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Abstract

Convolutional neural networks (CNNs) have shown great capability of solving
various artificial intelligence tasks. However, the increasing model size has raised
challenges in employing them in resource-limited applications. In this work, we
propose to compress deep models by using channel-wise convolutions, which re-
place dense connections among feature maps with sparse ones in CNNs. Based on
this novel operation, we build light-weight CNNs known as ChannelNets. Channel-
Nets use three instances of channel-wise convolutions; namely group channel-wise
convolutions, depth-wise separable channel-wise convolutions, and the convolu-
tional classification layer. Compared to prior CNNs designed for mobile devices,
ChannelNets achieve a significant reduction in terms of the number of parameters
and computational cost without loss in accuracy. Notably, our work represents the
first attempt to compress the fully-connected classification layer, which usually
accounts for about 25% of total parameters in compact CNNs. Experimental results
on the ImageNet dataset demonstrate that ChannelNets achieve consistently better
performance compared to prior methods.

1 Introduction

Convolutional neural networks (CNNs) have demonstrated great capability of solving visual recogni-
tion tasks. Since AlexNet [11] achieved remarkable success on the ImageNet Challenge [3]], various
deeper and more complicated networks [19}[21}15] have been proposed to set the performance records.
However, the higher accuracy usually comes with an increasing amount of parameters and com-
putational cost. For example, the VGG16 [19] has 128 million parameters and requires 15, 300
million floating point operations (FLOPs) to classify an image. In many real-world applications,
predictions need to be performed on resource-limited platforms such as sensors and mobile phones,
thereby requiring compact models with higher speed. Model compression aims at exploring a tradeoff
between accuracy and efficiency.

Recently, significant progress has been made in the field of model compression [[7 [15 23| |6} [24].
The strategies for building compact and efficient CNNs can be divided into two categories; those
are, compressing pre-trained networks or designing new compact architectures that are trained from
scratch. Studies in the former category were mostly based on traditional compression techniques such
as product quantization [23]], pruning [[17], hashing [1l], Huffman coding [4]], and factorization [12} 9]

The second category has already been explored before model compression. Inspired by the Network-
In-Network architecture [14], GoogLeNet [21]] included the Inception module to build deeper net-
works without increasing model sizes and computational cost. Through factorizing convolutions, the
Inception module was further improved by [22]]. The depth-wise separable convolution, proposed
in [[18]], generalized the factorization idea and decomposed the convolution into a depth-wise con-
volution and a 1 x 1 convolution. The operation has been shown to be able to achieve competitive
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Figure 1: Illustrations of different compact convolutions. Part (a) shows the depth-wise separable
convolution, which is composed of a depth-wise convolution and a 1 x 1 convolution. Part (b)
shows the case where the 1 x 1 convolution is replaced by a 1 x 1 group convolution. Part (c)
illustrates the use of the proposed group channel-wise convolution for information fusion. Part (d)
shows the proposed depth-wise separable channel-wise convolution, which consists of a depth-wise
convolution and a channel-wise convolution. For channel-wise convolutions in (¢) and (d), the same
color represents shared weights.

results with fewer parameters. In terms of model compression, MobileNets [6] and ShuffleNets [24]
designed CNN5s for mobile devices by employing depth-wise separable convolutions.

In this work, we focus on the second category and build a new family of light-weight CNNs known as
ChannelNets. By observing that the fully-connected pattern accounts for most parameters in CNNSs,
we propose channel-wise convolutions, which are used to replace dense connections among feature
maps with sparse ones. Early work like LeNet-5 [13]] has shown that sparsely-connected networks
work well when resources are limited. To apply channel-wise convolutions in model compression,
we develop group channel-wise convolutions, depth-wise separable channel-wise convolutions, and
the convolutional classification layer. They are used to compress different parts of CNNs, leading to
our ChannelNets. ChannelNets achieve a better trade-off between efficiency and accuracy than prior
compact CNNs, as demonstrated by experimental results on the ImageNet ILSVRC 2012 dataset. It
is worth noting that ChannelNets are the first models that attempt to compress the fully-connected
classification layer, which accounts for about 25% of total parameters in compact CNNs.

