Regularizing by the Variance of the
Activations’ Sample-Variances

Etai Littwin’  Lior Wolf !2
ITel Aviv University 2Facebook Al Research

Abstract

Normalization techniques play an important role in supporting efficient and often
more effective training of deep neural networks. While conventional methods ex-
plicitly normalize the activations, we suggest to add a loss term instead. This new
loss term encourages the variance of the activations to be stable and not vary from
one random mini-batch to the next. As we prove, this encourages the activations
to be distributed around a few distinct modes. We also show that if the inputs
are from a mixture of two Gaussians, the new loss would either join the two to-
gether, or separate between them optimally in the LDA sense, depending on the
prior probabilities. Finally, we are able to link the new regularization term to the
batchnorm method, which provides it with a regularization perspective. Our ex-
periments demonstrate an improvement in accuracy over the batchnorm technique
for both CNNs and fully connected networks.

1 Introduction

We propose a novel regularization technique that is applied before the activation of all neurons in the
neural network. The new regularization term encourages the distribution of the individual activations
to have a few distinct modes. This property is achieved implicitly by computing the variance of the
activation of each neuron in each minibatch and by penalizing for variations of this variance, i.e.,
we encourage the variances to be the same across the mini-batches.

We provide a theoretical link between the variance-based regularization term and the resulting
peaked activation distributions, which we also observe experimentally, see Fig.|l} In addition, we
also provide experimental evidence that the new term leads to improved accuracy and can replace,
during training, normalization techniques such as the batch-norm technique.

The link between the new regularization term and batch-norm is further explored theoretically. A
distribution with few modes would lead to more stable batches and, for example, the representation
of a given sample would not vary along different batches. In other words, it is desirable that a
sample, if repeated twice in multiple batches, would produce the same network activations post-
normalization. This is an indirect way in which batchnorm benefits from few-modes. In our method
it is encouraged more explicitly.

The new regularization term is adaptive, in the sense that it can lead to a few distinct outcomes.
When applied to a mixture of two Gaussians, the regularization leads, in an unsupervised way, to
one of two possible projections: either the LDA projection that maximally separates between the
two Gaussians, or the orthogonal projection that is least sensitive to their differences.

Interestingly, the amount of variance in each activation is controlled by a parameter 8. In order to
avoid searching over a wide range of hyper-parameters, we optimize for this term during training
and allow each neuron to adapt to a different level of variance.
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Figure 1: Histograms of activations in a network trained on the UCI adult dataset. (a) Random
neurons trained with batchnorm. (b) Random neurons trained with our VCL method. Each row
corresponds to a different hidden layer.

LA i
LolA ok
A A Lo

2 The Variance Constancy Loss

The distribution of the activations of each neuron depends on both the distribution of network inputs
and the weight of the network upstream from that neuron. Let p be a random variable denoting the
activations of a single neuron and denote the underlying distribution as p. The variance of p is given
by 02 = E[(p — u,)?], where u, = E[p]. For a finite sample s = {p1...p, } randomly drawn from
p. the unbiased sample variance of p over s is given by 02 = - 3" (p,, — L 3" p,)2. The
variance of the sample variances is given by:

E[(0? — 02)?] = ™ _ o'(n—3) (1)

n nin—1)

where my = E[(p — u,)?] is the fourth moment of p [4].

From Eq.[T] given that the distribution has a given variance, the variance of variance is controlled by
n and the fourth moment of the distribution. We would like to show that this variance of measured
variances is low for distributions with few modes. Intuitively, a distribution with a few distinct
modes would have a low variance of sample variance, since there is a relatively small number of
possibilities to sample from. Consider, for example, a distribution of 2 modes and a sample size of
n. There are only n possible patterns to select from the two modes. For n = 3 there are aaa, aab,
abb, and bbb, where a and b represent selecting from the first mode or from the second mode. For a
distribution with k& modes, this would be ("Hlj _1), which can be considerably larger.
In the following analysis we characterize distributions with low variance of sample variance. Specif-
ically, we are interested in distributions p, such that the quantity E[(c? — ¢%)?] is minimized under
the constraint that the variance is fixed, i.e., 02 = a. Formally, we are interested in the following
minimization problem:

p* = argminE[(c? — 02)?] 5.t 0 =a 2)

P

Note that we can reformulate Eq. 2] as:

2
p* =argminE[(1 — %)2] st o’ =a 3)
»

The next result shows that minimizing Eq. 2] over the space of distributions will result in a distribu-
tion p* with two modes.

