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Abstract

In this paper, we introduce an unsupervised learning approach to automatically dis-
cover, summarize, and manipulate artistic styles from large collections of paintings.
Our method is based on archetypal analysis, which is an unsupervised learning
technique akin to sparse coding with a geometric interpretation. When applied to
neural style representations from a collection of artworks, it learns a dictionary of
archetypal styles, which can be easily visualized. After training the model, the style
of a new image, which is characterized by local statistics of deep visual features,
is approximated by a sparse convex combination of archetypes. This enables us
to interpret which archetypal styles are present in the input image, and in which
proportion. Finally, our approach allows us to manipulate the coefficients of the
latent archetypal decomposition, and achieve various special effects such as style
enhancement, transfer, and interpolation between multiple archetypes.

1 Introduction

Artistic style transfer consists in manipulating the appearance of an input image such that its semantic
content and its scene organization are preserved, but a human may perceive the modified image
as having been painted in a similar fashion as a given target painting. Closely related to previous
approaches to texture synthesis based on modeling statistics of wavelet coefficients [8, 19], the
seminal work of Gatys et al. [5, 6] has recently shown that a deep convolutional neural network
originally trained for classification tasks yields a powerful representation for style and texture
modeling. Specifically, the description of “style” in [5] consists of local statistics obtained from deep
visual features, represented by the covariance matrices of feature responses computed at each network
layer. Then, by using an iterative optimization procedure, the method of Gatys et al. [5] outputs an
image whose deep representation should be as close as possible to that of the input content image,
while matching the statistics of the target painting. This approach, even though relatively simple,
leads to impressive stylization effects that are now widely deployed in consumer applications.

Subsequently, style transfer was improved in many aspects. First, removing the relatively slow
optimization procedure of [5] was shown to be possible by instead training a convolutional neural
network to perform style transfer [10, 22]. Once the model has been learned, stylization of a new
image requires a single forward pass of the network, allowing real-time applications. Whereas these
networks were originally trained to transfer a single style (e.g., a network trained for producing a
“Van Gogh effect” was unable to produce an image resembling Monet’s paintings), recent approaches
have been able to train a convolutional neural network to transfer multiple styles from a collection of
paintings and to interpolate between styles [1, 4, 9].

Then, key to our work, Li et al. [11] recently proposed a simple learning-free and optimization-free
procedure to modify deep features of an input image such that their local statistics approximately
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match those of a target style image. Their approach is based on decoders that have been trained to
invert a VGG network [21], allowing them to iteratively whiten and recolor feature maps of every
layer, before eventually reconstructing a stylized image for any arbitrary style. Even though the
approach may not perserve content details as accurately as other learning-based techniques [24], it
nevertheless produces oustanding results given its simplicity and universality. Finally, another trend
consists of extending style transfer to other modalities such as videos [20] or natural photographs [12]
(to transfer style from photo to photo instead of painting to photograph).

Whereas the goal of these previous approaches was to improve style transfer, we address a different
objective and propose to use an unsupervised method to learn style representations from a potentially
large collection of paintings. Our objective is to automatically discover, summarize, and manipulate
artistic styles present in the collection. To achieve this goal, we rely on a classical unsupervised learn-
ing technique called archetypal analysis [3]; despite its moderate popularity, this approach is related to
widely-used paradigms such as sparse coding [13, 15] or non-negative matrix factorization [16]. The
main advantage of archetypal analysis over these other methods is mostly its better interpretability,
which is crucial to conduct applied machine learning work that requires model interpretation.

In this paper, we learn archetypal representations of style from image collections. Archetypes are
simple to interpret since they are related to convex combinations of a few image style representa-
tions from the original dataset, which can thus be visualized (see, e.g., [2] for an application of
archetypal analysis to image collections). When applied to painter-specific datasets, they may for
instance capture the variety and evolution of styles adopted by a painter during his career. Moreover,
archetypal analysis offers a dual interpretation view: if on the one hand, archetypes can be seen as
convex combinations of image style representations from the dataset, each image’s style can also be
decomposed into a convex combination of archetypes on the other hand. Then, given an image, we
may automatically interpret which archetypal style is present in the image and in which proportion,
which is a much richer information than what a simple clustering approach would produce. When
applied to rich data collections, we sometimes observe trivial associations (e.g., the image’s style
is very close to one archetype), but we also discover meaningful interesting ones (when an image’s
style may be interpreted as an interpolation between several archetypes).