2 Background and Motivations

The trainable layers of CNNs are commonly composed of convolutional layers and fully-connected
layers. Most prior studies, such as MobileNets [6]] and ShuffleNets [24]], focused on compressing
convolutional layers, where most parameters and computation lie. To make the discussion concrete,
suppose a 2-D convolutional operation takes m feature maps with a spatial size of dy x dy as inputs,
and outputs n feature maps of the same spatial size with appropriate padding. m and n are also
known as the number of input and output channels, respectively. The convolutional kernel size is
dy, x dy, and the stride is set to 1. Here, without loss of generality, we use square feature maps and
convolutional kernels for simplicity. We further assume that there is no bias term in the convolutional
operation, as modern CNNs employ the batch normalization [8] with a bias after the convolution. In
this case, the number of parameters in the convolution is di X dj, X m x n and the computational
cost in terms of FLOPs is dj, X dp x m X n x dy x dy. Since the convolutional kernel is shared
for each spatial location, for any pair of input and output feature maps, the connections are sparse
and weighted by djy x dj, shared parameters. However, the connections among channels follow a
fully-connected pattern, i.e., all m input channels are connected to all n output channels, which
results in the m x n term. For deep convolutional layers, m and n are usually large numbers like 512
and 1024, thus m X n is usually very large.

Based on the above insights, one way to reduce the size and cost of convolutions is to circumvent the
multiplication between dj X di and m X n. MobileNets [6] applied this approach to explore compact
deep models for mobile devices. The core operation employed in MobileNets is the depth-wise
separable convolution [2]], which consists of a depth-wise convolution and a 1 x 1 convolution,
as illustrated in Figure [[(a). The depth-wise convolution applies a single convolutional kernel
independently for each input feature map, thus generating the same number of output channels. The
following 1 x 1 convolution is used to fuse the information of all output channels using a linear



combination. The depth-wise separable convolution actually decomposes the regular convolution
into a depth-wise convolution step and a channel-wise fuse step. Through this decomposition, the
number of parameters becomes

di X dp X m+m X n, (D

and the computational cost becomes
dk-XdeTrLdede+andede. )

In both equations, the first term corresponds to the depth-wise convolution and the second term
corresponds to the 1 x 1 convolution. By decoupling d x di and m x n, the amounts of parameters
and computations are reduced.

While MobileNets successfully employed depth-wise separable convolutions to perform model
compression and achieve competitive results, it is noted that the m x n term still dominates the
number of parameters in the models. As pointed out in [6], 1 X 1 convolutions, which lead to
the m X n term, account for 74.59% of total parameters in MobileNets. The analysis of regular
convolutions reveals that m x n comes from the fully-connected pattern, which is also the case in
1 x 1 convolutions. To understand this, first consider the special case where d; = 1. Now the inputs
are m units as each feature map has only one unit. As the convolutional kernel size is 1 x 1, which
does not change the spatial size of feature maps, the outputs are also n units. It is clear that the
operation between the m input units and the n output units is a fully-connected operation with m x n
parameters. When d¢ > 1, the fully-connected operation is shared for each spatial location, leading
to the 1 x 1 convolution. Hence, the 1 x 1 convolution actually outputs a linear combination of input
feature maps. More importantly, in terms of connections between input and output channels, both the
regular convolution and the depth-wise separable convolution follow the fully-connected pattern.

As a result, a better strategy to compress convolutions is to change the dense connection pattern
between input and output channels. Based on the depth-wise separable convolution, it is equivalent
to circumventing the 1 x 1 convolution. A simple method, previously used in AlexNet [[L1], is the
group convolution. Specifically, the m input channels are divided into g mutually exclusive groups.
Each group goes through a 1 x 1 convolution independently and produces n/g output feature maps.
It follows that there are still n output channels in total. For simplicity, suppose both m and n are
divisible by g. As the 1 x 1 convolution for each group requires 1/g° parameters and FLOPs, the
total amount after grouping is only 1/g as compared to the original 1 x 1 convolution. Figure |I(b)
describes a 1 x 1 group convolution where the number of groups is 2.

However, the grouping operation usually compromises performance because there is no interaction
among groups. As a result, information of feature maps in different groups is not combined, as
opposed to the original 1 x 1 convolution that combines information of all input channels. To address
this limitation, ShuffleNet [24] was proposed, where a shuffling layer was employed after the 1 x 1
group convolution. Through random permutation, the shuffling layer partly achieves interactions
among groups. But any output group accesses only m /g input feature maps and thus collects partial
information. Due to this reason, ShuffleNet had to employ a deeper architecture than MobileNets to
achieve competitive results.

