cos(v, p) is the cosine of angle ∠(v, p) formed by vectors v and p.

The Conical coverage It is possible to choose ω so that the topic simplex can be covered with

exactlyK cones, that is,
K⋃
k=1

Sω(vk) ⊇ B̃. Moreover, each cone contains exactly one vertex. Suppose

that Cp is the incenter of the topic simplex B̃, with r being the inradius. The incenter and inradius
correspond to the maximum volume sphere contained in B̃. Let ai,k denote the distance between
the i-th and k-th vertex of B̃, with amin ≤ ai,k ≤ amax for all i, k, and Rmax, Rmin such that
Rmin ≤ Rk := ‖bk‖2 ≤ Rmax ∀ k = 1, . . . ,K. Then we can establish the following.

Proposition 1. For simplex B̃ and ω ∈ (ω1, ω2), where ω1 = 1 − r/Rmax and ω2 =
max{(a2min)/(2R2

max), max
i,k=1,...,K

(1 − cos(bi, bk)}, the cone Sω(v) around any vertex direction

v of B̃ contains exactly one vertex. Moreover, complete coverage holds:
K⋃
k=1

Sω(vk) ⊇ B̃.

We say there is an angular separation if cos(bi, bk) ≤ 0 for any i, k = 1, . . . ,K (i.e., the angles for
all pairs are at least π/2), then ω ∈

(
1− r

Rmax
, 1
)
6= ∅. Thus, under angular separation, the range ω

that allows for full coverage is nonempty independently of K. Our result is in agreement with that of
Nguyen (2015), whose result suggested that topic simplex B can be consistently estimated without
knowing K, provided there is a minimum edge length amin > 0. The notion of angular separation
leads naturally to the Conic Scan-and-Cover algorithm. Before getting there, we show a series of
results allowing us to further extend the range of admissible ω.

The inclusion of a spherical ball centered at Cp allows us to expand substantially the range of ω
for which conical coverage continues to hold. In particular, we can reduce the lower bound on ω in
Proposition 1, since we only need to cover the regions near the vertices of B̃ with cones using the
following proposition. Fig. 1b provides an illustration.

Proposition 2. Let B(Cp,R) = {p̃ ∈ RV |‖p̃− Cp‖2 ≤ R},R > 0; ω1, ω2 given in Prop. 1, and

ω3 := 1−min

{
min
i,k

Rk sin2(bi, bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi, bj)

R2

 , 1

}
, (1)
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then we have
K⋃
k=1

Sω(vk) ∪B(Cp,R) ⊇ B̃ whenever ω ∈ (min{ω1, ω3}, ω2).

Notice that as R → Rmax , the value of ω3 → 0. Hence if R ≤ Rmin ≈ Rmax, the admissible
range for ω in Prop. 2 results in a substantial strengthening from Prop. 1. It is worth noting that the
above two geometric propositions do not require any distributional properties inside the simplex.

Coverage leftovers In practice complete coverage may fail if ω and R are chosen outside of
corresponding ranges suggested by the previous two propositions. In that case, it is useful to note that
leftover regions will have a very low mass. Next we quantify the mass inside a cone that does contain
a vertex, which allows us to reject a cone that has low mass, therefore not containing a vertex in it.
Proposition 3. The cone Sω(v1) whose axis is a topic direction v1 has mass

P(Sω(v1)) > P(Λc(b1)) =

∫ 1

1−c θ
α1−1
1 (1− θ1)

∑
i6=1 αi−1dθ1∫ 1

0
θα1−1
1 (1− θ1)

∑
i6=1 αi−1dθ1

=

c
∑
i6=1 αi(1− c)α1Γ(

∑K
i=1 αi)

(
∑
i 6=1 αi)Γ(α1)Γ(

∑
i 6=1 αi)

[
1 +

c
∑K
i=1 αi∑

i6=1 αi + 1
+

c2(
∑K
i=1 αi)(

∑K
i=1 αi + 1)

(
∑
i 6=1 αi + 1)(

∑
i 6=1 αi + 2)

+ · · ·
]
,

(2)

where Λc(b1) is the simplicial cap of Sω(v1) which is composed of vertex b1 and a base parallel to
the corresponding base of B̃ and cutting adjacent edges of B̃ in the ratio c : (1− c).

