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Abstract

It is well known that, for a linear program (LP) with constraint matrix A ∈ Rm×n,
the Alternating Direction Method of Multiplier converges globally and linearly at a
rate O((‖A‖2F +mn) log(1/ε)). However, such a rate is related to the problem
dimension and the algorithm exhibits a slow and fluctuating “tail convergence” in
practice. In this paper, we propose a new variable splitting method of LP and prove
that our method has a convergence rate of O(‖A‖2 log(1/ε)). The proof is based
on simultaneously estimating the distance from a pair of primal dual iterates to the
optimal primal and dual solution set by certain residuals. In practice, we result
in a new first-order LP solver that can exploit both the sparsity and the specific
structure of matrix A and a significant speedup for important problems such as
basis pursuit, inverse covariance matrix estimation, L1 SVM and nonnegative
matrix factorization problem compared with the current fastest LP solvers.

1 Introduction

We are interested in applying the Alternating Direction Method of Multiplier (ADMM) to solve a
linear program (LP) of the form

min
x∈Rn

cTx s.t. Ax = b, xi ≥ 0, i ∈ [nb]. (1)

where c ∈ Rn, A ∈ Rm×n is the constraint matrix, b ∈ Rm and [nb] = {1, . . . , nb}. This problem
plays a major role in numerical optimization, and has been used in a large variety of application areas.
For example, several important machine learning problems including the nonnegative matrix factor-
ization (NMF) [1], l1-regularized SVM [2], sparse inverse covariance matrix estimation (SICE) [3]
and the basis pursuit (BP) [4], and the MAP inference [5] problem can be cast into an LP setting.

The complexity of the traditional LP solver is still at least quadratic in the problem dimension, i.e., the
Interior Point method (IPM) with a weighted path finding strategy. However, many recent problems
in machine learning have extremely large-scale targeting data but exhibit a sparse structure, i.e.,
nnz(A)� mn, where nnz(A) is the number of non-zero elements in the constraint matrix A. This
characteristic severely limits the ability of the IPM or Simplex technique to solve these problems. On
the other hand, first-order methods have received extensive attention recently due to their ability to
deal with large data sets. These methods require a matrix vector multiplication Ax in each iteration
with complexity linear in nnz(A). However, the key challenge in designing a first-order algorithm is
that LPs are usually non-smooth and non-strongly convex optimization problems (may not have a
unique solution). Utilizing the standard primal and dual stochastic sub-gradient descent method will
result in an extremely slow convergence rate, i.e., O(1/ε2) [6].

The ADMM was first developed in 1975 [7], and since then there have been several LP solvers
based on this technique. Compared with the traditional Augmented Lagrangian Method (ALM), this
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method splits the variable into several blocks, and optimizes the augmented Lagrangian (AL) function
in a Gauss-Seidel fashion, which often results in relatively easier subproblems to solve. However,
this method suffers from a slow convergence when the number of blocks increases. Moreover, the
challenge of applying the ADMM to the LP is that the LP problem does not exhibit an explicit
separable structure among variables, which are difficult to split in the traditional sense. The notable
work [8] first applies the ADMM to solve the LP by augmenting the original n-dimensional variables
into nm−dimensions, and the resultant Augmented Lagrangian function is separable among n blocks
of variables. They prove that this method converges globally and linearly. However, the rate of this
method is dependent on the problem dimension m,n, and converges quite slowly when m,n are
large. Thus, they leave an open question on whether other efficient splitting methods exist, resulting
in convergence analysis in the space with lower dimension m or n.