3 Channel-Wise Convolutions and ChannelNets

In this work, we propose channel-wise convolutions in Section based on which we build our
ChannelNets. In Section[3.2] we apply group channel-wise convolutions to address the information
inconsistency problem caused by grouping. Afterwards, we generalize our method in Section [3.3]
which leads to a direct replacement of depth-wise separable convolutions in deeper layers. Through
analysis of the generalized method, we propose a convolutional classification layer to replace the
fully-connected output layer in Section which further reduces the amounts of parameters and
computations. Finally, Section [3.5]introduces the architecture of our ChannelNets.

3.1 Channel-Wise Convolutions

We begin with the definition of channel-wise convolutions in general. As discussed above, the 1 x 1
convolution is equivalent to using a shared fully-connected operation to scan every ds x ds locations
of input feature maps. A channel-wise convolution employs a shared 1-D convolutional operation,
instead of the fully-connected operation. Consequently, the connection pattern between input and



output channels becomes sparse, where each output feature map is connected to a part of input feature
maps. To be specific, we again start with the special case where dy = 1. The m input units (feature
maps) can be considered as a 1-D feature map of size m. Similarly, the output becomes a 1-D feature
map of size n. Note that both the input and output have only 1 channel. The channel-wise convolution
performs a 1-D convolution with appropriate padding to map the m units to the n units. In the cases
where dy > 1, the same 1-D convolution is computed for every spatial locations. As a result, the
number of parameters in a channel-wise convolution with a kernel size of d.. is simply d. and the
computational costis d. X n X dy x dy. By employing sparse connections, we avoid the m X n
term. Therefore, channel-wise convolutions consume a negligible amount of computations and can
be performed efficiently.

3.2 Group Channel-Wise Convolutions

We apply channel-wise convolutions to develop a solution to the information inconsistency problem
incurred by grouping. After the 1 x 1 group convolution, the outputs are g groups, each of which
includes n/g feature maps. As illustrated in Figure E(b), the g groups are computed independently
from completely separate groups of input feature maps. To enable interactions among groups, an
efficient information fusion layer is needed after the 1 x 1 group convolution. The fusion layer is
expected to retain the grouping for following group convolutions while allowing each group to collect
information from all the groups. Concretely, both inputs and outputs of this layer should be n feature
maps that are divided into g groups. Meanwhile, the n/g output channels in any group should be
computed from all the n input channels. More importantly, the layer must be compact and efficient;
otherwise the advantage of grouping will be compromised.

Based on channel-wise convolutions, we propose the group channel-wise convolution, which serves
elegantly as the fusion layer. Given n input feature maps that are divided into g groups, this operation
performs g independent channel-wise convolutions. Each channel-wise convolution uses a stride
of g and outputs n/g feature maps with appropriate padding. Note that, in order to ensure all n
input channels are involved in the computation of any output group of channels, the kernel size of
channel-wise convolutions needs to satisfy d. > g. The desired outputs of the fusion layer is obtained
by concatenating the outputs of these channel-wise convolutions. Figure[I(c) provides an example
of using the group channel-wise convolution after the 1 x 1 group convolution, which replaces the
original 1 x 1 convolution.

To see the efficiency of this approach, the number of parameters of the 1 x 1 group convolution

followed by the group channel-wise convolution is % X % X g 4+ d. X g, and the computational

costis 7t X & X dp X dy X g+de X 7 X df x dy x g. Since in most cases we have d. < m, our
approach requires approximately 1/g training parameters and FLOPs, as compared to the second
terms in Eqs. [Tjand 2]

3.3 Depth-Wise Separable Channel-Wise Convolutions

Based on the above descriptions, it is worth noting that there is a special case where the number of
groups and the number of input and output channels are equal, i.e., g = m = n. A similar scenario
resulted in the development of depth-wise convolutions [6} 2]]. In this case, there is only one feature
map in each group. The 1 x 1 group convolution simply scales the convolutional kernels in the
depth-wise convolution. As the batch normalization [8]] in each layer already involves a scaling term,
the 1 x 1 group convolution becomes redundant and can be removed. Meanwhile, instead of using
m independent channel-wise convolutions with a stride of m as the fusion layer, we apply a single
channel-wise convolution with a stride of 1. Due to the removal of the 1 x 1 group convolution, the
channel-wise convolution directly follows the depth-wise convolution, resulting in the depth-wise
separable channel-wise convolution, as illustrated in Figure [[[(d).