See Fig. 1c for an illustration for the simplicial cap described in the proposition. Given the lower
bound for the mass around a cone containing a vertex, we have arrived at the following guarantee.
Proposition 4. For λ ∈ (0, 1), let cλ be such that λ = min

k
P(Λcλ(bk)) and let ωλ be such that

cλ =

((
2

√
1− r2

R2
max

)
(sin(d) cot(arccos(1− ωλ)) + cos(d))

)−1
, (3)

where angle d ≤ min
i,k

∠(bk, bk − bi). Then, as long as

ω ∈
(
ωλ,max

(
a2min

2R2
max

, max
i,k=1,...,K

(1− cos(bi, bk)

))
, (4)

the bound P(Sω(vk)) ≥ λ holds for all k = 1, . . . ,K.

3.2 CoSAC: Conic Scan-and-Cover algorithm

Having laid out the geometric foundations, we are ready to present the Conic Scan-and-Cover
(CoSAC) algorithm, which is a scanning procedure for detecting the presence of simplicial vertices
based on data drawn randomly from the simplex. The idea is simple: iteratively pick the farthest point
from the center estimate Ĉp := 1

M

∑
m pm, say v, then construct a cone Sω(v) for some suitably

chosen ω, and remove all the data residing in this cone. Repeat until there is no data point left.

Specifically, let A = {1, . . . ,M} be the index set of the initially unseen data, then set v :=
argmax
p̃m:m∈A

‖p̃m‖2 and update A := A \ Sω(v). The parameter ω needs to be sufficiently large to ensure

that the farthest point is a good estimate of a true vertex, and that the scan will be completed in exactly
K iterations; ω needs to be not too large, so that Sω(v) does not contain more than one vertex. The
existence of such ω is guaranteed by Prop. 1. In particular, for an equilateral B̃, the condition of the
Prop. 1 is satisfied as long as ω ∈ (1− 1/

√
K − 1, 1 + 1/(K − 1)).

In our setting, K is unknown. A smaller ω would be a more robust choice, and accordingly the set A
will likely remain non-empty after K iterations. See the illustration of Fig. 1a, where the blue regions
correspond to A after K = 3 iterations of the scan. As a result, we proceed by adopting a stopping
criteria based on Prop. 2: the procedure is stopped as soon as ∀m ∈ A ‖p̃m‖2 < R, which allows us
to complete the scan in K iterations (as in Fig. 1b for K = 3).

The CoSAC algorithm is formally presented by Algorithm 1. Its running is illustrated in Fig. 2,
where we show iterations 1, 26, 29, 30 of the algorithm by plotting norms of the centered documents
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in the active set A and cone Sω(v) against cosine distance to the chosen direction of a topic. Iteration
30 (right) satisfies stopping criteria and therefore CoSAC recovered correct K = 30. Note that this
type of visual representation can be useful in practice to verify choices of ω andR. The following
theorem establishes the consistency of the CoSAC procedure.
Theorem 1. Suppose {β1, . . . , βK} are the true topics, incenter Cp is given, θm ∼ DirK(α) and
pm :=

∑
k βkθmk for m = 1, . . . ,M and α ∈ RK+ . Let K̂ be the estimated number of topics,

{β̂1, . . . , β̂K̂} be the output of Algorithm 1 trained with ω andR as in Prop. 2. Then ∀ ε > 0,

P

({
min

j∈{1,...,K̂}
‖βi − β̂j‖ > ε , for any i ∈ {1, . . . , K̂}

}
∪ {K 6= K̂}

)
→ 0 as M →∞.

Remark We found the choices ω = 0.6 andR to be median of {‖p̃1‖2, . . . , ‖p̃M‖2} to be robust in
practice and agreeing with our theoretical results. From Prop. 3 it follows that choosingR as median
length is equivalent to choosing ω resulting in an edge cut ratio c such that 1− K

K−1 ( c
1−c )

1−1/K ≥
1/2, then c ≤ (K−12K )K/(K−1), which, for any equilateral topic simplex B, is satisfied by setting
ω ∈ (0.3, 1), provided that K ≤ 2000 based on the Eq. (3).

