Distributed £-Clustering for Data with Heavy Noise

Xiangyu Guo Shi Li
University at Buffalo University at Buffalo
Buffalo, NY 14260 Buffalo, NY 14260
xiangyug@buffalo.edu shil@buffalo.edu
Abstract

In this paper, we consider the k-center/median/means clustering with outliers
problems (or the (k, z)-center/median/means problems) in the distributed setting.
Most previous distributed algorithms have their communication costs linearly
depending on z, the number of outliers. Recently Guha et al. [10] overcame this
dependence issue by considering bi-criteria approximation algorithms that output
solutions with 2z outliers. For the case where z is large, the extra z outliers
discarded by the algorithms might be too large, considering that the data gathering
process might be costly. In this paper, we improve the number of outliers to
the best possible (1 + €)z, while maintaining the O(1)-approximation ratio and
independence of communication cost on z. The problems we consider include the
(k, z)-center problem, and (k, z)-median/means problems in Euclidean metrics.
Implementation of the our algorithm for (k, z)-center shows that it outperforms
many previous algorithms, both in terms of the communication cost and quality of
the output solution.

1 Introduction

Clustering is a fundamental problem in unsupervised learning and data analytics. In many real-life
datasets, noises and errors unavoidably exist. It is known that even a few noisy data points can
significantly influence the quality of the clustering results. To address this issue, previous work has
considered the clustering with outliers problem, where we are given a number z on the number of
outliers, and need to find the optimum clustering where we are allowed to discard z points, under
some popular clustering objective such as k-center, k-median and k-means.

Due to the increase in volumes of real-life datasets, and the emergence of modern parallel computation
frameworks such as MapReduce and Hadoop, computing a clustering (with or without outliers) in the
distributed setting has attracted a lot of attention in recent years. The set of points are partitioned into
m parts that are stored on m different machines, who collectively need to compute a good clustering
by sending messages to each other. Often, the time to compute a good solution is dominated by the
communications among machines. Many recent papers on distributed clustering have focused on
designing O(1)-approximation algorithms with small communication cost [2} [13} [10].

Most previous algorithms for clustering with outliers have the communication costs linearly depending
on z, the number of outliers. Such an algorithm performs poorly when data is very noisy. Consider
the scenario where distributed sensory data are collected by a crowd of people equipped with portable
sensory devices. Due to different skill levels of individuals and the quality of devices, it is reasonable
to assume that a small constant fraction of the data points are unreliable.

Recently, Guha et al. [10] overcame the linear dependence issue, by giving distributed O(1)-
approximation algorithms for k-center/median/means with outliers problems with communication
cost independent of z. However, the solutions produced by their algorithms have 2z outliers. Such
a solution discards z more points compared to the (unknown) optimum one, which may greatly

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

decrease the efficiency of data usage. Consider an example where a research needs to be conducted
using the inliers of a dataset containing 10% noisy points; a filtering process is needed to remove
the outliers. A solution with 2z outliers will only preserve 80% of data points, as opposed to the
promised 90%. As a result, the quality of the research result may be reduced.

Unfortunately, a simple example (described in the supplementary material) shows that if we need to
produce any multiplicatively approximate solution with only z outliers, then the linear dependence
on z can not be avoided. We show that, even deciding whether the optimum clustering with z outliers
has cost 0 or not, for a dataset distributed on 2 machines, requires a communication cost of £2(2) bits.
Given such a negative result and the positive results of Guha et al. [[10], the following question is
interesting from both the practical and theoretical points of view:

Can we obtain distributed O(1)-approximation algorithms for k-center/median/means with outliers
that have communication cost independent of z and output solutions with (1 + €)z outliers, for any
e>0?

On the practical side, an algorithm discarding ez additional outliers is acceptable, as the number
can be made arbitrarily small, compared to both the promised number z of outliers and the number
n — z of inliers. On the theoretical side, the (1 + €)-factor for the number of outliers is the best we
can hope for if we are aiming at an O(1)-approximation algorithm with communication complexity
independent of z; thus answering the question in the affirmative can give the tight tradeoff between
the number of outliers and the communication cost in terms of z.