In essence, the depth-wise separable channel-wise convolution replaces the 1 x 1 convolution in
the depth-wise separable convolution with the channel-wise convolution. The connections among
channels are changed directly from a dense pattern to a sparse one. As a result, the number of
parameters is di, X dj, X m + d., and the costis di, X d, x m X d¢ x df +d. X n x df X d¢, which
saves dramatic amounts of parameters and computations. This layer can be used to directly replace
the depth-wise separable convolution.



3.4 Convolutional Classification Layer

an example, this layer uses a 1, 024-
component feature vector as inputs :
and produces 1, 000 logits correspond- Figure 2: An illustration of the convolutional classification
ing to 1,000 classes. Therefore, the layer. The left part describes the original output layers, i.e., a
number of parameters is 1,024 x global average pooling layer and a fully-connected classifica-
1,000 = 1 million, which accounts tion layer. The global pooling layer reduces the spatial size
for 24.33% of total parameters as re- dy X dy to 1 x 1 while keeping the number of channels. Then
ported in [6]. In this section, we the fully-connected classification layer changes the number
explore a special application of the of channels from m to n, where n is the number of classes.
depth-wise separable channel-wise The right part illustrates the proposed convolutional classifi-
convolution, proposed in Section[3.3] cation layer, which performs a single 3-D convolution with a
to reduce the large amount of param- kernel size of dy x dy x (m —n + 1) and no padding. The
eters in the classification layer. convolutional classification layer saves a significant amount
of parameters and computation.

Most prior model compression meth- d L ! d .
. . d¢ d¢

ods pay little attention to the very !
last layer of CNNs, which is a fully- Global Fully : Convolutional
connected layer used to generate Pooling Connected Classification Layer

. . . 1
c!asmﬁcahon results. Taking Mo- xn | dexdex(m —n + 1)
bileNets on the ImageNet dataset as m m n ;™ n

1

We note that the second-to-the-last
layer is usually a global average pooling layer, which reduces the spatial size of feature maps
to 1. For example, in MobileNets, the global average pooling layer transforms 1,024 7 x 7 input
feature maps into 1,024 1 x 1 output feature maps, corresponding to the 1, 024-component feature
vector fed into the classification layer. In general, suppose the spatial size of input feature maps is
dy x dy. The global average pooling layer is equivalent to a special depth-wise convolution with a
kernel size of dy x d, where the weights in the kernel is fixed to 1/ d?». Meanwhile, the following
fully-connected layer can be considered as a 1 x 1 convolution as the input feature vector can be
viewed as 1 x 1 feature maps. Thus, the global average pooling layer followed by the fully-connected
classification layer is a special depth-wise convolution followed by a 1 x 1 convolution, resulting in a
special depth-wise separable convolution.

As the proposed depth-wise separable channel-wise convolution can directly replace the depth-wise
separable convolution, we attempt to apply the replacement here. Specifically, the same special
depth-wise convolution is employed, but is followed by a channel-wise convolution with a kernel size
of d. whose number of output channels is equal to the number of classes. However, we observe that
such an operation can be further combined using a regular 3-D convolution [10].

In particular, the m dy x dy input feature maps can be viewed as a single 3-D feature map with a
size of dy x dy x m. The special depth-wise convolution, or equivalently the global average pooling
layer, is essentially a 3-D convolution with a kernel size of dy x dy x 1, where the weights in the
kernel is fixed to 1/ dfc. Moreover, in this view, the channel-wise convolution is a 3-D convolution
with a kernel size of 1 X 1 x d.. These two consecutive 3-D convolutions follow a factorized pattern.
As proposed in [22], a di x dj convolution can be factorized into two consecutive convolutions with
kernel sizes of dj x 1 and 1 x dj, respectively. Based on this factorization, we combine the two 3-D
convolutions into a single one with a kernel size of d¢ x dy x d.. Suppose there are n classes, to
ensure that the number of output channels equals to the number of classes, d. is set to (m —n + 1)
with no padding on the input. This 3-D convolution is used to replace the global average pooling
layer followed by the fully-connected layer, serving as a convolutional classification layer.