4 Document Conic Scan-and-Cover algorithm

In the topic modeling problem, pm for m = 1, . . . ,M are not given. Instead, under the bag-of-words
assumption, we are given the frequencies of words in documents w1, . . . , wM which provide a point
estimate w̄m := wm/Nm for the pm. Clearly, if number of documents M → ∞ and length of
documents Nm → ∞ ∀m, we can use Algorithm 1 with the plug-in estimates w̄m in place of pm,
since w̄m → pm. Moreover, Cp will be estimated by Ĉp := 1

M

∑
w̄m. In practice, M and Nm are

finite, some of which may take relatively small values. Taking the topic direction to be the farthest
point in the topic simplex, i.e., v = argmax

w̃m:m∈A
‖w̃m‖2, where w̃m := w̄m − Ĉp ∈ ∆V−1

0 , may no

longer yield a robust estimate, because the variance of this topic direction estimator can be quite high
(in the Supplement we show that it is upper bounded with (1− 1/V )/Nm).

To obtain improved estimates, we propose a technique that we call “mean-shifting”. Instead of taking
the farthest point in the simplex, this technique is designed to shift the estimate of a topic to a high
density region, where true topics are likely to be found. Precisely, given a (current) cone Sω(v), we
re-position the cone by updating v := argmin

v

∑
m∈Sω(v) ‖w̃m‖2(1− cos(w̃m, v)). In other words,

we re-position the cone by centering it around the mean direction of the cone weighted by the norms
of the data points inside, which is simply given by v ∝∑m∈Sω(v) w̃m/ card(Sω(v)). This results in
reduced variance of the topic direction estimate, due to the averaging over data residing in the cone.

The mean-shifting technique may be slightly modified and taken as a local update for a subsequent
optimization which cycles through the entire set of documents and iteratively updates the cones. The
optimization is with respect to the following weighted spherical k-means objective:

min
‖vk‖2=1,k=1,...K

K∑
k=1

∑
m∈Sk(vk)

‖w̃m‖2(1− cos(vk, w̃m)), (5)

where cones Sk(vk) = {m|dcos(vk, p̃m) < dcos(vl, p̃i) ∀l 6= k} yield a disjoint data partition
K⊔
k=1

Sk(vk) = {1, . . . ,M} (this is different from Sω(vk)). The rationale of spherical k-means

optimization is to use full data for estimation of topic directions, hence further reducing the variance
due to short documents. The connection between objective function (5) and topic simplex estimation
is given in the Supplement. Finally, obtain topic norms Rk along the directions vk using maximum
projection: Rk := max

m:m∈Sk(vk)
〈vk, w̃m〉. Our entire procedure is summarized in Algorithm 2.

Remark In Step 9 of the algorithm, cone Sω(v) with a very low cardinality, i.e., card(Sω(v)) <
λM , for some small constant λ, is discarded because this is likely an outlier region that does not actu-
ally contain a true vertex. The choice of λ is governed by results of Prop. 4. For small αk = 1/K, ∀k,
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λ ≤ P(Λc) ≈ c(K−1)/K

(K−1)(1−c) and for an equilateral B̃ we can choose d such that cos(d) =
√

K+1
2K . Plug-

ging these values into Eq. (3) leads to c =

((
2
√

1− 1
K2

) (√
K−1
2K ( 1−ω√

1−(1−ω)2
) +

√
K+1
2K

))−1
.

Now, plugging in ω = 0.6 we obtain λ ≤ K−1 for large K. Our approximations were based on large
K to get a sense of λ, we now make a conservative choice λ = 0.001, so that (K)−1 > λ ∀K < 1000.
As a result, a topic is rejected if the corresponding cone contains less than 0.1% of the data.

Finding anchor words using Conic Scan-and-Cover Another approach to reduce the noise is
to consider the problem from a different viewpoint, where Algorithm 1 will prove itself useful.
RecoverKL by Arora et al. (2012) can identify topics with diminishing errors (in number of documents
M ), provided that topics contain anchor words. The problem of finding anchor words geometrically
reduces to identifying rows of the word-to-word co-occurrence matrix that form a simplex containing
other rows of the same matrix (cf. Arora et al. (2012) for details). An advantage of this approach
is that noise in the word-to-word co-occurrence matrix goes to zero as M → ∞ no matter the
document lengths, hence we can use Algorithm 1 with "documents" being rows of the word-to-word
co-occurrence matrix to learn anchor words nonparametrically and then run RecoverKL to obtain
topic estimates. We will call this procedure cscRecoverKL.

