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Abstract

Backpropagation and the chain rule of derivatives have been prominent; however,
the total derivative rule has not enjoyed the same amount of attention. In this work
we show how the total derivative rule leads to an intuitive visual framework for
creating gradient estimators on graphical models. In particular, previous ”policy
gradient theorems” are easily derived. We derive new gradient estimators based
on density estimation, as well as a likelihood ratio gradient, which ”jumps” to an
intermediate node, not directly to the objective function. We evaluate our methods
on model-based policy gradient algorithms, achieve good performance, and present
evidence towards demystifying the success of the popular PILCO algorithm [5].

1 Introduction

A central problem in machine learning is estimating the gradient of the expectation of a random
variable with respect to the parameters of the distribution d

dζEx∼p(x;ζ) [φ(x)]. Some examples include:
the gradient of the expected classification error of a model over the data generating distribution,
the gradient of the expected evidence lower bound w.r.t. the variational parameters in variational
inference [9], or the gradient of the expected reward w.r.t. the policy parameters in reinforcement
learning [20]. Usually, such an estimator is needed not just through a single computation, but
through a computation graph; a good overview of related problems is given by [18]. Previously,
Schulman et al. provided a method to obtain gradient estimators on stochastic computation graphs by
differentiating a surrogate loss [18]. While the work provided an elegant method to obtain gradient
estimators using automatic differentiation, the resulting stochastic computation graph framework
has formal rules, which uniquely define one specific type of estimator, and it is not suitable for
describing general gradient estimation techniques. For example, determinstic policy gradients [19] or
total propagation [14] are not covered by the framework. In contrast, in probabilistic inference, the
successful probabilistic graphical model framework [15] only describes the structure of a model, while
there are many different choices of algorithms to perform inference. We aim for a similar framework
for gradient computation, which we call probabilistic computation graphs. Our framework uses the
total derivative rule df

da = ∂f
∂a + ∂f

∂b
db
da to decompose the gradient into a sum of partial derivatives along

different computational paths, while leaving open the choice of estimator for the partial derivatives.
We begin by introducing typical gradient estimators in the literature, then explain our new theorem,
novel estimators using a non-standard decomposition of the total derivative, and experimental results.

Nomenclature All variables will be considered as column vectors, and gradients are represented
as matrices where each row corresponds to one output variable, and each column corresponds
to one input variable—this allows applying the chain rule by simple matrix multiplication, i.e.
df(x)

dy = ∂f
∂x

∂x
∂y . Matrices are vectorised with the vec(∗) operator, i.e. dΣ

dx means dvec(Σ)
dx .
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2 Background: Gradients of expectations

2.1 Pathwise derivative estimators

This type of estimator relies on gradients of φ w.r.t. x, e.g. the Gaussian gradient identities:
d

dµEx∼N (µ,Σ) [φ(x)] = Ex∼N (µ,Σ)

[
dφ(x)

dx

]
and d

dΣEx∼N (µ,Σ) [φ(x)] = 1
2Ex∼N (µ,Σ)

[
d2φ(x)

dx2

]
,

cited in [17]. The most prominent type of pathwise derivative estimator are reparameterization
(RP) gradients. We focus our discussion on RP gradients, but we mentioned the Gaussian identities
to emphasize that RP gradients are not the only possible pathwise estimators, e.g. the derivative w.r.t.
Σ given above does not correspond to an RP gradient. See [17] for an overview of various options.

RP gradient for a univariate Gaussian To sample fromN (µ, σ2), sample from a standard normal
ε ∼ N (0, 1), then transform this: x = µ+ σε. The gradients are dx/dµ = 1 and dx/dσ = ε. The
gradient can then be estimated by sampling: d

dζE [φ(x)] = E
[

dφ(x)
dx

dx
dζ

]
. For multivariate Gaussians,

one can use the Cholesky factor L of Σ = LLT instead of σ. To differentiate the Cholesky
decomposition see [12]. See [17] for other distributions. For a general distribution p(x; ζ), the RP
gradient defines a sampling procedure ε ∼ p(ε) and a transformation x = f(ζ, ε), which allows
moving the derivative inside the expectation d

dζEx∼p(x;ζ) [φ(x)] = Eε∼p(ε)

[
dφ
df

df
dζ

]
. The RP gradient

allows backpropagating the gradient through sampling operations in a graph. It computes partial
derivatives through a specific operation.