In this paper, we propose a new splitting method for LP, which splits the equality and inequality
constraints into two blocks. The resultant subproblems in each iteration are a linear system with a
positive definite matrix, and n one-dimensional truncation operations. We prove our new method
converges globally and linearly at a faster rate compared with the method in [8]. Specifically, the main
contributions of this paper can be summarized as follows: (i) We show that the existing ADMM in [8]
exhibits a slow and fluctuating “tail convergence”, and provide a theoretical understanding of why
this phenomenon occurs. (ii) We propose a new ADMM method for LP and provide a new analysis
of the linear convergence rate of this new method, which only involves O(m + n)−dimensional
iterates. This result answers the open question proposed in [8]. (iii) We show that when the matrix A
possesses some specific structure, the resultant subproblem can be solved in closed form. For the
general constraint matrix A, we design an efficiently implemented Accelerated Coordinate Descent
Method (ACDM) to solve the subproblem inO(log(1/ε)nnz(A)) time. (iv) Practically, we show that
our proposed algorithm significantly speeds up solving the basis pursuit, l1-regularized SVM, sparse
inverse covariance matrix estimation, and the nonnegative matrix factorization problem compared
with existing splitting method [8] and the current fastest first-order LP solver in [9].

2 Preliminaries

In this section, we first review several definitions that will be used in the sequel. Then we illustrate
some observations from the existing method. We also include several LP-based machine problems
that can be cast into the LP setting in the Appendix.

2.1 Notation

A twice differentiable function f : Rn → R has strong convexity parameter σ if and only if its
Hessian satisfies∇2f(x) � σI,∀x.We use ‖·‖ to denote standard l2 norm for vector or spectral norm
for matrix, ‖ ·‖1 to denote the l1 norm and ‖ ·‖F to denote the Frobenius norm. A twice differentiable
function f : Rn → R has a component-wise Lipschitz continuous gradient with constant Li if
and only if ‖∇if(x) − ∇if(y)‖ ≤ Li‖x − y‖,∀x,y. For example, for the quadratic function
F (x) = 1

2‖Ax − b‖2, the gradient ∇F (x) = AT (Ax − b) and the Hessian ∇2F (x) = ATA.
Hence the parameter σ and Li satisfy (choose y = x + tei, where t ∈ R, ei ∈ Rn is the unit
vector), xATAx ≥ σ‖x‖2 and tAT

i Aei ≤ Li|t|,∀x, t. Thus, the σ is the smallest eigenvalue of
ATA and Li = ‖Ai‖2, where Ai is the ith column of the matrix A. The projection operator of
point x into convex set S is defined as [x]S = argminu∈S ‖x− u‖. If S is the non-negative cone,
let [x]+ , [x]S . Let Vi = [0,∞) for i ∈ [nb] and Vi = R for i ∈ [nf ].

2.2 Tail Convergence of the Existing ADMM Method

The existing ADMM in [8] solves the LP (1) by following procedure: in each iteration k, go through
the following two steps:

1. Primal update: xk+1
i =

[
xki +

1
‖Ai‖2

(
AT

i (b−Axk)
q − ci−AT

i zk

λ

)]
Vi

, i = 1, . . . , n.

2. Dual update: zk+1 = zk − λ
q (Axk − b).

We plot the solving accuracy versus the number of iterations for solving three kinds of problems (see
Fig.1 in Appendix). We can observe that it converges fast in the initial phase, but exhibits a slow and
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fluctuating convergence when the iterates approach the optimal set. This method originates from
a specific splitting method in the standard 2−block ADMM [10]. To provide some understanding
of this phenomenon, we show that this method can be actually recovered by an inexact Uzawa
method [11]. The Augmented Lagrangian function of the problem (1) is denoted by L(x, z) =
cTx+ ρ

2‖Ax− b− z/ρ‖2. In each iteration k, the inexact Uzawa method first minimizes a local
second-order approximation of the quadratic term in L(x, zk) with respect to primal variables x,
specifically,

xk+1 = arg min
xi∈Vi

cTx+ 〈ρAT (Axk − b− zk/ρ),x− xk〉+ 1

2
‖x− xk‖D, (2)

then update the dual variables by zk+1 = zk− ρ(Axk+1−b). Let the proximity parameter ρ = λ/q
and matrix D equal to the diagonal matrix diag{. . . , 1/q‖Ai‖2, . . .}, then we can recover the above
algorithm by the first-order optimality condition of (2). This equivalence allows us to illustrate the
main reason for the slow and fluctuating “tail convergence” comes from the inefficiency of such a
local approximation of the Augmented Lagrangian function when the iterates approach the optimal
set.