In this paper, we make progress in answering the above question for many cases. For the k-center
objective, we solve the problem completely by giving a (24(1 + €), 1 + €)-bicriteria approximation

log A
€

algorithm with communication cost O (’%" .), where A is the aspect ratio of the metric.

(24(1 + ¢) is the approximation ratio, 1 + € is the multiplicative factor for the number of outliers our
algorithm produces; the formal definition appears later.) For k-median/means objective, we give a
distributed (1 + €, 1 4 €)-bicrteria approximation algorithm for the case of Euclidean metrics. The
communication complexity of the algorithm is poly (1, k, D, m,log A), where D is the dimension

€
of the underlying Euclidean metric. (The exact communication complexity is given in Theorem [I.2])

Using dimension reduction techniques, we can assume D = 0(10;#), by incurring a (1+¢)-distortion
in pairwise distances. So, the setting indeed covers a broad range of applications, given that the term
“k-means clustering” is defined and studied exclusively in the context of Euclidean metrics. The
(1 + €,1 + ¢)-bicriteria approximation ratio comes with a caveat: our algorithm has running time
exponential in many parameters such as %, k, D and m (though it has no exponential dependence on
n or z).

1.1 Formulation of Problems

We call the k-center (resp. k-median and k-means) problem with z outliers as the (k, z)-center (resp.
(k, z)-median and (k, z)-means) problem. Formally, we are given a set P of n points that reside in a
metric space d, two integers k > 1 and z € [0, n|. The goal of the problem is to find a set C of k
centers and a set P’ C P of n — 2 points so as to minimize maxye pr d(p, C) (resp. > p, d(p, C)
and Zpep, d*(p, C)), where d(p, C') = min.cc d(p, ¢) is the minimum distance from p to a center
in C.. For all the 3 objectives, given a set C C P of k centers, the best set P’ can be derived from P
by removing the z points p € P with the largest d(p, C'). Thus, we shall only use a set C' of k centers
to denote a solution to a (k, z)-center/median/means instance. The cost of a solution C' is defined as
maxpep d(p, C), > cprd(p,C) and 3 p d?(p, C) respectively for a (k, z)-center, median and
means instance, where P’ is obtained by applying the optimum strategy. The n — 2 points in P’ and
the z points in P \ P’ are called inliers and outliers respectively in the solution.

As is typical in the machine learning literature, we consider general metrics for (k, z)-center, and
Euclidean metrics for (k, z)-median/means. In the (k, z)-center problem, we assume that each point
p in the metric space d can be described using O(1) words, and given the descriptions of two points p
and ¢, one can compute d(p, ¢) in O(1) time. In this case, the set C' of centers must be from P since
these are all the points we have. For (k, z)-median/means problem, points in P and centers C' are
from Euclidean space RP, and it is not required that C' C P. One should treat D as a small number,
since dimension reduction techniques can be applied to project points to a lower-dimension space.

Bi-Criteria Approximation We say an algorithm for the (k, z)-center/median/means problem
achieves a bi-criteria approximation ratio (or simply approximation ratio) of («, 3), for some «, 8 > 1,
if it outputs a solution with at most 3z outliers, whose cost is at most « times the cost of the optimum
solution with z outliers.

Distributed Clustering In the distributed setting, the dataset P is split among 7 machines, where
P; is the set of data points stored on machine i. We use n; to denote | P;|. Following the communica-
tion model of [8]] and [10], we assume there is a central coordinator, and communications can only
happen between the coordinator and the m machines. The communication cost is measured in the
total number of words sent. Communications happen in rounds, where in each round, messages are
sent between the coordinator and the m machines. A message sent by a party (either the coordinator
or some machine) in a round can only depends on the input data given to the party, and the messages
received by the party in previous rounds. As is common in most of the previous results, we require
the number of rounds used to be small, preferably a small constant.