Theorem 1. Any minimizing distribution of Eq.[2)is of the form p* = az+b such that z is distributed
according to the Bernoulli distribution with parameter %, and a,b € R,a # 0.



Proof. From Eq.[3land Eq. [[] we have:
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and so we are left with the problem of minimizing the fourth moment of p under the constraint

0’2:Oé.

Note that for any distribution, the variance squared is a lower bound for the fourth moment. To see
this, we denote the slack variable y = (p — y,,)?, and we have:

var(y) = Ely’] — (E[y)?* = ms —o* >0 (5)
where equality is attained when var(y) = 0, i.e, when y is constant. Therefore, m, is minimal when
|o — 1| is constant, which means, since p is not constant (0% = a > 0), that p has two values with
equal probability. O

The term 2 in Eq.4|is called kurtosis and is denoted by «(p). Distributions with high kurtosis tend
to exhibit heavy tails, while distributions with low kurtosis are light tailed, with few outliers. For
the two peak distribution of Thm.[I] there is no tail.

2.1 A Phase Shift Behavior

The condition on the variance in Eq. E] is redundant, since neurons with fixed activations do not
contribute to learning. We therefore define the variance constancy loss for a distribution p as:
2

Ls(p) = E[(1 - 75)°] ©)

This regularization can be seen as an additional unsupervised clustering loss per unit, since it is
minimized by clustering its input to two modes. The driving force for the weights of each unit has a
surprising quality, encouraging separation between clusters if they are prominent enough, or uniting
the clusters if they are not, as demonstrated in the next theorem:

Theorem 2. Consider the random input distributed as a GMM with two components © € R? ~
PN (1, 22) + (1 — p)N (uz2, X2). We denote the within and between covariance matrices as %, =
pY1 + (1 —p)Xa, By = (1 — p2)(p1 — po) T Given a vector of weights § € R?, we denote
p = a6, it holds that:

07,0 1-y/1 1+y/1
23<p< 23

. arg min, 2 <p<
argmink(p) = 0 Z g g @)
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Proof. Note that p ~ pN(u 0,07220) + (1 — p)N(ug 0,07 320). For a Gaussian distribution
with mean £ and variance o2, the non-centered fourth and second moments are given by:

my = pt 4 6p%0? + 30, my =0+ p? ®)
Due to the linearity of integration, the moments for a GMM distribution follows naturally. The
mean of rho is given by u = pu; + (1 — p)ue. Noticing that 3 — p = (1 — p)(u1 — p2), and
ta — i = p(pe — p1), and denoting p(1 — p) = «, the fourth and second moments of p are given
by: my = a(1 —3a)(0730)% 4+ 6 (07 2,0)(0TE40) +3(0TX,0)%, 02 = (a0 + 07 %,,0).
and so:

a(l—3a)(0740)% +6a(07,0)(07S40) + 3(072,,0)?

/{(P) = ((a)@TEbH =+ gTEwg))g
1—6a)(07%,0)>
_ g4 0 —06a)(0 %0)" o
(0TS0 + 0T 5,,0)>
aregmin | 3+ a(l — 6a)(075y0)? are ma a0 +07%,,0
— X
8 (T30 +607%,,0)2 & T = 60)(07 %u0)
07,0 015.,0 1—6a) <0
= arg max IGTZ 9 _ { arg m1n9 zrg z Oé( Oé) < (10)
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Note that in the regime where «(1 — 6a) < 0, 1_2 3 <p< ;/% .
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Figure 2: A single linear unit trained with VCL and no other loss on 2D inputs. (a) a GMM with
p = 0.1. (b) a GMM wioth p = 0.25. (c) the activations of the learned neuron on the input in (a).
(d) similarly for (b). The red lines in (a) and (c) represent the learned projection. For case (a), since
for p = 0.1 < 0.2113, the projection is such that the two clusters unite. In cases (b), the projection
provides a perfect discrimination between the clusters.

This can be interpreted as follows: if both clusters have a relatively high prior probabilities, then the
weights of the unit will encourage a separation in the LDA sense. If one cluster has a small prior
probability, then the weights will encourage to merge the clusters together by increasing ' %,,0,
and decreasing 6 " X,6. See Fig.[2| This might be beneficial for preventing overfitting on outliers in
the training set, since artifacts that are specific to a small number of training examples have a small
prior probability, and will be discouraged from propagating forward.