One straightforward idea to resolve this issue is to minimize the Augmented Lagrangian function
exactly instead of its local approximation, which leads to the classic ALM. There exists a line of
works focusing on analyzing the convergence of applying ALM to LP [9, 12, 13]. This method will
produce a sequence of constrained quadratic programs (QP) that are difficult to solve. The work [9]
proves that the proximal Coordinate Descent method can solve each QPs at a linear rate even when
matrix A is not full column rank. However, there exists several drawbacks in this approach: (i) the
practical solving time of each subproblem is quite long when A is rank-deficient; (ii) the theoretical
performance and complexity of using recent accelerated techniques in proximal optimization [14]
with the ALM is unknown; (iii) it cannot exploit the specific structure of matrix A when solving
each constrained QP. Therefore, it motivates us to investigate the new and efficient variable splitting
method for such a problem.

3 New Splitting Method in ADMM

We first separate the equality and inequality constraints of the above LP (1) by adding another group
of variables y ∈ Rn.

min cTx (3)
s.t. Ax = b,x = y,

yi ≥ 0, i ∈ [nb].

The dual of problem (3) takes the following form.

min bT zx (4)

s.t. −AT zx − zy = c,
zy,i ≤ 0, i ∈ [nb], zy,i = 0, i ∈ [n]\[nb].

Let zx, zy be the Lagrange multipliers for constraints Ax = b, x = y,respectively. Define the
indicator function g(y) of the non-negative cone: g(y) = 0 if yi ≥ 0,∀i ∈ [nb]; otherwise
g(y) = +∞. Then the augmented Lagrangian function of the primal problem (3) is defined as

L(x,y, z) = cTx+ g(y) + zT (A1x+A2y − b) +
ρ

2
‖A1x+A2y − b‖2, (5)

where z = [zx; zy]. The matrix A1, A2 and vector b are denoted by

A1 =

[
A
I

]
,A2 =

[
0
−I

]
, and b =

[
b
0

]
. (6)

In each iteration k, the standard ADMM go through following three steps:
1. Primal update: xk+1 = arg min

x∈Rn
L(x,yk, zk).

2. Primal update: yk+1 = arg min
y∈Rn

L(xk+1,y, zk).
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Algorithm 1 Alternating Direction Method of Multiplier with Inexact Subproblem Solver
Initialize z0 ∈ Rm+n, choose parameter ρ > 0.
repeat

1. Primal update: find xk+1 such that Fk(xk+1)−minx∈Rn Fk(x) ≤ εk.
2. Primal update: for each i, let yk+1

i =
[
xk+1
i + zky,i/ρ

]
Vi

.
3. Dual update: zk+1

x = zkx + ρ(Axk+1 − b), zk+1
y = zky + ρ(xk+1 − yk+1).

until ‖Axk+1 − b‖∞ ≤ ε and ‖xk+1 − yk+1‖∞ ≤ ε

3. Dual update: zk+1 = zk + ρ(A1x
k+1 +A2y

k+1 − b).