Our distributed algorithm needs to output a set C' of k centers, as well as an upper bound L on the
maximum radius of the generated clusters. For simplicity, only the coordinator needs to know C' and
L. We do not require the coordinator to output the set of outliers since otherwise the communication
cost is forced to be at least z. In a typical clustering task, each machine ¢ can figure out the set of
outliers in its own dataset P; based on C' and L (1 extra round may be needed for the coordinator to
send C' and L to all machines).

1.2 Prior Work

In the centralized setting, we know the best possible approximation ratios of 2 and 3 [4]] for the k-
center and (k, z)-center problems respectively, and thus our understanding in this setting is complete.
There has been a long stream of research on approximation algorithms k-median and k-means,
leading to the current best approximation ratio of 2.675 [3] for k-median, 9 [1] for k-means, and
6.357 for Euclidean k-means [1]. The first O(1)-approximation algorithm for (k, z)-median is
given by Chen, [[7]. Recently, Krishnaswamy et al. [12]] developed a general framework that gives
O(1)-approximations for both (k, z)-median and (k, z)-means.

Much of the recent work has focused on solving k-center/median/means and (k,z)-
center/median/means problems in the distributed setting [9, 2, [L1} [13} [11} [13} I8} 16} 10, S]. Many
distributed O(1) approximation algorithms with small communication complexity are known for
these problems. However, for (k, z)-center/median/means problems, most known algorithms have
communication complexity linearly depending on z, the number of outliers. Guha et al. [10]] over-
came the dependence issue, by giving (O(1), 2 + €)-bicriteria approximation algorithms for all the
three objectives. The communication costs of their algorithms are O(m /e + mk), where O hides a
logarithmic factor.

1.3 Our Contributions
Our main contributions are in designing (O(1), 1 + ¢)-bicriteria approximation algorithms for the
(k, z)-center/median/means problems. The algorithm for (k, z)-center works for general metrics:

Theorem 1.1. There is a 4-round, distributed algorithm for the (k, z)-center problem, that achieves
a (24(1 + €), 1 + €)-bicriteria approximation and O (kTm .

the aspect ratio of the metric.

log A . .
% communication cost, where A is

We give a high-level picture of the algorithm. By guessing, we assume that we know the optimum
cost L* (since we do not know, we need to lose the %-faetor in the communication complexity).
In the first round of the algorithm, each machine 7 will call a procedure called aggregating, on its
set P;. This procedure performs two operations. First, it discards some points from F;; second, it
moves each of the survived points by a distance of at most O(1)L*. After the two operations, the
points will be aggregated at a few locations. Thus, machine i can send a compact representation of
these points to the coordinator: a list of (p, wy,) pairs, where p is a location and wy, is the number of
points aggregated at p. The coordinator will collect all the data points from all the machines, and run
the algorithm of [4] for (k, z’)-center instance on the collected points, for some suitable 2z’

To analyze the algorithm, we show that the set P’ of points collected by the coordinator well-
approximates the original set P. The main lemma is that the total number of non-outliers removed
by the aggregation procedure on all machines is at most ez. This incurs the additive factor of ez in
the number of outliers. We prove this by showing that inside any ball of radius L*, and for every
machine ¢ € [m], we removed at most = points in P;. Since the non-outliers are contained in the
union of k balls of radius L*, and there are m machines, the total number of removed non-outliers is
at most ez. For each remaining point, we shift it by a distance of O(1)L*, leading to an O(1)-loss in

the approximation ratio of our algorithm.

We perform experiments comparing our main algorithm stated in Theorem [I.1] with many previous
ones on real-world datasets. The results show that it matches the state-of-art method in both solution
quality (objective value) and communication cost. We remark that the qualities of solutions are
measured w.r.t removing only z outliers. Theoretically, we need (1 4 €)z outliers in order to achieve
an O(1)-approximation ratio and our constant 24 is big. In spite of this, empirical evaluations suggest
that the algorithm on real-word datasets performs much better than what can be proved theoretically
in the worst case.