2.2 Jump gradient estimators

We introduce the categorization of jump gradient estimators. Unlike pathwise derivatives, which
compute local partial derivatives and apply the chain rule through numerous computations, jump
gradient estimators can estimate the total derivative directly using only local computations—hence the
naming: the gradient estimator jumps over multiple nodes in a graph without having to differentiate
the nodes inbetween (this will become clearer in later sections in the paper).

Likelihood ratio estimators (LR) Any function f(x) can be stochastically integrated by sampling
from an arbitrary distribution q(x):

∫
f(x)dx =

∫
q(x) f(x)

q(x) dx = Ex∼q [f(x)/q(x)]. The gradient

of an expectation can be written as
∫
φ(x) dp(x;ζ)

dζ dx. By picking q(x) = p(x), and stochastically

integrating, one obtains the LR gradient estimator: E
[

dp(x;ζ)/dζ
p(x;ζ) φ(x)

]
. One must subtract a baseline

from the φ(x) values for this estimator to have acceptable variance: E
[

dp(x;ζ)/dζ
p(x;ζ) (φ(x)− b)

]
. In

practice using b = E [φ] is a reasonable choice. If b does not depend on the samples, then this leads
to an unbiased gradient estimator. Leave-one-out baseline estimates can be performed to achieve an
unbiased gradient estimator [11]. Other control variate techniques also exist, and this is an active
area of research [7].

In our recent work [14], we introduced the batch importance weighted LR estimator (BIW-LR)
and baselines: BIW-LR:

∑P
i=1

∑P
j=1

(
dp(xj ;ζi(θ))/dθ∑P

k=1 p(xj ;ζk)
(φ(xj)− bi)

)
/P , where we use a mixture

distribution q =
∑P
i p(x; ζi)/P , and each ζi depends on another set of parameters θ (in our case

the policy parameters), BIW-Baseline: bi =
(∑P

j 6=i cj,iφ(xj)
)
/
∑P
j 6=i cj,i, where the importance

weights are cj,i = p(xj ; ζi)/
∑P
k=1 p(xj ; ζk).

Value function based estimators Instead of using φ(x) directly, one can learn an approximator
φ̂(x). The approximator will often require less computational time to evaluate, and could be used for
estimating the derivatives. Both LR gradients and pathwise derivatives could be used with evaluations
from the approximator. Moreover, it is not necessary to evaluate just one x point of the estimator,
but one could either use a larger number of samples, or try to directly compute the expectation—this
leads to a Rao-Blackwellized estimator, which is known to have lower variance. Such estimators have
been considered for example in RL in expected sarsa [24, 20] as well as in the stochastic variational
inference literature [2, 23], and also in policy gradients [3, 1].
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3 Total stochastic gradient theorem

Sec. 2 explained how to obtain estimators of the expectation through a single computation, while
here we explain how to decompose the gradient of a complicated graph of computations into smaller
sections, which can be readily estimated using the methods in Sec. 2. In our framework, we work
with the gradient of the marginal distribution. This more general problem directly gives one the
gradient of the expectation as well, as the expectation is just a function of the marginal distribution.

3.1 Explanation of framework

We define probabilistic computation graphs (PCG). The definition is exactly equivalent to the
definition of a standard directed graphical model, but it highlights our methods better, and emphasizes
our interest in computing gradients, rather than performing inference. The main difference is the
explicit inclusion of the distribution parameters ζ, e.g. for a Gaussian, the mean µ and covariance Σ.

Definition 1 (Probabilistic computation graph (PCG)) An acyclic graph with nodes/vertices V
and edges E, which satisfy the following properties:

1. Each node i ∈ V corresponds to a collection of random variables with marginal joint
probability density p(xi; ζi), where ζi are the possibly infinite parameters of the distribution.
Note that the parameterization is not unique, and any parameterization is acceptable.