2.2 A Loss for Stochastic Gradient Descent

We now define an alternative regularization based on two mini-batches, and prove a minimum upper
bound. Given two sets of iid samples s1 = {p1...pn }, s2 = {p}...p,, }, we define loss variant:

o2
Ls1,sz(p) = (1 - 21> (11)
os,
0,2
The following theorem shows an upper bound on the deviation of the ratio —3* from 1.
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Theorem 3. It holds that for every 1 > € > 0:

f%<(%2<(L-ﬁw2<4g>>(1—1ﬂmﬁ—(”_®ﬂ)2 (12)
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Proof. From Chebyshev’s inequality, it holds that for any set of iid samples s = {z1...z, }:

(=gl > ) = iz

S

13)

and so with probability of at least 1 — % itholds that 1 — e < ﬁ%] < 1+ e. for two iid sets
s1, 52 with var(o2,) = var(o2)) and E[o? | = E[o2,] = 0 we have that:
Pr(ioes S % iy )5 (1o )y (14)
" €= E[02] E[o2,] — ‘)= 2ot
The bound for the ratio follows naturally:
l—¢ o2 1+e€ var(o?) 2
P <2< — > (1-— 15
r(1+e_J§2_1—6>_< €20t (15)
and: )
4¢? o2 4¢€? var(o? )
M<<a—“ﬁ< >>G—“) (16)
(1+¢)? o2, (1—¢)? €20
Replacing var (o2 ) with Eq. completes the proof. O



Note that the RHS of Eq.[12]is maximized when r(p) is minimized, similarly to Thm.

In practice, the regularization used during training must be robust to instances where 0?2 ~ 0, and
so the variance constancy loss (VCL) we advocate for is

B _ 0-?1 2

) = (1= 72 a7
for some 5 > 0. This modification has a two-fold effect. It both stabalizes the loss by preventing
exploding gradients, and it encourages the variance for each neuron output to grow. The latter is
due to the fact that, by multiplying the activations by a constant scale larger than one, 3 becomes
more insignificant. In other words, for 5 = 0 the distance between the peaks of the distribution is
non-consequential. As 3 grows, there is a stronger driving force that separates the two modes. In
our experiments, in order to avoid searching for global optimal values of 3, and since the optimal (3
can vary between layers and neurons, we optimize for this value per-neuron. This is reminiscent to
the per-neuron fitting of the additive and multiplicative values in batchnorm.

Note that optimizing my4 directly is not advisable, since estimating higher moments from small
batches is prone to large estimation errors.

2.3 Batchnorm as a Minimizer of Kurtosis

The use of batchnorm during training of neural networks has been shown to improve test perfor-
mance, as well as speed up training time. In batchnorm, sample statistics of each mini-batch are
calculated, and used for normalization of the activations (either before or after the application of
non-linearity). Specifically, each activation is normalized to have zero mean and unit variance. This
scheme introduces additional randomness in the network, since the output of a unit depends on the
particular mini-batch statistics, as well as the particular input sample. Since the sample mean is
a much more reliable statistic than the sample variance, most of the randomness is caused by the
variance of the sample variance.

Consider a single unit p, that undergoes batch-norm during training. The output of that unit given

input = and batch s is given by p(wzi_“s. We expect the batch statistics o, 115 to be reliable approx-

imations of the actual statistics, otherwise performance would vary wildly between test and train
splits, as well as between mini-batches during training. We therefore expect for each sample x:

plx) —ps  ple) —p| _|p@)—p||o plz) —ps 1] << 1 (18)
O g g Os P(z) —H
plx)—ps

We note that p4 is a more reliable statistic than o, and so
inputs x, we have:

ORI 1. Since this applies to all

Os Os

0—1‘<<1,‘7w1 (19)

From Chebyshev’s inequality, it holds for 1 > € > 0:
1 o 1 var(o?) 1 (k(p) (n—3)
P < —< >1— s/ 1 (XL A T 20
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Therefore, under mild assumptions, a low value for the Kurtosis leads to a stable application of
batchnorm. Note that in batchnorm, Eq. [T§]is not forced, and so kurtosis is not explicitly minimized.