For (k, z)-median/means problems, our algorithm works for the Euclidean metric case and has
communication cost depending on the dimension D of the Euclidean space. One can w.l.o.g. assume
D = O(logn/€?) by using the dimension reduction technique. Our algorithm is given in the
following theorem:

Theorem 1.2. There is a 2-round, distributed algorithm for the (k,z)-median/means problems
in D-dimensional Euclidean space, that achieves a (1 + €,1 + €)-bicriteria approximation ratio

with probability 1 — 8. The algorithm has communication cost O (@D - W), where A

is the aspect ratio of the input points, ® = O (e%(kD +log §) + mk) for (k,z)-median, and
® =0 (% (kD +log 5) + mklog mTk) for (k, z)-means.

We now give an overview of our algorithm for (&, z)-median/means. First, it is not hard to reformulate
the objective of the (k, z)-median problem as minimizing sup;> (ZPGP dr(p,C) — zL), where
dy, is obtained from d by truncating all distances at L. By discretization, we can construct a set
L of O (M) interesting values that the L under the superior operator can take. Thus, our

goal becomes to find a set C, that is simultaneously good for every k-median instance defined
by dr, L € L. Since now we are handling k-median instances (without outliers), we can use the
communication-efficient algorithm of [2] to construct an e-coreset (), with weights wy, for every
L € L. Roughly speaking, the coreset (7, is similar to the set P for the task of solving the k-median
problem under metric dy,. The size of each e-coreset @), is at most ®, implying the communication
cost stated in the theorem. After collecting all the coresets, the coordinator can approximately solve
the optimization problem on them. This will lead to an (1 4+ O(e), 1 + O(¢))-bicriteria approximate
solution. The running time of the algorithm, however, is exponential in the total size of the coresets.
The argument can be easily adapted to the (k, z)-means setting.

Organization In Section 2} we prove Theorem[L.1] by giving the (24(1 + €), 1 + €)-approximation
algorithm. The empirical evaluations of our algorithm for (k, z)-center and the proof of Theorem
are provided in the supplementary material.

Notations Throughout the paper, point sets are multi-sets, where each element has its own identity.
By a copy of some point p, we mean a point with the same description as p but a different identity.
For a set () of points, a point p, and a radius > 0, we define ballg(p,r) = {g € Q : d(p,q) < r}
to be the set of points in () that have distances at most 7 to p. For a weight vector w € Zgo on some
set @ of points, and a set S C @, we use w(S) = Zpe 5 Wy to denote the total weight of points in S.

Throughout the paper, P is always the set of input points. @~ We shall use dyi, =

ming, ;e pud(p,q)>0 (P, q) and dmax = max, 4ep d(p,q) to denote the minimum and maximum

non-zero pairwise distance between points in P. Let A = Cf;"# denote the aspect ratio of the metric.

gt

2 Distributed (%, z)-Center Algorithm with (1 + ¢)z Outliers

In this section, we prove Theorem [1.1] by giving the (24(1 + €), 1 + €)-approximation algorithm for
%). Let L* be the cost of the optimum (k, z)-

center solution (which is not given to us). We assume we are given a parameter L > 0 and our goal is
to design a main algorithm with communication cost O (%), that either returns a (k, (1+€) z)-center
solution of cost at most 24 L, or certifies that L* > L. Not1ce that L* € {0} U[dmin/2, dmax]- We can

obtain our (24(1 + €), 1 + €)-approximation by running the main algorithm for O (%) different

(k, z)-center, with communication cost O (kTm .

values of L in parallel, and among all generated solutions, returning the one correspondent to the
smallest L. A naive implementation requires all the parties to know dp,in and dp,ax in advance; we
show in the supplementary material that the requirement can be removed.