2. The probability density at each node is conditionally dependent on the parent nodes:
p(xi|Pai) where Pai are the random variables at the direct parents of node i.

3. The joint probability density satisfies: p(x1, ...,xn) =
∏n
i=1 p(xi|Pai)

4. Each ζi is a function of its parents: ζi = f(Pzi) where Pzi are the distribution parameters
at the parents of node i. In particular: p(xi; ζi) =

∫
p(xi|Pai)p(Pai;Pzi)dPai

We emphasize that there is nothing stochastic in our formulation. Each computation is determinstic,
although they may be analytically intractable. We also emphasize that this definition does not exclude
deterministic nodes, i.e. the distribution at a node may be a Dirac delta distribution (a point mass).
Later we will use this formulation to derive stochastic estimates of the gradients.

3.2 Derivation of theorem

We are interested in computing the total derivative of the distribution parameters at one node ζi w.r.t.
the parameters at another node dζi/dζj , e.g. nodes i and j could correspond to φ and x in Sec. 2
respectively. By the total derivative rule: dζi

dζj
=
∑
ζm∈Pzi

∂ζi
∂ζm

dζm
dζj

. Iterating this equation on the
dζm/dζj terms leads to a sum over paths from node j to node i:

dζi
dζj

=
∑

Paths(j→i)

∏
Edges(k,l)∈Path

∂ζl
∂ζk

(1)

This equation holds for any deterministic computation graph, and is also well known in e.g. the OJA
community [13]. This equation trivially leads to our total stochastic gradient theorem, which states
that the sum over paths from A to B can be written as a sum over paths from A to intermediate nodes
and from the intermediate nodes to B. Fig. 1 provides examples of the paths in Eq. 2 below.

Theorem 1 (Total stochastic gradient theorem) Let i and j be distinct nodes in a probabilistic
computation graph, and let IN be any set of intermediate nodes, which block the paths from j to i,
i.e. IN is such that there does not exist a path from j to i, which does not pass through a node in
IN . We denote {a→ b} is the set of paths from a to b, and {a→ b}/c is the set of paths from a to b,
where no node along the path except for b is allowed to be in set c. Then the total derivative dζi/dζj
can be written with the equation below:

dζi
dζj

=
∑
m∈IN

 ∑
s∈{m→i}

∏
(k,l)∈s

∂ζl
∂ζk

 ∑
r∈{j→m}/IN

∏
(p,t)∈r

∂ζt
∂ζp

 (2)
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(a) {j → m} paths may not pass through green nodes.
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m

i

(b) {m → i} paths may pass through green nodes.

Figure 1: Example paths in Equation 2. The green nodes correspond to the intermediate nodes IN .

Equations 1 and 2 can be combined to give:

dζi
dζj

=
∑
m∈IN

( dζi
dζm

) ∑
r∈{j→m}/IN

∏
(p,t)∈r

∂ζt
∂ζp

 (3)

Note that an analogous theorem could be derived by swapping r ∈ {j → m}/IN and s ∈ {m→ i}
with r ∈ {j → m} and s ∈ {m→ i}/IN respectively. This leads to the equation below:

dζi
dζj

=
∑
m∈IN

 ∑
r∈{m→i}/IN

∏
(p,t)∈r

∂ζt
∂ζp

(dζm
dζj

) (4)

We will refer to Equations 3 and 4 as the second and first half total gradient equations respectively.

3.3 Gradient estimation on a graph

Here we clarify one method how the partial derivatives through the nodes m ∈ IN in the previous
section can be estimated. We use the following properties of the estimators in Sec. 2:

• Pathwise derivative estimators compute partial derivatives through a single edge, e.g. ∂ζm∂ζj
• Jump gradient estimators sum the gradients across all computational paths between two

nodes and directly compute total derivatives, e.g. dζi
dζm

The task is to estimate the derivative of the expectation at a distal node i w.r.t. the parameters at an
earlier node j: d

dζj
Exi∼p(xi;ζi) [xi], through an intermediate nodem. Note that E [xi] can be picked as

one of the distribution parameters in ζi. The true ζ are intractable, so we perform an ancestral sampling
based estimate ζ̂ , i.e. we sample sequentially from each p(x∗|Pa∗) to get a sample through the whole
graph, then ζ̂∗ will simply be the parameters of p(x∗|Pa∗). We refer to one such sample as a particle.
We use a batch of P such particles ζ̂∗ = {ζ̂∗,c}Pc to obtain a mixture distribution as an approximation
to the true distribution. Such a sampling procedure has the properties p(x; ζ) =

∫
p(x; ζ̂)p(ζ̂)dζ̂

and Exi∼p(xi;ζi) [xi] = Eζ̂i∼p(ζ̂i;ζj)

[
Exi∼p(xi;ζ̂i)

[xi]
]
. For simplicity in the explanation, we further

assume that the sampling is reparameterizable, i.e. p(ζ̂m; ζj) =
∫
f(ζ̂m; ζj , εm)p(εm)dεm. We can

write d
dζj

Eζ̂i∼p(ζ̂i;ζj)

[
Exi∼p(xi;ζ̂i)

[xi]
]

= Eεm∼p(εm)

[
∂ζ̂m
∂ζj

d
dζ̂m

Exi∼p(xi;ζ̂i)
[xi]
]
. The term ∂ζ̂m

∂ζj

will be estimated with a pathwise derivative estimator. The remaining term d
dζ̂m

Exi∼p(xi;ζ̂i)
[xi] will

be estimated with any other estimator, e.g. a jump estimator could be used.

We summarize the procedure for creating gradient estimators from j to i on the whole graph:

1. Choose a set of intermediate nodes IN , which block the paths from j to i.
2. Construct pathwise derivative estimators from j to the intermediate nodes IN .
3. Construct total derivative estimators from IN to i, and apply Eq. 3 to combine the gradients.
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(a) Classical model-free policy gradient

x0 x1

u0 u1

x2

u2

x3

c1 c2 c3

G

θ

(b) Model-based state-space LR gradient

Figure 2: Probabilistic computation graphs for model-based and model-free LR gradient estimation.

4 Relationship to policy gradient theorems

In typical model-free RL problems [20] an agent performs actions u ∼ π(ut|xt; θ) according to a
stochastic policy π, transitions through states xt, and obtains costs ct (or conversely rewards). The
agent’s goal is to find the policy parameters θ, which optimize the expected return G =

∑H
t=0 ct for

each episode. The corresponding probabilistic computation graph is provided in Fig. 2a.

In the literature, two ”gradient theorems” are widely applied: the policy gradient theorem [21], and
the deterministic policy gradient theorem [19]. These two are equivalent in the limit of no noise [19].

Policy gradient theorem

d
dθ

E [G] = E

[
H−1∑
t=0

d log π(ut|xt; θ)
dθ

Q̂t(ut,xt)

]
(5)

Deterministic policy gradient theorem

d
dθ

E [G] = E

[
H−1∑
t=0

dut
dθ

dQ̂t(ut,xt)
dut

]
(6)

Q̂t corresponds to an estimator of the remaining return
∑H−1
h=t ch+1 from a particular state x when

choosing action u. For Eq. 5 any estimator is acceptable, even a sample based estimate could
be used. For Eq. 6, Q̂ is usually a differentiable surrogate model. Fig. 2a shows how these two
theorems correspond to the same probabilistic computation graph. The intermediate nodes are the
actions selected at each time step. The difference lies in the choice of jump estimator to estimate the
total derivative following the intermediate nodes—the policy gradient theorem uses an LR gradient,
whereas the deterministic policy gradient theorem uses a pathwise derivative to a surrogate model. We
believe that the derivation based on a PCG is more intuitive than previous algebraic proofs [21, 19].

5 Novel algorithms

In Sec. 3.3 we explained how a particle-based mixture distribution is used for creating gradient
estimators. In the following sections, we instead take advantage of these particles to estimate a
different parameterization Γ, directly for the marginal distribution. Although the algorithms have
general applicability, to make a concrete example, we explain them in reference to model-based
policy gradients using a differentiable model considered in our previous work [14], for which the
PCG is given in Fig. 2b. Stochastic value gradients [8], for example, share the same PCG.