The first step is an unconstrained quadratic program, which can be simplified as

xk+1 = argmin
x
Fk(x) , cTx+ (zk)TA1x+

ρ

2
‖A1x+A2y

k − b‖2. (7)

The gradient of the function Fk(x) can be expressed as

∇Fk(x) = ρ(ATA+ I)x+AT
1 [z

k + ρ(A2y
k − b)] + c, (8)

and the Hessian of function Fk(x) is

∇2Fk(x) = ρ(ATA+ I). (9)

Further, based on the first-order optimality condition, the first step is equivalent to solving a linear
system, which requires inverting the Hessian matrix (9). In practice, the complexity is quite high to
be exactly solved unless the Hessian exhibits some specific structures. Thus, we relax the first step
into the inexact minimization: find xk+1 such that

Fk(x
k+1)− min

x∈Rn
Fk(x) ≤ εk, (10)

where εk is the given accuracy. Transforming the indicator function g(y) back to the constraints, the
second step can be separated into n one−dimensional optimization problems: for each i,

yk+1
i = arg min

yi∈Vi

−zky,iyi +
ρ

2
(yi − xk+1

i )2 =
[
xk+1
i + zky,i/ρ

]
Vi
.

The resultant algorithm is sketched in Algorithm 1. In some applications such as l1-regularized
SVMs and basis pursuit problem, the objective function contains the l1 norm of the variables.
Transforming to the canonical form (1) will introduce additional n variables and 2n constraints. One
important feature in our method is that we can split the objective function by adding variable y. The
corresponding subproblems are similar with Algorithm 1 and the only difference is that the second
step will be n one−dimensional shrinkage operations. (Details can be seen in Appendix.)

4 Convergence Analysis of New ADMM

In this section, we prove that the Algorithm 1 converges at a global and linear rate, and provide
a roadmap of the main technical development. We can first write the primal problem (3) as the
following standard 2−block form.

min
x,y

f(x) + g(y) s.t. A1x+A2y = b, (11)

where f(x) = cTx and g(y) is the indicator function as defined before. Most works in the literature
prove that the 2-block ADMM converges globally and linearly via assuming that one of the functions
f and g is strongly convex [15, 16, 17]. Unfortunately, both the linear function f and the indicator
function g in the LP do not satisfy this property, which poses a significant challenge on the current
analytical framework. There exists several recent works trying to address this problem in some sense.
In work [18], they have demonstrated that when the dual step size ρ is sufficiently small (impractical),
the ADMM converges globally linearly, while no implicit rate is given. The work [13] shows that
the ADMM is locally linearly converged when applying to LP. They utilize a unique combination of
iterates and conduct a spectral analysis. However, they still leave an open question whether ADMM
converges globally and linearly when applying to the LP in the above form.
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In the sequel, we will answer this question positively and provide an accurate analysis of such a
splitting method. The main technical development is based on a geometric argument: we first prove
that the set formed by optimal primal and dual solutions of LP (3) is a (3n + m)−dimensional
polyhedron S∗; then we utilize certain global error bound to simultaneously estimate the distance
from iterates xk+1,yk, zk to S∗. All detailed proofs are given in the Appendix.
Lemma 1. (Convergence of 2-block ADMM [10]) Let pk = zk − ρA2y

k, we have

‖pk+1 − [pk+1]G∗‖2 ≤ ‖pk − [pk]G∗‖2 − ‖pk+1 − pk‖2,

where G∗ , {p∗ ∈ Rm+n|T (p∗) = p∗}, and the definition of operator T is given in (54) in
Appendix. Moreover, if the LP (3) has a pair of optimal primal and dual solution, the iterates xk,yk
and zk converges to an optimal solution; Otherwise, at least one of the iterates is unbounded.

Lemma 1 is tailored from applying the classic Douglas-Rachford splitting method to the LP. This result
guarantees that the sequence pk produced by ADMM globally converges under a mild assumption.
However, to establish the linear convergence rate, the key lies in estimating the other side inequality,

‖pk − [pk]G∗‖ ≤ γ‖pk+1 − pk‖, γ > 0. (12)