In intermediate steps, we may deal with (k, z)-center instances where points have integer weights. In
this case, the instance is defined as (Q, w), where @ is a set of points, w € Z>O, and z is an integer
between 0 and w(Q) = > 4eqQ Wq- The instance is equivalent to the instance @, the multi-set where
we have w, copies of each ¢ € Q.

[4] gave a 3-approximation algorithm for the (k, z)-center problem. However, our setting is slightly
more general so we can not apply the result directly. We are given a weighted set) of points that
defines the (k, z)-center instance. The optimum set C* of centers, however, can be from the superset
P O @ which is hidden to us. Thus, our algorithm needs output a set C' of &k centers from @) and
compare it against the optimum set C* of centers from P. Notice that by losing a factor of 2, we can
assume centers are in @); this will lead to a 6-approximation. Indeed, by applying the framework of
[4]] more carefully, we can obtain a 4-approximation for this general setting. We state the result in the
following theorem:

Theorem 2.1 ([4]]). Let d be a metric over the set P ofpomts QCP and w E Z . There is an
algorithm kzc (Algorzthm-) 1) that takes mputs k,z' > 1, (Q,w") with |Q| = 7/, the metrzc d restricted
to Q, and a real number L > 0. In time O(n) the algorithm either outputs a (k, z')-center solution
C’ C Q to the instance (Q,w') of cost at most AL, or certifies that there is no (k, 2')-center solution
C* C P of cost at most L' and outputs “No”.

The main algorithm is dist-kzc (Algorithm[3), which calls an important procedure called aggregating
(Algorithm[2). We describe aggregating and dist-kzc in Section[2.1]and [2.2] respectively.

2.1 Aggregating Points

The procedure aggregating, as described in Algorithm 2} takes as input the set @ C P of points to be
aggregated (which will be some P; when we actually call the procedure), the guessed optimum cost
L, and y > 0, which controls how many points can be removed from Q. It returns a set Q' of points
obtained from aggregation, along with their weights w’.

Algorithm 1 kzc(k, 2/, (Q,w’), L) Algorithm 2 aggregating(Q, L, y)
1 U+ Q,C" « 0 1 U<+ Q,Q +
2: fori < 1tok do 2: while 3p € Q with |bally (p, 2L)| > y do
3: p; ¢ p € Qwithlargest w'(bally (p,2L")) 3: Q'+ Q" U{p}, w, < |bally(p,4L)]
4 O« C'U{p} 4 U<« U\ bally(p,4L)
5. U« U\bally(p;,4L") 5: return (Q’, w’)
6: if w'(U) > 2’ then return “No” else return C’

In aggregating, we start from U = Q and Q" = () and keep removing points from U. In each iteration,
we check if there is a p € @ with |bally (p, 2L)| > y. If yes, we add p to ', remove bally; (p, 4L)
from U and let w,, be the number of points removed. We repeat thie procedure until such a p can not
be found. We remark that the procedure is very similar to the algorithm kzc (Algorithm in [4].

We start from some simple observations about the algorithm.

Claim 2.2. We define V =, ballg(p,4L) to be the set of points in Q with distance at most 4L

to some point in Q' at the end of Algorithm Then, the following statements hold at the end of the
algorithm:

(O balls for C*
| e points in V;

I x points in U;
\ | e points in P!

(b)
Figure 1: Two cases in proof of Figure2: Illustration for proof of Lemmg
Lemma In Figure (a), the balls fi: Vi = P! 1s.1nd1cated by the dashed lines,
{bally(c, L) : c € C*,d(p,c) < 3L} (red cir- each of whom is of leng.th at most 4L. "llle
cles) are all empty. So, bally (p,2L) C O. In Figure number of crosses in a circle is at most ;= .
(b), there is a non-empty bally(c, L) for some

¢ € C* with d(p, c) < 3L (the red circle). The ball

is contained in bally (p, 4L).

1. U=Q\V.

2. |baIIU(p, 2L)| <y foreveryp € Q.