2.4 The Loss in Action

According to Thm. [3] when the sample size n is large, the bound on the probability in the RHS of
Eq[I2]is high regardless of . Therefore, the ratio of the sample variance and the true variance is
close regardless of the shape of the distribution. This favors small n for the VCL method. Empiri-
cally, we notice that VCL tends to work better as n is lower, where the best results for CNN models
are achieved when setting n = 2.

We opt for the simplest way to sample minibatches of size n for the loss, without changing the
mini-batches that are used for the SGD procedure. Assume that the size of the SGD minibatches



is N. Typically n < 2N, and we take out of the N samples of the SGD minibatch the first two
consecutive subsets of size n. The variance constancy loss (VCL) is computed based on these two
arbitrary subsets. In all of our experiments [ is set to an initial value of 1.0, and then updated for
each unit through backpropagation. In our experiments, the VCL terms are averaged in each layer,
and then summed up across layers. A weight v is applied to this loss.

When n is very small, training becomes unstable due to increasing random variations in sample
statistics. This instability is minimized by VCL, which increases its overall influence. In order to
support such small n, training is stabilized by performing gradient clipping. Specifically, the L2
norm of the gradient of each layer is clipped, with a clipping value of 1.

3 Experiments

Comparing different activation functions or different normalization schemes and their combinations,
is a notorious task: every choice benefits the most from a different set of hyperparameters, leading to
large search space and high computational demands and, often, reproducibility issues. The authors
of [L1], for example, provided an exemplary set of experiments to demonstrate that their SeLU
activation function outperforms other activation functions. For the UCI datasets, the authors provide
detail experimental protocols, some code, and all the train/test splits. Despite all these, we were not
able to completely replicate their UCI experiments for various reasons. First, our resources allowed
us to test less architectures by the deadline. Second, we were uncertain regarding, for example, the
amount and location of dropout used. In another example, we were able to replicate the CIFAR
experimental result for the ELU activation function [2]. However, unlike the published results, in
our experiments, batchnorm improves the accuracy. This highlights the challenges of comparative
experiments, but is in no way a criticism on the previous work. Indeed, both ELU and SeL.U have
provided a great deal of performance gain in a wide variety of follow-up work.

We demonstrate the effectiveness of VCL regularization on several benchmark datasets, comparing
with competitive baselines. We conduct two sets of experiments. In the first set of experiments, we
test CNNs on the CIFAR-10, CIFAR-100 and tiny Imagenet datasets. In the second, we evaluate
fully connected networks on all of the UCI datasets with more than 1000 samples. To support
reproducibility, the entire code of all of our experiments is to be promptly released.

CIFAR The two CIFAR datasets (Krizhevsky Hinton, 2009) consist of colored natural images
sized at 32 x32 pixels. CIFAR-10 (C10) and CIFAR-100 (C100) images are drawn from 10 and 100
classes, respectively. For each dataset, there are 50,000 training images and 10,000 images reserved
for testing. We use a standard data augmentation scheme (Lin et al., 2013; Romero et al., 2014;
Lee et al., 2015; Springenberg et al., 2014; Srivastava et al., 2015; Huang et al., 2016b; Larsson et
al., 2016), in which the images are zero-padded with 4 pixels on each side, randomly cropped to
produce 32 x32 images, and horizontally mirrored with probability 0.5.

For the CIFAR datasets, we employ the 11-layer architecture that was used by [2] to compare ac-
tivation functions. The 18-layer architecture was trained with a dedicated dropout scheduling that
makes it more specific to a certain choice of activation function, and is slower to train. We do not
employ ZCA whitening on the data since it seems to decrease the overall accuracy for ReLU and
Learky ReLU. For all experiments, 500 epochs are used and a batch size N of 250. We employ a
learning rate of 0.05, which was reduced at epoch 180 to 0.02, and further reduced by a factor of
10 every 100 epochs. A momentum of 0.9 was used and the L2 regularization term was weighed
by 0.0001. The hyperparameters of VCL are fixed: the weight of the VCL regularization is set to
v = 0.01.