Then one can combine these two results together to prove that sequence pk converges globally and
linearly with ‖pk+1− [pk+1]G∗‖2 ≤ (1−1/γ2) ·‖pk− [pk]G∗‖2, which further can be used to show
the R−linear convergence of iterates xk,yk and zk. To estimate the constant γ, we first describe the
geometry formed by the optimal primal solutions x∗,y∗ and dual solutions z∗ of the LP (3).
Lemma 2. (Geometry of the optimal solution set of LP) The variables (x∗,y∗) are the optimal
primal solutions and z∗ are optimal dual solutions of LP (3) if and only if (i) Ax∗ = b, x∗ = y∗; (ii)
−AT z∗x − z∗y = c; (iii) y∗i ≥ 0, z∗y,i ≤ 0, i ∈ [nb]; z∗y,i = 0, i ∈ [n]\[nb]; (iv) cTx∗ + bT z∗x = 0.

In Lemma 2, one interesting element is to utilize the strong duality condition (iv) to eliminate the
complementary slackness in the standard KKT condition. Then, the set of optimal primal and dual
solutions is described only by affine constraints, which further implies that the optimal solution set is
an (m+ 3n)−dimensional polyhedron. We use S∗ to denote such a polyhedron.
Lemma 3. (Hoffman bound [19, 20]) Consider a polyhedron set S = {x ∈ Rd|Ex = t,Cx ≤ d}.
For any point x ∈ Rd, we have

‖x− [x]S‖ ≤ θS
∥∥∥∥[ Ex− t

[Cx− d]+

]∥∥∥∥ , (13)

where θS is the Hoffman constant that depends on the structure of polyhedron S.

According to the result in Lemma 2, it seems that we can use the Hoffman bound to estimate the
distance between the current iterates (xk,yk, zk) and the solution set S∗ via the their primal and
dual residual. However, to obtain the form of inequality (12), we need to bound such a residual in
terms of ‖pk − pk+1‖. Indeed, we have these results.
Lemma 4. (Estimation of residual) The sequence (xk+1,yk, zk) produced by Algorithm 1 satisfies

A1x
k+1 +A2y

k − b = (pk+1 − pk)/ρ,

c+AT
1 z

k = AT
1 (p

k − pk+1),

cTxk+1 + bT zkx = (A1x
k+1 − zk/ρ)T (pk − pk+1),

yki ≥ 0, zky,i ≤ 0, i ∈ [nb]; z
k
y,i = 0, i ∈ [n]\[nb].

One observation from Lemma 4 is that Algorithm 1 automatically preserves the boundness and the
complementary slackness of both primal and dual iterates. Instead, in the previous algorithm in [8],
the complementary slackness is not preserved during the iteration. Combining the results in Lemma 2,
Lemma 3 and Lemma 4, we are readily to estimate the constant γ.
Lemma 5. (Estimation of linear rate) The sequence pk = zk − ρA2yk produced by Algorithm 1
satisfies ‖pk − [pk]G∗‖ ≤ γ‖pk+1 − pk‖, where the rate γ is given by

γ = (1 + ρ)

[
Rz + 1

ρ
+Rx‖A1‖+ ‖AT

1 ‖
]
θS∗ . (14)

Rx = supk ‖xk‖ < +∞, Rz = supk ‖zk‖ < +∞ are the maximum radius of iterates xk and zk.
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Then we can establish the global and linear convergence of Algorithm 1.
Theorem 1. (Linear convergence of Algorithm 1) Denote zk as the primal iterates produced by
Algorithm 1. To guarantee that there exists an optimal dual solution z∗ such that ‖zk − z∗‖ ≤ ε, it
suffices to run Algorithm 1 for number of iterations K = 2γ2 log(2D0/ε) with the solving accuracy
εk satisfying εk ≤ ε2/8K2, where D0 = ‖p0 − [p0]G∗‖.

The proof of Theorem 1 consists of two steps: first, we establish the global and linear convergence
rate of Algorithm 1 when εk = 0,∀k (exact subproblem solver); then we relax this condition and
prove that when εk is less than a specified threshold, the algorithm still shares a convergence rate of
the same order. The results of primal iterates xk and yk are similar.