5.1 Density estimation LR (DEL)

Following the explanation in Sec. 5, one could attempt to estimate the distribution parameters Γ from
a set of sampled particles, then apply the LR gradient using the estimated distribution q(x; Γ). In
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particular, we will approximate the density as a Gaussian by estimating the mean µ̂ =
∑P
i xi/P

and variance Σ̂ =
∑P
i (xi − µ̂)2/(P − 1). Then, using the standard LR trick, one can estimate the

gradient
∑P
i

d log q(xi)
dθ (Gi − b), where q(x) = N (µ̂, Σ̂). To use this method, one must compute

derivatives of µ̂ and Σ̂ w.r.t. the particles xi, then carry the gradient to the policy parameters using
the chain rule while differentiating through the model, which is straight-forward. We refer to our new
method as the DEL estimator. Importantly, note that while q(x) is used for estimating the gradient, it
is not in any way used for modifying the trajectory sampling.
Advantages of DEL: One can use LR gradients even if no noise is injected into the computations.
Disadvantages of DEL: The estimator is biased, and density estimation can be difficult.

5.2 Gaussian shaping gradient (GS)

x0 xk

u0 u1

x2

u2

xm

u3

x4

c1 c2 cm c4

G

θ

Figure 3: Computational paths in Gaus-
sian shaping gradient

Until now, all RL methods have used the second half total
gradient equation (Eq. 3). Might one create estimators that
use the first half equation (Eq. 4)? Fig.3 gives an exam-
ple of how this might be done. We propose to estimate
the density at xm by fitting a Gaussian on the particles.
Then dE [cm] /dΓm (the pink edges) will be estimated by
sampling from this distribution (or by any other method of
integration). This leaves the question of how to estimate
dΓm/dθ (all paths from θ to xm). Using the RP method is
straight-forward. To use the LR method, we first apply the
second half total gradient equation on dΓm/dθ to obtain
terms

∑
r∈{θ→xk}/IN

∏
(p,t)∈r

∂ζt
∂ζp

(blue edges) and dΓm

dζxk

(red edges). In the scenarios we consider, the first of these
terms is a single path, and will be estimated using RP. The
second term is more interesting, and we will estimate this
using an LR method.

As we are using a Gaussian approximation, the distribution parameters Γm are the mean and vari-
ance of xm, which can be estimated as µm = E [xm] and Σm = E

[
xmxTm

]
− µmµTm. We can

obtain LR gradient estimates of these terms d
dζxk

E [xm] = Exk∼p(xk;ζxk
)

[
d log p(xk;ζxk

)

dζxk
(xm − bµ)

]
,

d
dζxk

E
[
xmxTm

]
= Exk∼p(xk;ζxk

)

[
d log p(xk;ζxk

)

dζxk
(xmxTm − bΣ)

]
and d

dζxk
(µµT ) = 2µ d

dζxk
E
[
xTm
]
.

In practice, we perform a sampling based estimate ζ̂xk
, and one might be concerned that the

estimators are conditional on the sample ζ̂xk
, but we are interested in unconditional estimates.

We will explain that the conditional estimate is equivalent. For the variance, note that µm is
an estimate of the unconditional mean, so the whole estimate directly corresponds to an es-
timate of the unconditional variance. For the mean, apply the rule of iterated expectations:
Exk∼p(xk;ζxk

) [xm] = Eζ̂xk
∼p(ζ̂xk

)

[
Exk∼p(xk;ζ̂xk

) [xm]
]

from which it is clear that the conditional
gradient estimate is an unbiased estimator for the gradient of the unconditional mean.