The results are presented in Tab.[2] with running time per training iterations comparisons presented
in Tab. We compare ReLLU to Leaky ReLU with a constant of 0.2 and to ELU, with different
normalization techniques. Experiments with VCL are performed with n = 2,3,5,7,9. Our result
for CIFAR-100 of the ELU activation matches the reported result in [2] (CIFAR-10 result is not
provided for this architecture). As can be seen, batchnorm contributes to ReLU and ELU but not
to Leaky ReLU. The best results are obtained with a combination of ELU and our VCL method for
both datasets. The only experiment in which VCL does not contribute more than batchnorm is the
ReLU experiment on CIFAR-100. The largest contribution of VCL is to ELU.



Table 1: Time in Seconds per 100 iterations (CIFAR-100).

Method Intel i7 CPU  Volta GPU
Without normalization 367.1 29.2
Batchnorm 702.3 31.6
VCL 400.1 30.3

Table 2: Test error w/o normalization, with bathnorm (bn), layer normalization (In), group normal-
ization (gn) or vcl.

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

ReLU 0.0836 0.328 LReLU+vcl (n = 9) 0.0660 0.267
ReLU+bn 0.0778 0.291 LReLU+vcl (n =7) 0.0665 0.264
ReLU+In 0.0792 0.307 LReLU+vcl (n = 5) 0.0648 0.264
ReLU+gn 0.0871 0.319 LReLU+vcl (n = 3) 0.0657 0.262
ReLU+vcl (n = 9) 0.0780 0.308 LReLU+vcl (n = 2) 0.0645 0.263
ReLU+vcl (n =17) 0.0810 0.305 ELU 0.0698 0287
ReLU+vcl (n = 5) 0.0785 0.304 ELU+bn 0.0663 0.269
ReLU+vcl (n = 3) 0.0790 0.306 ELU+In 0.0675 0'267
ReLU+vcl (n = 2) 0.0780 0.303 ELU+en 0.0671 0282
LReLU 0.0670 0.268 ELU+vcl (n =9) 0.0670 0.276
LReLU+bn 0.0708 0.272 ELU+vcl (n =17) 0.0633 0.271
LReLU+In 0.0700 0.270 ELU+vcl (n = 5) 0.0615 0.258
LReLU+gn 0.0707 0.283 ELU+vcl (n = 3) 0.0622 0.261

(Continued to the right) ELU+vcl (n = 2) 0.0615 0.256

Tiny Imagenet The Tiny ImageNet dataset consists of a subset of ImageNet [16]], with 200 differ-
ent classes, each of which has 500 training images and 50 validation images, downscaled to 64 x64.
For augmentation, the images are zero padded with 8 pixels on each side, and randomly cropped to
produce 64 x 64 images, and then horizontally mirrored with probability 0.5.

For this set, we employ a similar architecture used for the CIFAR experiments, with twice as many
convolutional kernels per layer. In order to account for the higher resolution images, we apply
average pooling at the end of the 5°th convolutional block. We also use the same hyper parameters
as in the CIFAR experiments, namely v = 0.01, and n = 5. A learning rate of 0.05 is employed,
which is reduced to 0.02 after 50 epochs, and further reduced by 10 at 100 and 180 epochs. We
report the validation accuracy after 250 epochs. The results are reported in Tab. [3] Results for
Resnet-110, WRN-32, DenseNet-40 are as reported in [6].

UCI We also apply VCL to the 44 UCI datasets with more than 1000 samples. The train/test splits
were provided by the authors of [11]. In each experiment, we three fixed architectures with 256
hidden neurons per layer and depth of either 4, 8, or 16. For ReLU and ELU the last layer had a
dropout rate of 0.5. For SeLU, we employ the prescribed a—dropout rate of 0.05 for all hidden
layers. A learning rate of 0.01 was used for the first 200 epochs and then a learning rate of 10~ was
used. All runs were terminated after 500 epochs. Following [11], an averaging operator with a mask
size of 10 was applied to the validation error, and the epoch and architecture with the best smoothed

Validation error Validation error
Deep ELU network 0.392 ResNet-110 0.465
Deep ELU network + bn 0.402 Wide-ResNet-32 0.365
Deep ELU network + vcl n=2 0.373 DenseNet-40 0.390

Table 3: Validation error on tiny imagenet. We ran the three Deep ELU experiments. The baseline
results are from [6]].
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Figure 3: An accuracy based Dolan-More profile for the UCI experiments of Tab. [5| There are 9
plots, one for each combination of activation and normalization. The x-axis is the threshold (7).
Since for accuracy scores, higher is better, whereas typical Dolan-More plots show cost (such as
run-time), the axis is ordered in reverse. The y-axis is, for a given combination out of the 9, the ratio
of datasets in which the obtained accuracy is above 7 times the maximal accuracy over all 9 options.