5 Efficient Subproblem Solver

In this section, we will show that, due to our specific splitting method, each subproblem in line 1 of
Algorithm 1 can be either solved in closed-form expression or efficiently solved by the Accelerated
Coordinate Descent Method.

5.1 Well-structured Constraint Matrix

Let the gradient (8) vanish, then the primal iterates xk+1 can be exactly determined by
xk+1 = ρ−1(I+ATA)−1dk, with dk = −AT

1 [z
k + ρ(A2y

k − b)]− c, (15)
which requires inverting an n× n positive definite matrix I+ATA, or equivalently, inverting an
m×m positive definite matrix I+AAT via the following Sherman–Morrison–Woodbury identity,

(I+ATA)−1 = I−AT (I+AAT )−1A. (16)
One basic fact is that we only need to invert such a matrix once and then use this cached factorization
in subsequent iterations. Therefore, there are several cases for which the above factorization can
be efficiently calculated: (i) Factorization has a closed-form expression. For example, in the LP-
based MAP inference [5], the matrix I+ATA is block diagonal, and each block has been shown
to possess a closed-form factorization. Another important application is that, in the basis pursuit
problem, the encoding matrices such as DFT (discrete Fourier transform) and DWHT (discrete
Walsh-Hadamard transform) matrices have orthonormal rows and satisfy AAT = I. Based on
(15), each xk+1 = ρ−1(I − 1

2A
TA)dk and can be calculated in O(n log(n)) time by certain

fast transforms. (ii) Factorization has a low-complexity: the dimension m (or n) is small, i.e.,
m = 104. Such a factorization can be calculated in O(m3) and the complexity of each iteration is
only O(nnz(A) +m2). Detailed applications can be viewed in Appendix.
Remark 1. In the traditional Augmented Lagrangian method, the resultant subproblem is a con-
strained and non-strongly convex QP (Hessian is not invertible), which does not allow the above
close-form expression. Besides, in the ALCD [9], the coordinate descent (CD) step only picks one
column in each iteration and cannot exploit the nice structure of matrix A. One idea is to modify the
CD step in [9] to the proximal gradient descent. However, it will greatly increase the computation
time due to the large number of inner gradient descent steps.

5.2 General Constraint Matrix

However, in other applications, the constraint matrix A only exhibits the sparsity, which is difficult
to invert. To resolve this issue, we resort to the current fastest accelerated coordinate descent
method [21]. This method has an order improvement up to O(

√
n) of iteration complexity compared

with previous accelerated coordinate descent methods [22]. However, the naive evaluation of partial
derivative of function Fk(x) in ACDM takes O(nnz(A)) time; second, the time cost of full vector
operation in each iteration of ACDM is O(n). We will show that these difficulties can be tackled by a
carefully designed implementation technique1 and the main procedure is listed in Algorithm 2. Here
the iterates st and matrix M in Algorithm 2 is defined as

M =

[
1− αv αv
βu 1− βu

]
with

[
αv
βu

]
=

[ τ
1+ηρ
ηρ

1+ηρ

]
and sit =

[(
ητ

pi(1+ηρ)
+ 1−τ

Li

)
∇iFk(ut)eTi

η
pi(1+ηρ)

∇iFk(ut)eTi

]
,

(17)
1This technique is motivated by [22].
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Algorithm 2 Efficiently Subproblem Solver
Initialize u0,v0, u0 = Au0, v0 = Av0, matrix M, parameter τ , η, S by (17) and distribution
p = [. . . ,

√
1 + ‖Ai‖2/S, . . . ] and let dk = AT

1 [z
k + ρ(A2y

k − b)] + c.
repeat
[ut,vt]

T = Mt−1 · [u,v]T and [ut,vt]
T = Mt−1 · [u,v]T .

Sample i from [n] based on probability distribution p.
∇iFk(ut) = ρ(Ai)

Tut + ρut,i + dki , and calculate sit by (17).