3. There is a function f : V. — Q' such that d(p, f(p)) < 4L, Vp € V, and w'(q) = |f~1(q)|,Vq €
Q'

Proof. U is exactly the set of points in @ with distance more than 4L to any point in ()’ and thus
U =@\ V. Property 2 follows from the termination condition of the algorithm. Property 3 holds
by the way we add points to)’ and remove points from U. If in some iteration we added ¢ to @',
we can define f(p) = ¢ for every point p € bally(p,4L), i.e, every point removed from U in the
iteration. O

We think of U as the set of points we discard from) and V' as the set of survived points. We then
move each p € V to f(p) € Q' and thus V' will be aggregated at the set ' of locations. The
following crucial lemma upper bounds |Q’|:

Lemma 2.3. Let 2 > 0 and assume there is a (k, %)-center solution C* C P to the instance Q) with
cost at most L. Then, at the end of Algorithm[2|we have |Q'| < k + =

Proof. Let O = Q\ | ¢~ ballg(c, L) be the set of outliers according to solution C*. Thus [O] < Z.

Focus on the moment before we run Step [3]in some iteration of aggregating. See Figure [I|for the
two cases we are going to consider. In case (a), every center ¢ € ballg+ (p, 3L) has bally (¢, L) = 0.
In this case, every point g € bally (p, 2L) has d(¢q, C*) > L: if d(p,c) > 3L for some ¢ € C*, then
d(q,c) > d(p,c)—d(p,q) > 3L—2L = L by triangle inequality; for some ¢ € C* with d(p, ¢) < 3L,
we have bally (¢, L) = (), implying that d(q,¢) > L as ¢ € U. Thus, bally(p,2L) C O. So, Step3|
in this iteration will decrease |O N U| by at least |bally(p,4L)| > |bally (p, 2L)| > y.

Consider the case (b) where some ¢ € ballg«(p,3L) has bally (¢, L) # 0. Then bally (p,4L) 2
bally (¢, L) will be removed from U by Step[3]in this iteration. Thus,

1. if case (a) happens, then |[U N O| is decreased by more than y in this iteration;
2. otherwise case (b) happens; then for some ¢ € C*, bally (¢, L) changes from non-empty to ().

The first event can happen for at most |O[/y < 2/y iterations and the second event can happen for at
most |C*| < k iterations. So, |Q'| < k + 2/y.

2.2 The Main Algorithm

We are now ready to describe the main algorithm for the (k, z)-center problem, given in Algorithm
In the first round, each machine will call aggregating(P;, L, 7=) to obtain (P;, w;). All the machines
will first send their corresponding | P/| to the coordinator. In Round 2 the algorithm will check if
>_ie[m) |P| is small or not. If yes, send a ““Yes” message to all machines; otherwise return “No” and
terminate the algorithm. In Round 3, if a machine ¢ received a “Yes” message from the coordinator,
then it sends the dataset P/ with the weight vector w; to the coordinator. Finally in Round 4, the

coordinator collects all the weighted points P’ = | J, elm) P! and run kzc on these points.

Algorithm 3 dist-kzc

input on all parties: n,k, z, m, L, €

input on machine i: dataset P; with |P;| = n;

output: a set C' C P or “No” (which certifies L* > L)

Round 1 on machine ; € [m]
1: (P, w;) < aggregating(P;, L, £=)
2: send |P| to the coordinator

Round 2 on the coordinator
Lif y e |P/| > km(1 + 1/¢) then return “No” else send “Yes” to each machine i € [m]

Round 3 on machine ; € [m]
1: Upon receiving of a “Yes” message from the coordinator, respond by sending (P, w})

Round 4 on the coordinator
1 let P/« | J», P/
2: let w’ be the function from P’ to Z~ obtained by merging w?, wh, - - - , Wy,
3:letz + (1+e€)z+w'(P)—n
4: if 2’ < 0 then return “No” else return kzc(k, 2’, (P',w’), L’ = 5L)

An immediate observation about the algorithm is that its communication cost is small:

Claim 2.4. The communication cost of dist-kzc is O(*2).