Efficient algorithm for accumulating gradients In Fig. 3, for each xk node, we want to perform
an LR jump to every xm node after k and compute a gradient with the Gaussian approximation
of the distribution at node m. We will accumulate across all nodes during a backwards pass in
a backpropagation like manner. Note that for each k and each m, we can write the gradient as
dE[cm]

dΓm

dΓm

dζxk
(

dζxk

duk−1

duk−1

dθ ). The term dE[cm]
dΓm

dΓm

dζxk
is estimated as dE[cm]

dΓm
zm

d log p(xk;ζxk
)

dζxk
, where zm

corresponds to a vector summarizing the xm − bµ, etc. terms above. Note that dE[cm]
dΓm

zm is just a
scalar quantity gm. We thus use an algorithm which accumulates a sum of all g during a backwards
pass, and sums over all m nodes at each k node. See Alg. 1 for a detailed explanation of how
it fits together with total propagation [14]. The final algorithm essentially just replaces the usual
cost/reward with a modified value, and such an approach would also be applicable in model-free
policy gradient algorithms using a stochastic policy and LR gradients.

Two interpretations of GS 1. We are making a Gaussian approximation of the marginal distri-
bution at a node. 2. We are performing a type of reward shaping based on the distribution of the
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Algorithm 1 Gaussian shaping gradient with total propagation

Gaussian shaping gradient for model-based policy search while combining both LR and RP variants
using total propagation—an algorithm introduced in our previous work [14].
Forward pass: Sample a set of particle trajectories.
Backward pass:

Initialise: dGT+1

dζT+1
= 0, dJ

dθ = 0, GT+1 = 0 . ζ are the distribution parameters, e.g. all of the µ
and σ for each particle
for t = T to 1 do

µt = E [xt]; Σt = E
[
xtx

T
t

]
− µtµTt . Estimate the marginal distribution as a Gaussian

Compute: dE[ct]
dµt

and dE[ct]
dΣt

, e.g. by sampling from this Gaussian, and using the RP gradient
for each particle i do

mi,t = xi,t − µt; vi,t = vec
(
xi,tx

T
i,t − E

[
xtx

T
t

])
; wi,t = vec

(
mi,tµ

T
t

)
. vec(∗) is a

vectorization operator which stacks the elements in a matrix/tensor into a column vector
gi,t = dE[ct]

dµt
mi,t + dE[ct]

dΣt
(vi,t − 2wi,t) . g is a scalar replacing the usual cost/reward

Gi,t = Gi,t+1 + gi,t . G is the return (the cost of the remaining trajectory)
dE[ct]
dxi,t

= dE[ct]
dµt

dµt

dxi,t
+ dE[ct]

dΣt

dΣt

dxi,t
. Direct derivative of expected cost for the RP gradient

dζi,t+1

dxi,t
=

∂ζi,t+1

∂xi,t
+

dζi,t+1

dui,t

dui,t

dxi,t

dGRP
i,t

dζi,t
= (

dGi,t+1

dζi,t+1

dζi,t+1

dxi,t
+ dE[ct]

dxi,t
)

dxi,t

dζi,t
dGLR

i,t

dζi,t
= Gi,t

d log p(xi,t)
dζi,t

. In principle, one could further subtract a baseline from G

dGRP
i,t

dθ =
dGRP

i,t

dζi,t
dζi,t

dui,t−1

dui,t−1

dθ
dGLR

i,t

dθ =
dGLR

i,t

dζi,t
dζi,t

dui,t−1

dui,t−1

dθ
end for
σ2
RP = trace(V

[
dGRP

i,t

dθ

]
); σ2

LR = trace(V
[

dGLR
i,t

dθ

]
) . The sample variance of the particles

kLR = 1/
(

1 +
σ2
LR

σ2
RP

)
. Weight to combine LR and RP estimators

dJ
dθ = dJ

dθ + kLR
1
P

∑P
i

dGLR
i,t

dθ + (1− kLR) 1
P

∑P
i

dGRP
i,t

dθ . Combine LR and RP in θ space
for each particle i do

dGi,t

dζi,t
= kLR

dGLR
i,t

dζi,t
+ (1− kLR)

dGRP
i,t

dζi,t
. Combine LR and RP in state space

end for
end for

particles. In particular we are essentially promoting the trajectory distributions to stay unimodal,
such that all of the particles concentrate at one ”island” of reward rather than splitting the distribution
between multiple regions of reward—this may simplify optimization.