After establishing archetypal analysis as a natural tool for unsupervised learning of artistic style, we
also show that it provides a latent parametrization allowing to manipulate style by extending the uni-
versal style transfer technique of [11]. By changing the coefficients of the archetypal decomposition
(typically of small dimension, such as 256) and applying stylization, various effects on the input
image may be obtained in a flexible manner. Transfer to an archetypal style is achieved by selecting a
single archetype in the decomposition; style enhancement consist of increasing the contribution of an
existing archetype, making the input image more “archetypal”. More generally, exploring the latent
space allows to create and use styles that were not necessarily seen in the dataset, see Figure 1.

To the best of our knowledge, [7] is the closest work to ours in terms of latent space description of
style; our approach is however based on significantly different tools and our objective is different.
Whereas a latent space is learned in [7] for style description in order to improve the generalization of
a style transfer network to new unseen paintings, our goal is to build a latent space that is directly
interpretable, with one dimension associated to one archetypal style.

The paper is organized as follows: Section 2 presents the archetypal style analysis model, and its
application to a large collection of paintings. Section 3 shows how we use them for various style
manipulations. Finally, Section 4 is devoted to additional experiments and implementation details.

2 Archetypal Style Analysis

In this section, we show how to use archetypal analysis to learn style from large collections of
paintings, and subsequently perform style decomposition on arbitrary images.

Learning a latent low-dimensional representation of style. Given an input image, denoted by I ,
we consider a set of feature maps F1,F2, . . . ,FL produced by a deep network. Following [11], we
consider five layers of the VGG-19 network [21], which has been pre-trained for classification. Each
feature map Fl may be seen as a matrix in Rpl×ml where pl is the number of channels and ml is the
number of pixel positions in the feature map at layer l. Then, we define the style of I as the collection
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Figure 1: Using deep archetypal style analysis, we can represent an artistic image (a) as a convex
combination of archetypes. The archetypes can be visualized as synthesized textures (b), as a convex
combination of artworks (c) or, when analyzing a specific image, as stylized versions of that image
itself (d). Free recombination of the archetypal styles then allows for novel stylizations of the input.

of first-order and second order statistics {µ1,Σ1, . . . ,µL,ΣL} of the feature maps, defined as

µl = 1
ml

∑ml

j=1 Fl[j] ∈ Rpl and Σl = 1
ml

∑ml

j=1(Fl[j]− µl)(Fl[j]− µl)
> ∈ Rpl×pl ,

where Fl[j] represents the column in Rpl that carries the activations at position j in the feature
map Fl. A style descriptor is then defined as the concatenation of all parameters from the collection
{µ1,Σ1, . . . ,µL,ΣL}, normalized by the number of parameters at each layer—that is, µl and Σl

are divided by pl(pl + 1), which was found to be empirically useful for preventing layers with more
parameters to be over-represented. The resulting vector is very high-dimensional, but it contains
key information for artistic style [5]. Then, we apply a singular value decomposition on the style
representations from the paintings collection to reduce the dimension to 4 096 while keeping more
than 99% of the variance. Next, we show how to obtain a lower-dimensional latent representation.

Archetypal style representation. Given a set of vectors X = [x1, . . . ,xn] in Rp×n, archetypal
analysis [3] learns a set of archetypes Z = [z1, . . . , zk] in Rp×k such that each sample xi can be well
approximated by a convex combination of archetypes—that is, there exists a code αi in Rk such that
xi ≈ Zαi, where αi lies in the simplex

∆k =
{
α ∈ Rk s.t. α ≥ 0 and

∑k
j=1 α[j] = 1

}
.

Conversely, each archetype zj is constrained to be in the convex hull of the data and there exists
a code βj in ∆n such that zj = Xβj . The natural formulation resulting from these geometric
constraints is then the following optimization problem

min
α1,...,αn∈∆k
β1,...,βk∈∆n

1

n

n∑
i=1

‖xi − Zαi‖2 s.t. zj = Xβj for all j = 1, . . . , k, (1)

which can be addressed efficiently with dedicated solvers [2]. Note that the simplex constraints lead to
non-negative sparse codes αi for every sample xi since the simplex constraint enforces the vector αi
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to have unit `1-norm, which has a sparsity-inducing effect [13]. As a result, a sample xi will be
associated in practice to a few archetypes, as observed in our experimental section. Conversely, an
archetype zj = Xβj can be represented by a non-negative sparse code βj and thus be associated to
a few samples corresponding to non-zero entries in βj .