While the convolutional classification layer dramatically reduces the number of parameters, there is a
concern that it may cause a signification loss in performance. In the fully-connected classification
layer, each prediction is based on the entire feature vector by taking all features into consideration. In
contrast, in the convolutional classification layer, the prediction of each class uses only (m —n + 1)
features. However, our experiments show that the weight matrix of the fully-connected classification
layer is very sparse, indicating that only a small number of features contribute to the prediction of a
class. Meanwhile, our ChannelNets with the convolutional classification layer achieve much better
results than other models with similar amounts of parameters.



3.5 ChannelNets

With the proposed group channel-wise convo-

lutions, the depth-wise separable channel-wise
convolutions, and the convolutional classifica-
tion layer, we build our ChannelNets. We follow
the basic architecture of MobileNets to allow
fair comparison and design three ChannelNets
with different compression levels. Notably, our
proposed methods are orthogonal to the work Add

of MobileNetV2 [16]. Similar to MobileNets,

we can apply our methods to MobileNetV2 to @ ®

further reduce the parameters and computational ~Figure 3: Illustrations of the group module (GM)
cost. The details of network architectures are and the group channel-wise module (GCWM). Part
shown in Table[d]in the supplementary material. (a) shows GM, which has two depth-wise separable
convolutional layers. Note that 1 x 1 convolutions
is replaced by 1 x 1 group convolutions to save
computations. A skip connection is added to fa-
cilitate model training. GCWM is described in
part (b). Compared to GM, it has a group channel-
wise convolution to fuse information from different
groups.

ChannelNet-v1: To employ the group channel-
wise convolutions, we design two basic modules;
those are, the group module (GM) and the group
channel-wise module (GCWM). They are illus-
trated in Figure 3. GM simply applies 1 x 1
group convolution instead of 1 x 1 convolution
and adds a residual connection [3]]. As analyzed
above, GM saves computations but suffers from
the information inconsistency problem. GCWM
addresses this limitation by inserting a group
channel-wise convolution after the second 1 x 1
group convolution to achieve information fusion. Either module can be used to replace two consec-
utive depth-wise separable convolutional layers in MobileNets. In our ChannelNet-v1, we choose
to replace depth-wise separable convolutions with larger numbers of input and output channels.
Specifically, six consecutive depth-wise separable convolutional layers with 512 input and output
channels are replaced by two GCWMs followed by one GM. In these modules, we set the number of
groups to 2. The total number of parameters in ChannelNet-v1 is about 3.7 million.

ChannelNet-v2: We apply the depth-wise separable channel-wise convolutions on ChannelNet-v1
to further compress the network. The last depth-wise separable convolutional layer has 512 input
channels and 1, 024 output channels. We use the depth-wise separable channel-wise convolution to
replace this layer, leading to ChannelNet-v2. The number of parameters reduced by this replacement
of a single layer is 1 million, which accounts for about 25% of total parameters in ChannelNet-v1.

ChannelNet-v3: We employ the convolutional classification layer on ChannelNet-v2 to obtain
ChannelNet-v3. For the ImageNet image classification task, the number of classes is 1, 000, which
means the number of parameters in the fully-connected classification layer is 1024 X 1000 ~ 1 million.
Since the number of parameters for the convolutional classification layer isonly 7 x 7 x 25 ~ 1
thousand, ChannelNet-v3 reduces 1 million parameters approximately.

4 Experimental Studies

In this section, we evaluate the proposed ChannelNets on the ImageNet ILSVRC 2012 image
classification dataset [3]], which has served as the benchmark for model compression. We compare
different versions of ChannelNets with other compact CNNs. Ablation studies are also conducted
to show the effect of group channel-wise convolutions. In addition, we perform an experiment to
demonstrate the sparsity of weights in the fully-connected classification layer.

4.1 Dataset

The ImageNet ILSVRC 2012 dataset contains 1.2 million training images and 50 thousand validation
images. Each image is labeled by one of 1,000 classes. We follow the same data augmentation
process in [5]. Images are scaled to 256 x 256. Randomly cropped patches with a size of 224 x 224
are used for training. During inference, 224 x 224 center crops are fed into the networks. To compare



with other compact CNNss [6} 24]], we train our models using training images and report accuracies
computed on the validation set, since the labels of test images are not publicly available.