Proof. The total communication cost of Round 1 and Round 2 is O(m). We run Round 3 only
when the coordinator sent the “Yes” message, in which case the communication cost is at most

S P < km(1+1/e) = O(F2). H

€

It is convenient to define some notations before we make further analysis. For every machine i € [m),
let P/ be the P/ constructed in Round 1 on machine i. Let V; = U, p, ballp, (p,4L) be the set of

points in P; that are within distance at most 4L to some point in P;. Notice that this is the definition
of Vin Claimfor the execution of aggregating on machine i. Let U; = P; \ V;; this is the set U
at the end of this execution. Let f; be the mapping from V; to P/ satisfying Property 3 of Claim
Let V. = Uigpm Vi P’ = Uiepy Pi and [be the function from V' to P, obtained by merging

f15f27"' afm/‘ Thus (paf(p)) < 4L,\V/p € Vand w/(Q) = |f71(q)|7Vq € P

Claim 2.5. [f dist-kzc returns a set C', then C" is a (k, (1 + €)z)-center solution to the instance P
with cost at most 24 L.

Proof. C' must be returned in Step 4] in Round 4. By Theorem [2.1|for kzc, C” is a (k, z’)-center
solution to (P’,w’) of cost at most 4 - 5L = 20L. That is, w’ (P"\ e ballp:(c,20L)) < 2.
This implies w’ (J e ballpr (¢, 20L)) > w'(P') — 2’ = n — (1 + €)z. Notice that for each ¢ € P/,
the set f~1(g) € V C P of points are within distance 4L from q and w’(q) = |f~*(q)|. So,
|Ueecr ballp(c,24L)| > n— (1+ €)z, which is exactly [P\ U cc ballp(c,24L)| < (1+¢€)z. O

We can now assume L > L* and we need to prove that we must reach Step |4 in Round 4 and
return a set C’. We define C* C P to be a set of size k such that | P\ |J o ball(c, L)| < z. Let
I = co- ballp(c, L) be the set of “inliers” according to C* and O = P \ I be the set of outliers.
Thus, [I| > n — zand |O] < z.

Lemma 2.6. After Round 1, we have 3., | P;| < km(1 +1/e).

7

Proof. Let z; = |P; N O| = |P; \ U.cc- ballp,(c, L)’ be the set of outliers in P;. Then, C* is

a (k,z)- center solution to the instance P; with cost at most L. By Lemma we have that
|P’| < k+ 7ty So. we have
Zie[m] IPZI| < km +]%:L 1€[m] zi < km (1 + %) ’ O

Therefore, the coordinator will not return “No” in Round 2. It remains to prove the following Lemma.
Lemma 2.7. AlgorithmE] will reach Step in Round 4 and return a set C'.

Proof. See Figure [2] for the illustration of the proof. By Property 2 of Claim we have
Ibally, (p,2L)| < = for every p € U; since U; C P;. This implies that for every ¢ € C*,
we have |bally, (¢, L)| < 7= (Otherwise, taking an arbitrary p in the ball leads to a contradiction.)

U, N 1| :] U baIIUi(c,L)‘ < 3 jbally, (e, D)< 3 = = < E’ Vi € [m].

ceC* ceC* ceC*

S avi=3 (Inpl-1Int) = Y (|IﬂPZ-|—%) = —ez>n—(1+6)z

i€[m] i€[m] i€[m]

For every p € V N I, f(p) will have distance at most L + 4L = 5L to some center in C*. Also,
notice that w’(q) = | f~*(q)| for every q € P’, we have that

W' (Upee ballps(e,5L)) = [V NI >0 — (1 + €)=

So, w'(P"\ U,ce- ballpr(¢,5L)) < w(P') —n+(1+¢€)z = 2’. This implies that 2’ > 0, and there
is a (k, z’)-center solution C* C P to the instance (P’,w’) of cost at most 5L. Thus dist-kzc will
reach Step[d]in Round 4 and returns a set C’. This finishes the proof of the Lemma. O