In this paper, we use archetypal analysis on the 4 096-dimensional style vectors previously described,
and typically learn between k = 32 to k = 256 archetypes. Each painting’s style can then be
represented by a sparse low-dimensional code α in ∆k, and each archetype is itself associated to a
few input paintings, which is crucial for their interpretation (see the experimental section). Given a
fixed set of archetypes Z, we may also quantify the presence of archetypal styles in a new image I by
solving the convex optimization problem

α? ∈ arg min
α∈∆k

‖x− Zα‖2, (2)

where x is the high-dimensional input style representation described at the beginning of this section.
Encoding an image style into a sparse vector α allows us to obtain interesting interpretations in terms
of the presence and quantification of archetypal styles in the input image. Next, we show how to
manipulate the archetypal decomposition by modifying the universal feature transform of [11].

3 Archetypal Style Manipulation

In the following, we briefly present the universal style transfer approach of [11] and introduce a
modification that allows us to better preserve the content details of the original images, before
presenting how to use the framework for archetypal style manipulation.

A new variant of universal style transfer. We assume, in this section only, that we are given a
content image Ic and a style image Is. We also assume that we are given pairs of encoders/decoders
(dl, el) such that el(I) produces the l-th feature map previously selected from the VGG network and
dl is a decoder that has been trained to approximately “invert” el—that is, dl(el(I)) ≈ I .

Universal style transfer builds upon a simple idea. Given a “content” feature map Fc in Rp×m, making
local features match the mean and covariance structure of another “style” feature map Fs can be
achieved with simple whitening and coloring operations, leading overall to an affine transformation:

Cs(Fc) := CsWc(Fc − µc) + µs,

where µc,µs are the mean of the content and style feature maps, respectively, Cs is the coloring
matrix and Wc is a whitening matrix that decorrelates the features. We simply summarize this
operation as a single function Cs : Rp×m → Rp×m.

Of course, feature maps between network layers are interconnected and such coloring and whitening
operations cannot be applied simultaneously at every layer. For this reason, the method produces
a sequence of stylized images Îl, one per layer, starting from the last one l = L in a coarse-to-fine
manner, and the final output is Î1. Given a stylized image Îl+1 (with ÎL+1 = Ic), we propose the
following update, which differs slightly from [11], for a reason we will detail below:

Îl = dl

(
γ
(
δCs

l (el(Îl+1)) + (1− δ)Cs
l (el(I

c))
)

+ (1− γ)el(I
c)
)
, (3)

where γ in (0, 1) controls the amount of stylization since el(Ic) corresponds to the l-th feature map
of the original content image. The parameter δ in (0, 1) controls how much one should trust the
current stylized image Îl+1 in terms of content information before stylization at layer l. Intuitively,
(a) dl(Cs

l (el(Îl+1))) can be interpreted as a refinement of the stylized image at layer l+ 1 in order to
take into account the mean and covariance structure of the image style at layer l.
(b) dl(Cs

l (el(I
c))) can be seen as a stylization of the content image by looking at the correlation/mean

structure of the style at layer l regardless of the structure at the preceding stylization steps.

Whereas Îl+1 takes into account the style structure of the top layers, it may also have lost a significant
amount of content information, in part due to the fact that the decoders dl do not invert perfectly the
encoders and do not correctly recover fine details. For this reason, being able to make a trade-off
between (a) and (b) to explicitly use the original content image Ic at each layer is important.
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In contrast, the update of [11] involves a single parameter γ and is of the form

Îl = dl

(
γ
(
Cs

l (el(Îl+1))
)

+ (1− γ)el(Îl+1)
)
. (4)

Notice that here the original image Ic is used only once at the beginning of the process, and details
that have been lost at layer l + 1 have no chance to be recovered at layer l. We present in the
experimental section the effect of our variant. Whenever one is not looking for a fully stylized
image—that is, γ < 1 in (3) and (4), content details can be much better preserved with our approach.

Archetypal style manipulation. We now aim to analyze styles and change them in a controllable
manner based on styles present in a large collection of images rather than on a single image. To this
end, we use the archetypal style analysis procedure described in Section 2. Given now an image I ,
its style, originally represented by a collection of statistics {µ1,Σ1, . . . ,µL,ΣL}, is approximated
by a convex combination of archetypes [z1, . . . , zk], where archetype zj can also be seen as the
concatenation of statistics {µj

1,Σ
j
1, . . . ,µ

j
L,Σ

j
L}. Indeed, zj is associated to a sparse code βj in ∆n,

where n is the number of training images—allowing us to define for archetype j and layer l

µj
l =

∑n
i=1 βj [i]µ

(i)
l and Σj

l =
∑n

i=1 βj [i]Σ
(i)
l ,

where µ
(i)
l and Σ

(i)
l are the mean and covariance matrices of training image i at layer l. As a convex

combination of covariance matrices, Σj
l is positive semi-definite and can be also interpreted as a valid

covariance matrix, which may then be used for a coloring operation producing an “archetypal” style.

