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Abstract

Accurately answering a question about a given image requires combining obser-
vations with general knowledge. While this is effortless for humans, reasoning
with general knowledge remains an algorithmic challenge. To advance research
in this direction a novel ‘fact-based’ visual question answering (FVQA) task has
been introduced recently along with a large set of curated facts which link two
entities, i.e., two possible answers, via a relation. Given a question-image pair,
deep network techniques have been employed to successively reduce the large set
of facts until one of the two entities of the final remaining fact is predicted as the
answer. We observe that a successive process which considers one fact at a time
to form a local decision is sub-optimal. Instead, we develop an entity graph and
use a graph convolutional network to ‘reason’ about the correct answer by jointly
considering all entities. We show on the challenging FVQA dataset that this leads
to an improvement in accuracy of around 7% compared to the state of the art.

1 Introduction

When answering questions about images, we easily combine the visualized situation with general
knowledge that is available to us. However, for algorithms, an effortless combination of general
knowledge with observations remains challenging, despite significant work which aims to leverage
these mechanisms for autonomous agents and virtual assistants.

In recent years, a significant amount of research has investigated algorithms for visual question
answering (VQA) [2, 19, 32, 43, 44, 63], visual question generation (VQG) [21, 30, 36, 49], and visual
dialog [12,13,20], paving the way to autonomy for artificial agents operating in the real world. Images
and questions in these datasets cover a wide range of perceptual abilities such as counting, object
recognition, object localization, and even logical reasoning. However, for many of these datasets
the questions can be answered solely based on the visualized content, i.e., no general knowledge is
required. Therefore, numerous approaches address VQA, VQG and dialog tasks by extracting visual
cues using deep network architectures [1,2,11,16,18,19,24,32,33,35,41,44,53,56,57,59,60,63,65,
66, 68], while general knowledge remains unavailable.

To bridge this discrepancy between human behavior and present day algorithmic design, Wang et
al. [50] introduced a novel ‘fact-based’ VQA (FVQA) task, and an accompanying dataset containing
images, questions with corresponding answers and a knowledge base (KB) of facts extracted from
three different sources: WebChild [47], DBPedia [3] and ConceptNet [45]. Unlike classical VQA
datasets, a question in the FVQA dataset is answered by a collective analysis of the information in
the image and the KB of facts. Each question is mapped to a single supporting fact which contains
the answer to the question. Thus, answering a question requires analyzing the image and choosing
the right supporting fact, for which Wang et al. [50] propose a keyword-matching technique. This
approach suffers when the question doesn’t focus on the most obvious visual concept and when there
are synonyms and homographs. Moreover, special information about the visual concept type and
the answer source make it hard to generalize their approach to other datasets. We addressed these
issues in our previous work [38], where we proposed a learning-based approach which embeds the
image question pairs and the facts to the same space and ranks the facts according to their relevance.
We observed a significant improvement in performance which motivated us to explore other learning
based methods, particularly those which exploit the graphical structure of the facts.
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Question: What is the area in the image used 
for?
Relation: UsedFor
Visual Concept: Field
Fact: (Field, UsedFor, Grazing Animals) 
Answer: Grazing Animals

Question: Which object in the image is more 
similar to a tiger?
Relation: RelatedTo
Visual Concept: Cat
Fact: (Cat, RelatedTo, Tiger) 
Answer: Cat

Question: What can be found on the ground in this 
image?
Relation: AtLocation
Visual Concept: Beach
Fact: (Sand, AtLocation, Beach) 
Answer: Sand

Figure 1: Results of our graph convolutional net based approach on the recently introduced FVQA dataset.

In this work, our main motivation is to develop a technique which uses the information from multiple
facts before arriving at an answer and relies less on retrieving the single ‘correct’ fact needed to
answer a question. To this end, we develop a model which ‘thinks out of the box,’ i.e., it ‘reasons’
about the right answer by taking into account a list of facts via a Graph Convolution Network
(GCN) [25]. The GCN enables joint selection of the answer from a list of candidate answers, which
sets our approach apart from the previous methods that assess one fact at a time. Moreover, we select
a list of supporting facts in the KB by ranking GloVe embeddings. This handles challenges due to
synonyms and homographs and also works well with questions that don’t focus on the main object.

We demonstrate the proposed algorithm on the FVQA dataset [50], outperforming the state of the art
by around 7%. Fig. 1 shows results obtained by our model. Unlike the models proposed in [50], our
method does not require any information about the ground truth fact (visual concept type and answer
source). In contrast to our approach in [38], which focuses on learning a joint image-question-fact
embedding for retrieving the right fact, our current work uses a simpler method for retrieving multiple
candidate facts (while still ensuring that the recall of the ground truth fact is high), followed by a
novel GCN inference step that collectively assesses all the relevant facts before arriving at an answer.
Using an ablation analysis we find improvements due to the GCN component, which exploits the
graphical structure of the knowledge base and allows for sharing of information between possible
answers, thus improving the explainability of our model.