6 Experiments

We performed model-based RL simulation experiments from the PILCO papers [5, 4]. We tested the
cart-pole swing-up and balancing problems to test our GS approach, as well as combinations with total
propagation [14]. We also tested the DEL approach on the simpler cart-pole balancing-only-problem
to show the feasibility of the idea. We compared particle-based gradients with our new estimators to
PILCO. In our previous work [14], we had to change the cost function to obtain reliable results using
particles—one of the primary motivations of the current experiments was to match PILCO’s results
using the same cost as the original PILCO had used (this is explained in greater detail in Section 6.4).

6.1 Model-based policy search background

We consider a model-based analogue to the model-free policy search methods introduced in Section 4.
The corresponding probabilistic computation graph is given in Fig. 2b. Our notation follows our

7



previous work [14]. After each episode all of the data is used to learn separate Gaussian process
models [16] of each dimension of the dynamics, s.t. p(∆xat+1) = GP(x̃t), where x̃ = [xTt ,u

T
t ]T

and x ∈ RD, u ∈ RF . This model is then used to perform ”mental simulations” between the
episodes to optimise the policy by gradient descent. We used a squared exponential covariance
function ka(x̃, x̃′) = s2

a exp(−(x̃− x̃′)TΛ−1
a (x̃− x̃′)). We use a Gaussian likelihood function, with

noise hyperparameter σ2
n,a. The hyperparameters, {s,Λ, σn} are trained by maximizing the marginal

likelihood. The predictions have the form p(xat+1) = N (µ(x̃t), σ
2
f (x̃t) + σ2

n), where σ2
f (x̃t) is an

uncertainty about the model, and depends on the availability of data in a region of the state-space.

6.2 Setup

The cart-pole consists of a cart that can be pushed back and forth, and an attached pole. The state
space is [s, β, ṡ, β̇], where s is the cart position and β the angle. The control is a force on the cart.
The dynamics were the same as in a PILCO paper [4]. The setup follows our prior work [14].

Common properties in tasks The experiments consisted of 1 random episode followed by 15
episodes with a learned policy, where the policy is optimized between episodes. Each episode
length was 3s, with a 10Hz control frequency. Each task was evaluated separately 100 times with
different random number seeds to test repeatability. The random number seeds were shared across
different algorithms. Each episode was evaluated 30 times, and the cost was averaged, but note
that this was done only for evaluation purposes—the algorithms only had access to 1 episode. The
policy was optimized using an RMSprop-like learning rule [22] from our previous work [14], which
normalizes the gradients using the sample variance of the gradients from different particles. In the
model-based policy optimization, we performed 600 gradient steps using 300 particles for each
policy gradient evaluation. The learning rate and momentum parameters were α = 5 × 10−4,
γ = 0.9 respectively—the same as in our previous work. The output from the policy was saturated by
sat(u) = 9 sin(u)/8 + sin(3u)/8, where u = π̃(x). The policy π̃ was a radial basis function network
(a sum of Gaussians) with 50 basis functions and a total of 254 parameters. The cost functions were
of the type 1 − exp(−(x − t)TQ(x − t)), where t is the target. We considered two types of cost
functions: 1) Angle Cost, a cost where Q = diag([1, 1, 0, 0]) is a diagonal matrix, 2) Tip Cost, a cost
from the original PILCO papers, which depends on the distance of the tip of the pendulum to the
position of the tip when it is balanced. These cost functions are conceptually different—with the Tip
Cost the pendulum could be swung up from either direction, with the Angle Cost there is only one
correct direction. The base observation noise levels were σs = 0.01 m, σβ = 1 deg, σṡ = 0.1 m/s,
σβ̇ = 10 deg/s, and these were modified with a multiplier k ∈ {10−2, 1}, such that σ2 = kσ2

base.

Cart-pole swing-up and balancing In this task the pendulum starts hanging downwards, and
must be swung up and balanced. We took some results from our previous work [14]: PILCO;
reparameterization gradients (RP); Gaussian resampling (GR); batch importance weighted LR, with a
batch importance weighted baseline (LR); total propagation combining BIW-LR and RP (TP). We
compared to the new methods: Gaussian shaping gradients using the BIW-LR component (GLR),
Gaussian shaping gradients combining BIW-LR and RP variants using total propagation (GTP).
Moreover, we tested GTP when the model noise variance was multiplied by 25 (GTP+σn).