Given now a sparse code α in ∆k, a new “style” {µ̂1, Σ̂1, . . . , µ̂L, Σ̂L} can be obtained by consid-
ering the convex combination of archetypes:

µ̂l =
∑k

j=1 α[j]µj
l and Σ̂l =

∑k
j=1 α[j]Σj

l .

Then, the collection of means and covariances {µ̂1, Σ̂1, . . . , µ̂L, Σ̂L} may be used to define a
coloring operation. Three practical cases come to mind: (i) α may be a canonical vector that
selects a single archetype; (ii) α may be any convex combination of archetypes for archetypal style
interpolation; (iii) α may be a modification of an existing archetypal decomposition to enhance a
style already present in an input image I—that is, α is a variation of α? defined in (2).

4 Experiments

In this section, we present our experimental results on two datasets described below. Our implementa-
tion is in PyTorch [17] and relies in part on the universal style transfer implementation2. Archetypal
analysis is performed using the SPAMS software package [2, 14], and the singular value decomposi-
tion is performed by scikit-learn [18]. Our implementation will be made publicly available. Further
examples can be found at http://pascal.inrialpes.fr/data2/archetypal_style.

GanGogh is a collection of 95997 artworks3 downloaded from WikiArt.4 The images cover most
of the freely available WikiArt catalog, with the exception of artworks that are not paintings. Due to
the collaborative nature of WikiArt, there is no guarantee for an unbiased selection of artworks, and
the presence of various styles varies significantly. We compute 256 archetypes on this collection.

Vincent van Gogh As a counter point to the GanGogh collection, which spans many styles over a
long period of time and has a significant bias towards certain art styles, we analyze the collection
of Vincent van Gogh’s artwork, also from the WikiArt catalog. Based on the WikiArt metadata, we
exclude a number of works not amenable to artistic style transfer such as sketches and studies. The
collection counts 1154 paintings and drawings in total, with the dates of their creation ranging from
1858 to 1926. Given the limited size of the collection, we only compute 32 archetypes.

2https://github.com/sunshineatnoon/PytorchWCT
3https://github.com/rkjones4/GANGogh
4https://www.wikiart.org
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4.1 Archetypal Visualization

To visualize the archetypes, we first synthesize one texture per archetype by using its style representa-
tion to repeatedly stylize an image filled with random noise, as described in [11]. We then display
paintings with significant contributions. In Figure 2, we present visualizations for a few archetypes.
The strongest contributions usually exhibit a common characteristic like stroke style or choice of
colors. Smaller contributions are often more difficult to interpret (see supplementary material for the
full set of archetypes). Figure 2a also highlights correlation between content and style: the archetype
on the third row is only composed of portraits.

To see how the archetypes relate to each other, we also compute t-SNE embeddings [23] and display
them with two spatial dimensions. In Figure 3, we show the embeddings for the GanGogh collection,
by using the texture representation for each archetype. The middle of the figure is populated by
Baroque and Renaissance styles, whereas the right side exhibits abstract and cubist styles.

(a) Archetypes from GanGogh collection. (b) Archetypes from van Gogh’s paintings.

Figure 2: Archetypes learned from the GanGogh collection and van Gogh’s paintings. Each row
represents one archetype. The leftmost column shows the texture representations, the following
columns the strongest contributions from individual images in order of descending contribution. Each
image is labelled with its contribution to the archetype. For layout considerations, only the center
crop of each image is shown. Best seen by zooming on a computer screen.

Similar to showing the decomposition of an archetype into its contributing images, we display in
Figure 4 examples of decompositions of image styles into their contributing archetypes. Typically,
only a few archetypes contribute strongly to the decomposition. Even though often interpretable, the
decomposition is sometimes trivial, whenever the image’s style is well described by a single archetype.
Some paintings’ styles also turn out to be hard to interpret, leading to non-sparse decompositions.
Examples of such trivial and “failure” cases are provided in the supplementary material.