Mt = M ·Mt−1. Update
[
uT

vT

]
=

[
uT

vT

]
−M−1t sit,

[
uT

vT

]
=

[
uT

vT

]
−M−1t sitA

T ,

until Converge
Output xk+1 = (uT − τvT )/(1− τ).

where η = 1
τS2 , τ = 2

1+
√

4S2/ρ+1
, S =

∑n
i=1

√
‖Ai‖2 + 1. See more details in Appendix.

Lemma 6. (Inner complexity) In each iteration of Algorithm 2, if the current picked coordinate
is i, the update can be finished in O(nnz(Ai)) time, moreover, to guarantee that Fk(xk+1) −
minx Fk(x) ≤ εk with probability 1− p, it suffices to run Algorithm 2 for number of iterations

Tk ≥ O(1) ·
n∑
i=1

‖Ai‖ log
(
Dk

0

εkp

)
, Dk

0 = ‖F k(u0)−min
x
F k(x)‖. (18)

The above iteration complexity is obtained by choosing parameter β = 0 in [21] and utilizing the
Theorem 1 in [23] to transform the convergence in expectation to the form of probability.
Theorem 2. (Overall complexity) Denote zk as the dual iterates produced by Algorithm 1. To
guarantee that there exists an optimal solution z∗ such that ‖zk − z∗‖ ≤ ε with probability 1− p, it
suffices to run Algorithm 1 for k ≥ 2γ2 log(2D0/ε) outer iterations and solve each sub-problem (7)
for the number of inner iterations

T ≥ O(1) ·
n∑
i=1

‖Ai‖ log

(
ρ(Dk

0 )
1
3 γ2

ε
2
3 p

1
3

log

(
2D0

ε

))
. (19)

The results for the primal iterates xk and yk are similar. In the existing ADMM [8], each primal and
dual update only requires O(nnz(A)) time to solve. The complexity of this method is

O(amµ
2(amRx + dmRz)

2(
√
mn+ ‖A‖F )2nnz(A) log(1/ε)),

where am = maxi ‖Ai‖, dm is the largest number of non-zero elements of each row of matrix A,
and µ is the Hoffman constant depends on the optimal solution set of LP. Based on Theorem 2, an
estimation of the worst-case complexity of Algorithm 1 is

O(amθ
2
S∗(Rx‖A‖+Rz)

2nnz(A) log2(1/ε)).

Remark that our method has a weak dependence on the problem dimension compared with the
existing ADMM. Since the Frobenius norm of a matrix satisfies ‖A‖2 ≤ ‖A‖F , our method is faster
than the one in [8].

6 Numerical Results

In this section, we examine the performance of our algorithm and compare it with the state-of-art
of algorithms developed for solving the LP. The first is the existing ADMM in [8]. The second is
the ALCD method in [9], which is reported to be the current fastest first-order LP solver. They have
shown that this algorithm can significantly speed up solving several important machine learning
problems compared with the Simplex and IPM. We name our Algorithm 1 as LPADMM. In the
experiments, we require that the accuracy of subproblem solver εk = 10−3 and the stopping criteria
is that both primal residual ‖A1x

k +A2y
k − b‖∞ and dual residual ‖AT

1 z
k + c‖∞ is less than

10−3. All the LP instances are generated from the basis pursuit, L1 SVM, SICE and NMF problems.
The data source and statistics are included in the supplementary material.