We now briefly analyze the running times of algorithms on all parties. The running time of computing
P! on each machine 7 in round 1 is O(n?) and this is the bottleneck for machine i. Considering

all possible values of L, the running time on machine ¢ is O (”12 . %). The running time of the

round-4 algorithm of the central coordinator for one L will be O ((@)2) . We sort all the interesting

L values in increasing order. The central coordinator can use binary search to find some L’ such that
the main algorithm outputs a set C” for L = L’ but outputs “No” for L being the value before L’ in

. N . 2
the ordering. So, the running time of the central coordinator can be made O ((k?m) - log @).

The quadratic dependence of running time of machine ¢ on n; might be an issue when n; is big; we
discuss how to alleviate the issue in the supplementary material.

3 Conclusion

In this paper, we give a distributed (24(1 + €), 1 + ¢)-bicriteria approximation for the (k, z)-center

log A

problem, with communication cost O (k?m .

). The running times of the algorithms for all

parties are polynomial. We evaluate the algorithm on realworld data sets and it outperforms most
previous algorithms, matching the performance of the state-of-art method[10].

For the (k, z)-median/means problem, we give a distributed (1 + €, 1 + €)-bicriteria approximation

log A
€

algorithm with communication cost O (<I>D -), where ® is the upper bound on the size of the

coreset constructed using the algorithm of [2]]. The central coordinator needs to solve the optimiza-

log(An/e)

tion problem of finding a solution that is simultaneously good for O () k-median/means

instances. Since the approximation ratio for this problem will go to both factors in the bicriteria
ratio, we really need a (1 + €)-approximation for the optimization problem. Unfortunately, solving
k-median/means alone is already APX-hard, and we don’t know a heuristic algorithm that works
well in practice (e.g, a counterpart to Lloyd’s algorithm for k-means). It is interesting to study if
a different approach can lead to a polynomial time distributed algorithm with O(1)-approximation
guarantee.

Acknowledgments

This research was supported by NSF grants CCF-1566356 and CCF-1717134.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and euclidean k-median by primal-dual algorithms. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 61-72, 2017.

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means and k-median
clustering on general communication topologies. In Advances in Neural Information Processing
Systems 26, NIPS 2013, December 5-8, 2013, Lake Tahoe, Nevada, United States., pages
1995-2003, 2013.

Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms, 13(2):23:1-23:31, 2017.

Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the 12th Annual Symposium on Discrete
Algorithms, January 7-9, 2001, Washington, DC, USA., pages 642-651, 2001.

Jiecao Chen, Erfan Sadeqi Azer, and Qin Zhang. A practical algorithm for distributed clustering
and outlier detection. CoRR, abs/1805.09495, 2018.

Jiecao Chen, He Sun, David P. Woodruff, and Qin Zhang. Communication-optimal distributed
clustering. In Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
3720-3728, 2016.

Ke Chen. A constant factor approximation algorithm for k-median clustering with outliers. In
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008,
San Francisco, California, USA, January 20-22, 2008, pages 826-835, 2008.

Hu Ding, Yu Liu, Lingxiao Huang, and Jian Li. k-means clustering with distributed dimensions.
In Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, pages 1339-1348, 2016.

Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, August 21-24, 2011, pages 681-689, 2011.

Sudipto Guha, Yi Li, and Qin Zhang. Distributed partial clustering. In Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC,
USA, July 24-26, 2017, pages 143-152, 2017.

Sungjin Im and Benjamin Moseley. Brief announcement: Fast and better distributed mapreduce
algorithms for k-center clustering. In Proceedings of the 27th ACM on Symposium on Parallelism
in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages
65-67, 2015.

Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median and
k-means with outliers via iterative rounding. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 646-659, 2018.

Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, and Benjamin Moseley.
Fast distributed k-center clustering with outliers on massive data. In Advances in Neural
Information Processing Systems 28, NIPS 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 1063-1071, 2015.