Cart-pole balancing with DEL estimator This task is much simpler—the pole starts upright and
must be balanced. The experiment was devised to show that DEL is feasible and may be useful if
further developed. The Angle Cost and the base noise level were used.

6.3 Results

The results are presented in Table 1 and in Fig. 4. Similarly to our previous work [14], with low noise,
methods which include LR components do not work well. However, the GTP+σn experiments show
that injecting more noise into the model predictions can solve the problem. The main important result
is that GTP matches PILCO in the Tip Cost scenarios. In our previous work [14], one of the concerns
was that TP had not matched PILCO in this scenario. Looking only at the costs in Fig. 4b and 4c does
not adequately display the difference. In contrast, the success rates show that TP did not perform as
well. The success rates were measured both by a threshold which was calibrated in previous work
(final loss below 15) as well as by visually classifying all experimental runs. Both methods agreed.
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Table 1: Success rate of learning cart-pole swing-up

Cost func. σ2
o multiplier PILCO RP GR LR TP GTP GLR GTP+σn

Angle Cost k = 10−2 0.88 0.69 0.63 0.57 0.82 0.65 0.42 0.88
Angle Cost k = 1 0.79 0.74 0.89 0.96 0.99 0.9 0.93
Tip Cost k = 10−2 0.92 0.44 0.47 0.36 0.54 0.6 0.45 0.8
Tip Cost k = 1 0.73 0.15 0.68 0.28 0.48 0.69 0.35
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Figure 4: Data-efficiency and performance of learning algorithms on cart-pole tasks. Figures 4b and
4c correspond to the k = 1, Tip Cost case.

The losses of the peak performers at the final episode were TP: 11.14± 1.73, GTP: 9.78± 0.40,
PILCO: 9.10± 0.22, which also show that TP was significantly worse. While the peak performers
were still improving, the remaining experiments had converged. PILCO still appears slightly more
data-efficient; however, the difference has little practical significance as the required amount of data
is low. Also note that in Fig. 4b TP has smaller variance. The larger variance of GTP and PILCO
is caused by outliers with a large loss. These outliers converged to a local minimum, which takes
advantage of the tail of the Gaussian approximation of the state distribution—this contrasts with prior
suggestions that PILCO performs exploration using the tail of the Gaussian [5].

6.4 Discussion

Our work demystifies the factors which contributed to the success of PILCO. It was previously
suggested that the Gaussian approximations in PILCO smooth the reward, and cause unimodal
trajectory distributions, simplifying the optimization problem [10, 6]. In our previous work [14], we
showed that the main advantage was actually that it prevents the curse of chaos/exploding gradients.
In the current work we decoupled the gradient and reward effects, and provided evidence that both
factors contributed to the success of Gaussian distributions. While GR often has similar performance
to GTP, there is an important conceptual difference: GR performs resampling, hence the trajectory
distribution is not an estimate of the true trajectory distribution. Moreover, unlike resampling, GTP
does not remove the temporal dependence in particles, which may be important in some applications.

7 Conclusions & future work

We have created an intuitive graphical framework for visualizing and deriving gradient estimators in
a graph of probabilistic computations. Our method provides new insights towards previous policy
gradient theorems in the literature. We derived new gradient estimators based on density estimation
(DEL), as well as based on the idea to perform a jump estimation to an intermediate node, not
directly to the expected cost (GS). The DEL estimator needs to be further developed, but it has good
conceptual properties as it should not suffer from the curse of chaos nor does it require injecting noise
into computations. The GS estimator allows differentiating through discrete computations in a manner
that will still allow backpropagating pathwise derivatives. Finally, we provided additional evidence
towards demystifying the success of the popular PILCO algorithm. We hope that our work could lead
towards new automatic gradient estimation software frameworks which are not only concerned with
computational speed, but also the accuracy of the estimated gradients.
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