7



0 5000 10000 15000
Number of iterations

10-3

10-2

10-1

100

101

102

D
ua

lit
y 

ga
p ADMM

LPADMM 
ALCD

1000 2000 3000 4000 5000
Number of iterations

10-3

10-2

10-1

100

101

D
ua

lit
y 

ga
p

ADMM 
LPADMM 
ALCD

0 1000 2000 3000 4000 5000 6000 7000
Number of iterations

10-3

10-2

10-1

100

101

D
ua

lit
y 

ga
p

ADMM 
LPADMM 
ALCD

0 50 100 150 200
Number of iterations

10-3

10-2

10-1

100

101

102

D
ua

lit
y 

ga
p

ADMM 
LPADMM 
ALCD

Figure 1: The duality gap versus the number of iterations. From left to right figures are the BP, NMF,
the L1 SVM and and the SICE problem.
Table 1: Timing Results for BP, SICE, NMF and L1 SVM Problem (in sec. long means > 60 hours)

Data m n nnz(A) LPADMM ALCD ADMM
Time Iterations Time Iterations Time Iterations

bp1 17408 16384 8421376 22 3155 864 14534 long long
bp2 34816 32768 33619968 79 4657 2846 19036 long long
bp3 69632 65536 134348800 217 6287 12862 24760 long long

arcene 50095 30097 1151775 801 15198 1978 176060 21329 2035415
real-sim 176986 135072 7609186 955 4274 1906 18262 19697 249363

sonar 80912 68224 2756832 258 5446 659 13789 3828 151972
colon 217580 161040 8439626 395 216 455 1288 7423 83680
w2a 12048256 12146960 167299110 19630 2525 45388 8492 long long

news20 2785205 2498375 53625267 7765 2205 9173 6174 long long

We first compare the convergence rate of different algorithms in solving the above problems. We
use the bp1 for BP problem, data set colon cancer for NMF problem, news20 for L1 SVM problem
and real-sim for SICE problem. We set proximity parameter ρ = 1. We adopt the relative duality
gap as the comparison metric, which is defined as ‖cTxk + bT zkx‖/‖cTx∗‖, where x∗ is obtained
approximately by running our method with a strict stopping condition. In our simulation, one iteration
represents n coordinate descent steps for ALCD and LPADMM, and one dual updating step for
ADMM. As can be seen in the Fig. 1, our new method exhibits a global and linear convergence rate
and matches our theoretical performance bound. Besides, it converges faster than both the ALCD and
existing ADMM method, especially in solving the BP and NMF problem. The sensitivity analysis of
ρ is listed in Appendix.

We next examine the performance of our algorithm from the perspective of time efficiency (both
clocking time and number of iterations). We adopt the dynamic step size rule for ALCD to optimize
its performance. Note that, exchanging the role of the primal and dual problem in (3), we can obtain
the dual version of both ADMM and ACLD, which can be used to tackle the primal or dual sparse
problem. We run both methods and adopt the minimum time. The stopping criterion requires that the
primal and dual residual and the relative duality gap is less than 10−3. The data set bp1,bp2,bp3 is
used for basis pursuit problem, news20 is used for L1 SVM problem; arcene, real-sim are used for
SICE problem; sonar, colon and w2a are used for NMF problem. Among all experiments, we can
observe that our proposed algorithm requires approximately 10%− 40% iterations and 10%− 85%
time of the ALCD method, and become particularly advantageous for basis pursuit problem (50×
speed up) or ill posed problems such as SICE and NMF problem. In particular, for the basis pursuit
problem, the primal iterates xk is updated by closed-form expression (15), which can be calculated in
O(n log(n)) time by Fast Walsh–Hadamard transform.

7 Conclusions

In this paper, we proposed a new variable splitting method to solve the linear programming problem.
The theoretical contribution of this work is that we prove that 2−block ADMM converges globally and
linearly when applying to the linear program. The obtained convergence rate has a weak dependence
of the problem dimension and is less than the best known result. Compared with the existing LP
solvers, our algorithms not only provides a flexibility to exploit the specific structure of constraint
matrix A, but also can be naturally combined with the existing acceleration techniques to significantly
speed up solving the large-scale machine learning problems. The future work focuses on generalizing
our theoretical framework and exhibiting the global linear convergence rate when applying ADMM
to solve a convex quadratic program.
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