4.2 Experimental Setup

We train our ChannelNets using the same settings as those for MobileNets except for a minor change.
For depth-wise separable convolutions, we remove the batch normalization and activation function
between the depth-wise convolution and the 1 x 1 convolution. We observe that it has no influence
on the performance while accelerating the training speed. For the proposed GCWMs, the kernel size
of group channel-wise convolutions is set to 8. In depth-wise separable channel-wise convolutions,
we set the kernel size to 64. In the convolutional classification layer, the kernel size of the 3-D
convolution is 7 x 7 x 25. All models are trained using the stochastic gradient descent optimizer with
a momentum of 0.9 for 80 epochs. The learning rate starts at 0.1 and decays by 0.1 at the 45", 60",
65", 70", and 75" epoch. Dropout [20] with a rate of 0.0001 is applied after 1 x 1 convolutions.
We use 4 TITAN Xp GPUs and a batch size of 512 for training, which takes about 3 days.

4.3 Comparison of ChannelNet-v1 with Other Models

We compare ChannelNet-v1 with other CNNs,  Table 1: Comparison between ChannelNet-v1 and
mcludlng regular networks and compact ones, other CNNs in terms of the top-1 accuracy on the
in terms of the top-1 accuracy, the number of ImageNet validation set, the number of total pa-

parameters and the computational cost in terms  rameters, and FLOPs needed for classifying an
of FLOPs. The results are reported in Table E image.

We can see that ChannelNet-v1 is the most com- ~Models Top-1 Params FLOPs
pact and efficient network, as it achieves the best GoogleNet 0.698 6.8m 1550m
trade-off between efficiency and accuracy. VGGI6 0715 128m 15300m
We can see that SqueezeNet [7] has the smallest ~ AlexNet 0.572 60m 720m
size. However, the speed is even slower than  ~SqyeezeNet 0575 1.3m 233m

AlexNet and the accuracy is not competitive t0  ~1.() MobileNet 0.706 4m 560m

other compact CNNs. By replacing depth-wise  —gpuffleNet 2x 0.709 53m 574m

separable convolutions with GMs and GCWMSs, —GEparraNetvT 0,705 37m 407m

ChannelNet-v1 achieves nearly the same perfor-
mance as 1.0 MobileNet with a 11.9% reduction in parameters and a 28.5% reduction in FLOPs.
Here, the 1.0 represents the width multiplier in MobileNets, which is used to control the width of
the networks. MobileNets with different width multipliers are compared with ChannelNets under
similar compression levels in Section[#.4] ShuffleNet 2x can obtain a slightly better performance.
However, it employs a much deeper network architecture, resulting in even more parameters and
FLOPs than MobileNets. This is because more layers are required when using shuffling layers to
address the information inconsistency problem in 1 x 1 group convolutions. Thus, the advantage
of using group convolutions is compromised. In contrast, our group channel-wise convolutions can
overcome the problem without more layers, as shown by experiments in Section 4.5]

4.4 Comparison of ChannelNets with Models Using Width Multipliers

The width multiplier is proposed in [6] to make the Table 2: Comparison between ChannelNets
network architecture thinner by reducing the number  and other compact CNNs with width multi-
of input and output channels in each layer, thereby in- pliers in terms of the top-1 accuracy on the
creasing the compression level. This approach simply ImageNet validation set, and the number of to-

compresses each layer by the same factor. Note that  tal parameters. The numbers before the model
most of parameters lie in deep layers of the model. pames represent width multipliers.

Hence, reducing widths in shallow layers does not " Models Top-1 Params
lead to significant C‘?t“?f’r?“ion{ b?tt hind‘?rst I.noflfl 0.75 MobileNet 0684 2.6m
performance, since it is important to maintain the —== = KT 678 3 3m
number of channels in the shallow part of deep mod-

. ChannelNet-v2 0.695 2.7m
els. Our ChannelNets explore a different way to -
achieve higher compression levels by replacing the 0.5 MobileNet 0.637 1.3m
deepest layers in CNNs. Remarkably, ChannelNet-v3 0.5 ChannelNet-v1 0.627 1.2m
is the first compact network that attempts to compress ~_ ChannelNet-v3 0.667  1.7m

the last layer, i.e., the fully-connected classification layer.