Algorithm 1 Conic Scan-and-Cover (CoSAC)

Input: document generating distributions p1, . . . , pM ,
angle threshold ω, norm thresholdR

Output: topics β1, . . . , βk
1: Ĉp = 1

M

∑
m pm {find center}; p̃m := pm − Ĉp for m = 1, . . . ,M {center the data}

2: A1 = {1, . . . ,M} {initialize active set}; k = 1 {initialize topic count}
3: while ∃m ∈ Ak : ‖p̃m‖2 > R do
4: vk = argmax

p̃m:m∈Ak
‖p̃m‖2 {find topic}

5: Sω(vk) = {m : dcos(p̃m, vk) < ω} {find cone of near documents}
6: Ak = Ak \ Sω(vk) {update active set}
7: βk = vk + Ĉp, k = k + 1 {compute topic}
8: end while
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Figure 2: Iterations 1, 26, 29, 30 of the Algorithm 1. Red are the documents in the cone Sω(vk); blue
are the documents in the active set Ak+1 for next iteration. Yellow are documents ‖p̃m‖2 < R.

5 Experimental results

5.1 Simulation experiments

In the simulation studies we shall compare CoSAC (Algorithm 2) and cscRecoverKL based on
Algorithm 1 both of which don’t have access to the true K, versus popular parametric topic modeling
approaches (trained with true K): Stochastic Variational Inference (SVI), Collapsed Gibbs sampler,
RecoverKL and GDM (more details in the Supplement). The comparisons are done on the basis of
minimum-matching Euclidean distance, which quantifies distance between topic simplices (Tang
et al., 2014), and running times (perplexity scores comparison is given in the Supplement). Lastly we
will demonstrate the ability of CoSAC to recover correct number of topics for a varying K.
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Algorithm 2 CoSAC for documents

Input: normalized documents w̄1, . . . , w̄M ,
angle threshold ω, norm thresholdR, outlier threshold λ

Output: topics β1, . . . , βk
1: Ĉp = 1

M

∑
m w̄m {find center}; w̃m := w̄m − Ĉp for m = 1, . . . ,M {center the data}

2: A1 = {1, . . . ,M} {initialize active set}; k = 1 {initialize topic count}
3: while ∃m ∈ Ak : ‖w̃m‖2 > R do
4: vk = argmax

w̃m:m∈Ak
‖w̃m‖2 {initialize direction}

5: while vk not converged do {mean-shifting}
6: Sω(vk) = {m : dcos(w̃m, vk) < ω} {find cone of near documents}
7: vk =

∑
m∈Sω(vk) w̃m/ card(Sω(vk)) {update direction}

8: end while
9: Ak = Ak \ Sω(vk) {update active set}

if card(Sω(vk)) > λM then k = k + 1 {record topic direction}
10: end while
11: v1, . . . , vk = weighted spherical k-means (v1, . . . , vk, w̃1, . . . , w̃M )
12: for l in {1, . . . , k} do
13: Rl := max

m:m∈Sl(vl)
〈vl, w̃m〉 {find topic length along direction vl}

14: βl = Rlvl + Ĉp {compute topic}
15: end for
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Figure 3: Minimum matching Euclidean distance for (a) varying corpora size, (b) varying length of
documents; (c) Running times for varying corpora size; (d) Estimation of number of topics.
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Figure 4: Gibbs sampler convergence analysis for (a) Minimum matching Euclidean distance for
corpora sizes 1000 and 5000; (b) Perplexity for corpora sizes 1000 and 5000; (c) Perplexity for
NYTimes data.

Estimation of the LDA topics First we evaluate the ability of CoSAC and cscRecoverKL to
estimate topics β1, . . . , βK , fixing K = 15. Fig. 3(a) shows performance for the case of fewer
M ∈ [100, 10000] but longer Nm = 500 documents (e.g. scientific articles, novels, legal documents).
CoSAC demonstrates performance comparable in accuracy to Gibbs sampler and GDM.

Next we consider larger corpora M = 30000 of shorter Nm ∈ [25, 300] documents (e.g. news
articles, social media posts). Fig. 3(b) shows that this scenario is harder and CoSAC matches the
performance of Gibbs sampler for Nm ≥ 75. Indeed across both experiments CoSAC only made
mistakes in terms of K for the case of Nm = 25, when it was underestimating on average by 4 topics
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and for Nm = 50 when it was off by around 1, which explains the earlier observation. Experiments
with varying V and α are given in the Supplement.

It is worth noting that cscRecoverKL appears to be strictly better than its predecessor. This suggests
that our procedure for selection of anchor words is more accurate in addition to being nonparametric.