Table 4: Number of “wins” for each normalization method, per activation function.

ReLU ELU SELU

No normalization 9 14 11
Batchnorm 15 16 15
VCL 27 23 28

validation error was selected. Batches were of size N = 20, v = 0.01, and, for these experiments,
n = 10.

The results are shown in Fig. [3]and fully reported in the appendix (Tab.[5). As expected, no method
wins across all experiments. However, the results show that the method that wins the most (out of
the 9 options) is either the combination of SeLU and VCL or that of ELU and VCL. A breakdown
per each activation unit separately is presented in Tab.[d A win is counted if the method reaches
the minimal value among the three normalization options and if performance is not constant. For all
three activation functions, VCL provides more wins than batchnorm, and batchnorm outperforms
the no normalization option. The gap between VCL and batchnorm is larger for SELU and the
lowest for ReL.U, which is also consistent with the results in Tab. 2}

4 Related Work

The seminal batchnorm method [8] has enabled a markable increased in performance for a great
number of machine learning tasks, ranging from computer vision [3]] to playing board games [20].
In practice, the method is said to suffer from a few limitations [[L7,[7,124]]. One of these limitations is
the reliance on the batch statistics during the forward step, including at test time, which is performed
one sample at a time. The training statistics are therefore used as surrogates at test time, which is
detrimental as there is a shift between the training and the test distributions [14]]. Our method, as a
loss-based method, does not employ batch statistics at test time.

Another limitation of batchnorm is the reliance on batch statistics, which are unreliable for small
batches. This leads to the need to employ larger batches, which tend to result in worse generaliza-
tion [24]. This disadvantage turns into an advantage in our method, since this instability is what our
method aims to reduce. Indeed, we perform our experiments with only a few samples for the VCL
loss.



Other normalization techniques, which do not rely on batch statistics include classical methods, such
as local response normalization [[13} 9} [12]], layer normalization [1]], instance normalization [22]],
weight normalization [18]], and the very recent group normalization [24].

Since our regularization term encourages bimodal activation distributions, it is somewhat related
to the study of networks with binary activation functions [3]. However, our goal is to increase the
classification accuracy and not to achieve the efficiency benefits of binary activations.

Considering one of the modes as a baseline activation, our work can be viewed as related to sparsity
regularization methods, including L1 regularization [21] and its local or selective application [[19}25]]
and structural sparsification methods [23]] that also modify the architecture by pruning some of the
connections. Such methods lead to more efficient networks as well as to an improvement in accuracy.

Our method is also related to variational methods such as the variational autoencoder [[10], which
employs a regularization term that enforces a certain distribution on some of the activations. The
target distribution is often taken to be Gaussian in contract to our loss term that encourages multiple
modes. In this sense, our work is more related to discrete variational autoencoders [[15)]. In contrast
to such work, our method employs the regularization term everywhere, the multi-modal structure is
soft, and the number of modes is not enforced (Thm. @, and the fact that multi-peak distributions
with more than 2 peaks also have low Kurtosis).

5 Conclusions

The batchnorm method plays a pivotal role in many of the recent successes of deep learning. With
the growing dependency on this method, some researchers have voiced concerns about the required
batch sizes. VCL employs small subsets of the mini-batch and seems to perform as well or better
than batchnorm on the standard benchmarks tested. It therefore holds the promise of improving
conditioning without imposing constraints on the optimization process. Since VCL is a regulariza-
tion term and not a normalization mechanism, and since the statistics of sample moments is well
understood, the new method could be compatible with a wider variety of optimization methods in
comparison to bachnorm. Compared to other loss terms, VCL shapes the activation distribution in
one of several phases, according to the input statistics.