4.2 Archetypal Style Manipulation

First, we study the influence of the parameters γ, δ and make a comparison with the baseline method
of [11]. Even though this is not the main contribution of our paper, this apparently minor modification
yields significant improvements in terms of preservation of content details in stylized images. Besides,
the heuristic γ = δ appears to be visually reasonable in most cases, reducing the number of effective
parameters to a single one that controls the amount of stylization. The comparison between our
update (3) and (4) from [11] is illustrated in Figure 5, where the goal is to transfer an archetypal
style to a Renaissance painting. More comparisons on other images and illustrations with pairs
of parameters γ 6= δ, as well as a comparison of the processing workflows, are provided in the
supplementary material, confirming our conclusions.
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Figure 3: t-SNE embeddings of 256 archetypes computed on the GanGogh collection. Each archetype
is represented by a synthesized texture. Best seen by zooming on a computer screen.

(a) Picasso’s “Pitcher and Fruit Bowl”. (b) “Portrait of Patience Escalier” by van Gogh.

Figure 4: Image decompositions from the GanGogh collection and van Gogh’s work. Each archetype
is represented as a stylized image (top), as a texture (side) and as a decomposition into paintings.

Then, we conduct style enhancement experiments. To obtain variations of an input image, the
decomposition α? of its style can serve as a starting point for stylization. Figure 6 shows the results
of enhancing archetypes an image already exhibits. Intuitively, this can be seen as taking one aspect
of the image, and making it stronger with respect to the other ones. In Figure 6, while increasing
the contributions of the individual archetypes, we also vary γ = δ, so that the middle image is very
close visually to the original image (γ = δ = 0.5), while the outer panels put a strong emphasis on
the modified styles. As can be seen especially in the panels surrounding the middle, modifying the
decomposition coefficients allows very gentle movements through the styles.

As can be seen in the leftmost and rightmost panels of Figure 6, enhancing the contribution of an
archetype can produce significant changes. As a matter of fact, it is also possible, and sometimes
desirable, depending on the user’s objective, to manually choose a set of archetypes that are originally
unrelated to the input image, and then interpolate with convex combinations of these archetypes.
The results are images akin to those found in classical artistic style transfer papers. In Figure 7, we
apply for instance combinations of freely chosen archetypes to “The Bitter Drunk”. Other examples
involving stylizing natural photographs are also provided in the supplementary material.

7



Figure 5: Top: stylization with our approach for γ = δ, varying the product γδ from 0 to 1 on an
equally-spaced grid. Bottom: results using [11], varying γ. At γ = δ = 1, the approaches are
equivalent, resulting in equal outputs. Otherwise however, especially for γ = δ = 0, [11] produces
strong artifacts. These are not artifacts of stylization, since in this case, no actual stylization occurs.
Rather, they are the effect of repeated, lossy encoding and decoding, since no decoder can recover
information lost in a previous one. Best seen on a computer screen.

(a) “Les Alpilles, Mountain Landscape near South-Reme” by van Gogh, from the van Gogh collection.

(b) Self-Portrait by van Gogh, from the van Gogh collection.

(c) “Schneeschmelze” by Max Pechstein, from the GanGogh collection.

(d) “Venice” by Maurice Prendergast, from the GanGogh collection.

Figure 6: We demonstrate the enhancement of the two most prominent archetypal styles for different
artworks. The middle panel shows a near-perfect reconstruction of the original content image in
every case and uses parameters γ, δ = 0.5. Then, we increase the relative weight of the strongest
component towards the left, and of the second component towards the right. Simultaneously, we
increase γ and δ from 0.5 in the middle panel to 0.95 on the outside.
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(a) Content image (b) Pairwise interpolations between four freely chosen archetypal styles.

Figure 7: Free archetypal style manipulation of “The Bitter Drunk” by Adriaen Brouwer.

5 Discussion

In this work, we introduced archetypal style analysis as a means to identify styles in a collection of
artworks without supervision, and to use them for the manipulation of artworks and photos. Whereas
other techniques may be used for that purpose, archetypal analysis admits a dual interpretation which
makes it particularly appropriate for the task: On the one hand, archetypes are represented as convex
combinations of input image styles and are thus directly interpretable; on the other hand, an image
style is approximated by a convex combination of archetypes allowing various kinds of visualizations.
Besides, archetypal coefficients may be used to perform style manipulations.

One of the major challenge we want to address in future work is the exploitation of metadata available
on the WikiArt repository (period, schools, art movement. . . ) to link the learned styles to the
descriptions employed outside the context of computer vision and graphics, which we believe will
make them more useful beyond style manipulation.
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