We perform experiments to compare ChannelNet-v2 and ChannelNet-v3 with compact CNNs using
width multipliers. The results are shown in Table[2] We apply width multipliers {0.75,0.5} on both
MobileNet and ChannelNet-v1 to illustrate the impact of applying width multipliers. In order to
make the comparison fair, compact networks with similar compression levels are compared together.
Specifically, we compare ChannelNet-v2 with 0.75 MobileNet and 0.75 ChannelNet-v1, since the
numbers of total parameters are in the same 2.x million level. For ChannelNet-v3, 0.5 MobileNet and
0.5 ChannelNet-v1 are used for comparison, as all of them contain 1.x million parameters.

We can observe from the results that ChannelNet-v2 outperforms 0.75 MobileNet with an absolute
1.1% gain in accuracy, which demonstrates the effect of our depth-wise separable channel-wise
convolutions. In addition, note that using depth-wise separable channel-wise convolutions to replace
depth-wise separable convolutions is a more flexible way than applying width multipliers. It only
affects one layer, as opposed to all layers in the networks. ChannelNet-v3 has significantly better
performance than 0.5 MobileNet by 3% in accuracy. It shows that our convolutional classification
layer can retain the accuracy to most extent while increasing the compression level. The results also
show that applying width multipliers on ChannelNet-v1 leads to poor performance.

4.5 Ablation Study on Group Channel-Wise Convolutions

To demonstrate the effect of our group channel-wise con-  Typle 3: Comparison between ChannelNet-
volutions, we conduct an ablation study on ChannelNet- y] and ChannelNet-vl without group
vl. Based on ChannelNet-vl, we replace the twWo channel-wise convolutions, denoted as
GCWMs with GMs, thereby removing all group channel- - ChannelNet-v1(-). The comparison is in
wise convolutions. The model is denoted as ChannelNet-  terms of the top-1 accuracy on the Ima-
v1(-). It follows exactly the same experimental setup  geNet validation set, and the number of
as ChannelNet-v1 to ensure fairness. Table [3 pro- (otal parameters.

vides comparison results between ChannelNet-v1(- “Models Top-1 Params

) and ChannelNet-vl. ChannelNet-vl outperforms

ChannelNet-v1(-) by 0.8%, which is significant as gﬁzggggziﬁ(_) 8332 g;ﬁ
ChannelNet-v1 has only 32 more parameters with group . :
channel-wise convolutions. Therefore, group channel-wise convolutions are extremely efficient and
effective information fusion layers for solving the problem incurred by group convolutions.

4.6 Sparsity of Weights in Fully-Connected Classification Layers

In ChannelNet-v3, we replace the fully-connected classification layer with our convolutional classifi-
cation layer. Each prediction is based on only (m — n + 1) features instead of all n features, which
raises a concern of potential loss in performance. To investigate this further, we analyze the weight
matrix in the fully-connected classification layer, as shown in Figure d]in the supplementary material.
We take the fully- connected classification layer of ChannelNet-v1 as an example. The analysis shows
that the weights are sparsely distributed in the weight matrix, which indicates that each prediction
only makes use of a small number of features, even with the fully-connected classification layer.
Based on this insight, we propose the convolutional classification layer and ChannelNet-v3. As
shown in Section ChannelNet-v3 is highly compact and efficient with promising performance.

5 Conclusion and Future Work

In this work, we propose channel-wise convolutions to perform model compression by replacing
dense connections in deep networks. We build a new family of compact and efficient CNNs, known
as ChannelNets, by using three instances of channel-wise convolutions; namely group channel-wise
convolutions, depth-wise separable channel-wise convolutions, and the convolutional classification
layer. Group channel-wise convolutions are used together with 1 x 1 group convolutions as information
fusion layers. Depth-wise separable channel-wise convolutions can be directly used to replace depth-
wise separable convolutions. The convolutional classification layer is the first attempt in the field
of model compression to compress the the fully-connected classification layer. Compared to prior
methods, ChannelNets achieve a better trade-off between efficiency and accuracy. The current study
evaluates the proposed methods on image classification tasks, but the methods can be applied to other
tasks, such as detection and segmentation. We plan to explore these applications in the future.
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