Running time A notable advantage of the CoSAC algorithm is its speed. In Fig. 3(c) we see
that Gibbs, SVI, GDM and CoSAC all have linear complexity growth in M , but the slopes are very
different and approximately are INm for SVI and Gibbs (where I is the number of iterations which
has to be large enough for convergence), number of k-means iterations to converge for GDM and is
of order K for the CoSAC procedure making it the fastest algorithm of all under consideration.

Next we compare CoSAC to per iteration quality of the Gibbs sampler trained with 500 iterations for
M = 1000 and M = 5000. Fig. 4(b) shows that Gibbs sampler, when true K is given, can achieve
good perplexity score as fast as CoSAC and outperforms it as training continues, although Fig. 4(a)
suggests that much longer training time is needed for Gibbs sampler to achieve good topic estimates
and small estimation variance.

Estimating number of topics Model selection in the LDA context is a quite challenging task and,
to the best of our knowledge, there is no "go to" procedure. One of the possible approaches is based
on refitting LDA with multiple choices of K and using Bayes Factor for model selection (Griffiths &
Steyvers, 2004). Another option is to adopt the Hierarchical Dirichlet Process (HDP) model, but we
should understand that it is not a procedure to estimate K of the LDA model, but rather a particular
prior on the number of topics, that assumes K to grow with the data. A more recent suggestion is to
slightly modify LDA and use Bayes moment matching (Hsu & Poupart, 2016), but, as can be seen
from Figure 2 of their paper, estimation variance is high and the method is not very accurate (we
tried it with true K = 15 and it took above 1 hour to fit and found 35 topics). Next we compare
Bayes factor model selection versus CoSAC and cscRecoverKL for K ∈ [5, 50]. Fig. 3(d) shows that
CoSAC consistently recovers exact number of topics in a wide range.

We also observe that cscRecoverKL does not estimate K well (underestimates) in the higher range.
This is expected because cscRecoverKL finds the number of anchor words, not topics. The former
is decreasing when later is increasing. Attempting to fit RecoverKL with more topics than there
are anchor words might lead to deteriorating performance and our modification can address this
limitation of the RecoverKL method.

5.2 Real data analysis

In this section we demonstrate CoSAC algorithm for topic modeling on one of the standard bag
of words datasets — NYTimes news articles. After preprocessing we obtained M ≈ 130, 000
documents over V = 5320 words. Bayes factor for the LDA selected the smallest model among
K ∈ [80, 195], while CoSAC selected 159 topics. We think that disagreement between the two
procedures is attributed to the misspecification of the LDA model when real data is in play, which
affects Bayes factor, while CoSAC is largely based on the geometry of the topic simplex.

The results are summarized in Table 1 — CoSAC found 159 topics in less than 20min; cscRecoverKL
estimated the number of anchor words in the data to be 27 leading to fewer topics. Fig. 4(c) compares
CoSAC perplexity score to per iteration test perplexity of the LDA (1000 iterations) and HDP (100
iterations) Gibbs samplers. Text files with top 20 words of all topics are included in the Supplementary
material. We note that CoSAC procedure recovered meaningful topics, contextually similar to LDA
and HDP (e.g. elections, terrorist attacks, Enron scandal, etc.) and also recovered more specific topics
about Mike Tyson, boxing and case of Timothy McVeigh which were present among HDP topics, but
not LDA ones. We conclude that CoSAC is a practical procedure for topic modeling on large scale
corpora able to find meaningful topics in a short amount of time.

6 Discussion

We have analyzed the problem of estimating topic simplex without assuming number of vertices
(i.e., topics) to be known. We showed that it is possible to cover topic simplex using two types of
geometric shapes, cones and a sphere, leading to a class of Conic Scan-and-Cover algorithms. We
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Table 1: Modeling topics of NYTimes articles
K Perplexity Coherence Time

cscRecoverKL 27 2603 -238 37 min
HDP Gibbs 221± 5 1477± 1.6 −442± 1.7 35 hours
LDA Gibbs 80 1520± 1.5 −300± 0.7 5.3 hours
CoSAC 159 1568 -322 19 min

then proposed several geometric correction techniques to account for the noisy data. Our procedure is
accurate in recovering the true number of topics, while remaining practical due to its computational
speed. We think that angular geometric approach might allow for fast and elegant solutions to other
clustering problems, although as of now it does not immediately offer a unifying problem solving
framework like MCMC or variational inference. An interesting direction in a geometric framework is
related to building models based on geometric quantities such as distances and angles.
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