As future work, we would like to address some limitations that were observed during the experi-
ments. The first is the observation that while VCL shows good results with the ReLLU activations on
the UCI experiences, in image experiments the combination of the two underperforms when com-
pared to ReLU with batchnorm. The second limitation is that so far we were not able to replace
batchnorm with VCL for ResNets.
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A More results

Table 5: The results of the UCI experiments

RelLU ELU SeLU
bn vel bn vel bn vel

abalone 0.334 0342 0331 0325 0342 0.330 0.343 0.335 0.339
adult 0.156 0.148 0.155 0.152 0.148 0.155 0.150 0.148 0.147
bank 0.112 0.108 0.109 0.103 0.106 0.099 0.112 0.110 0.107
car 0.054 0.029 0.041 0.039 0.018 0.036 0.031 0.032 0.025
cardio.-10clases 0221 0238 0224 0.214 0.223 0204 0.219 0.211 0.202
cardio.-3clases 0.106 0.110 0.096 0.108 0.108 0.104 0.103 0.109 0.097
chess-krvk 0.250 0.301 0.233 0.217 0307 0.207 0.226 0435 0.218
chess-krvkp 0.027 0.015 0.023 0.020 0.009 0.016 0.010 0.010 0.010
connect-4 0.146 0.153 0.150 0.153 0.139 0.143 0.143 0.144 0.139
contrac 0502 0546 0480 0490 0506 0490 0475 0.501 0.454
hill-valley 0.530 0.399 0270 0.272 0.268 0301 0.276 0.349 0.187
image-segmentation 0.006 0 0.006 0.006 0.006 0.012 0.012 0.012 0.012
led-display 0.309 0.326 0307 0.295 0319 0295 0.299 0.290 0.305
letter 0.061 0.038 0.051 0.054 0.037 0.044 0.043 0.037 0.045
magic 0.138 0.135 0.133 0.138 0.131 0.130 0.130 0.125 0.126
miniboone 0.084 0.090 0.083 0.075 0.070 0.073 0.081 0.068 0.080
molec-biol-splice 0214 0.223 0.205 0.18 0.192 0.189 0.172 0.163 0.194
mushroom 0 0 0 0 0 0 0 0 0
nursery 0.007 0.005 0.005 0.001 0.004 0 0 0.006 0
oocytes-m.-nucleus-4d  0.228 0.209 0.196 0.205 0.194 0.202 0.199 0.181 0.184
oocytes-m.-states-2f 0.091 0.096 0.093 0.090 0.09 0.085 0.097 0.088 0.093
optical 0.039 0.025 0.033 0.034 0.026 0.032 0.040 0.030 0.032
ozone 0.028 0.033 0.031 0.031 0.036 0.029 0.029 0.047 0.031
page-blocks 0.039 0.037 0.039 0.039 0.042 0.032 0.033 0.033 0.036
pendigits 0.043 0.041 0.037 0.044 0.040 0.038 0.041 0.035 0.037
plant-margin 0291 0305 0282 0.280 0314 0296 0305 0.321 0.281
plant-shape 0433 0442 0420 0393 0462 0387 0419 0.463 0.403
plant-texture 0297 0281 0297 0273 0279 0282 0.278 0.283 0.268
ringnorm 0.022 0.026 0.021 0.021 0.025 0.018 0.025 0.035 0.021
semeion 0.116 0.110 0.111 0.105 0.103 0.107 0.112 0.115 0.115
spambase 0.075 0.075 0.068 0.070 0.063 0.068 0.066 0.069 0.070
statlog-german-credit 0296 0273 0248 0.252 0.289 0.228 0.245 0.243 0.242
statlog-image 0.045 0.041 0.047 0.051 0.038 0.04 0.041 0.044 0.040
statlog-landsat 0.114 0.113 0.106 0.108 0.110 0.106 0.095 0.104 0.100
statlog-shuttle 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.001
steel-plates 0.299 0280 0.270 0285 0276 0274 0.281 0.276 0.272
thyroid 0.026 0.024 0.021 0.020 0.021 0.017 0.021 0.024 0.019
titanic 0.208 0.208 0.208 0.208 0.208 0.208 0.214 0.215 0.208
twonorm 0.030 0.040 0.028 0.028 0.029 0.029 0.026 0.027 0.025
wall-following 0.126 0.115 0.112 0.106 0.105 0.093 0.103 0.104 0.102
waveform-noise 0.173 0.197 0.172 0.164 0.164 0.163 0.162 0.163 0.153
waveform 0.164 0.166 0.167 0.149 0.164 0.161 0.151 0.160 0.147
wine-quality-red 0413 0414 0404 0397 0424 0431 0432 0413 0417
wine-quality-white 0.461 0483 0468 0461 0482 0478 0.469 0.491 0.485
Number of wins 3 3 3 5 8 11 2 7 11

out of 9 options

11