2 Related Work
We develop a visual question answering algorithm based on graph convolutional nets which benefits
from general knowledge encoded in the form of a knowledge base. We therefore briefly review
existing work in the areas of visual question answering, fact-based visual question answering and
graph convolutional networks.

Visual Question Answering: Recently, there has been significant progress in creating large VQA
datasets [2, 17, 23, 34, 41, 66] and deep network models which correctly answer a question about
an image. The initial VQA models [1, 2, 4, 11, 16, 17, 19, 24, 32, 33, 35, 41, 44, 53, 57, 59, 60, 65, 68]
combined the LSTM encoding of the question and the CNN encoding of the image using a deep
network which finally predicted the answer. Results can be improved with attention-based multi-
modal networks [1, 11, 16, 32, 43, 44, 57, 59] and dynamic memory networks [22, 56]. All of these
methods were tested on standard VQA datasets where the questions can solely be answered by
observing the image. No out of the box thinking was required. For example, given an image of a cat,
and the question, “Can the animal in the image be domesticated?,” we want our method to combine
features from the image with common sense knowledge (a cat can be domesticated). This calls for
the development of a model which leverages external knowledge.

Fact-based Visual Question Answering: Recent research in using external knowledge for natural
language comprehension led to the development of semantic parsing [5, 6, 10, 15, 28, 31, 38, 40, 46, 55,
61, 62, 64] and information retrieval [7–9, 14, 26, 48, 58] methods. However, knowledge based visual
question answering is fairly new. Notable examples in this direction are works by Zhu et al. [67], Wu
et al. [54], Wang et al. [51], Narasimhan et al. [37], Krishnamurthy and Kollar [27], and our previous
work, Narasimhan and Schwing [38].

Ask Me Anything (AMA) by Wu et al. [54], AHAB by Wang et al. [51], and FVQA by Wang et
al. [50] are closely related to our work. In AMA, attribute information extracted from the image is
used to query the external knowledge base DBpedia [3], to retrieve paragraphs which are summarized
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to form a knowledge vector. The knowledge vector is combined with the attribute vector and multiple
captions generated for the image, before being passed as input to an LSTM which predicts the answer.
The main drawback of AMA is that it does not perform any explicit reasoning and ignores the possible
structure in the KB. To address this, AHAB and FVQA attempt to perform explicit reasoning. In
AHAB, the question is converted to a database query via a multistep process, and the response to
the query is processed to obtain the final answer. FVQA also learns a mapping from questions to
database queries through classifying questions into categories and extracting parts from the question
deemed to be important. A matching score is computed between the facts retrieved from the database
and the question, to determine the most relevant fact which forms the basis of the answer for the
question. Both these methods use databases with a particular structure: facts are represented as tuples,
for example, (Apple, IsA, Fruit), and (Cheetah, FasterThan, Lion).

The present work follows up on our earlier method, Straight to the Facts (STTF) [38]. STTF uses
object, scene, and action predictors to represent an image and an LSTM to represent a question and
combines the two using a deep network. The facts are scored based on the cosine similarity of the
image-question embedding and fact embedding. The answer is extracted from the highest scoring
fact.

We evaluate our method on the dataset released as part of the FVQA work, referred to as the FVQA
dataset [50], which is a subset of three structured databases – DBpedia [3], ConceptNet [45], and
WebChild [47].

Graph Convolutional Nets: Kipf and Welling [25] introduced Graph Convolutional Networks
(GCN) to extend Conv nets (CNNs) [29] to arbitrarily connected undirected graphs. GCNs learn
representations for every node in the graph that encodes both the local structure of the graph
surrounding the node of interest, as well as the features of the node itself. At a graph convolutional
layer, features are aggregated from neighboring nodes and the node itself to produce new output
features. By stacking multiple layers, we are able to gather information from nodes further away.
GCNs have been applied successfully for graph node classification [25], graph link prediction [42],
and zero-shot prediction [52]. Knowledge graphs naturally lend themselves to applications of GCNs
owing to the underlying structured interactions between nodes connected by relationships of various
types. In this work, given an image and a question about the image, we first identify useful sub-graphs
of a large knowledge graph such as DBpedia [3] and then use GCNs to produce representations
encoding node and neighborhood features that can be used for answering the question.

Specifically, we propose a model that retrieves the most relevant facts to a question-answer pair based
on GloVe features. The sub-graph of facts is passed through a graph convolution network which
predicts an answer from these facts. Our approach has the following advantages: 1) Unlike FVQA
and AHAB, we avoid the step of query construction and do not use the ground truth visual concept or
answer type information which makes it possible to incorporate any fact space into our model. 2) We
use GloVe embeddings for retrieving and representing facts which works well with synonyms and
homographs. 3) In contrast to STTF, which uses a deep network to arrive at the right fact, we use a
GCN which operates on a subgraph of relevant facts while retaining the graphical structure of the
knowledge base which allows for reasoning using message passing. 4) Unlike previous works, we
have reduced the reliance on the knowledge of the ground truth fact at training time.

3 Visual Question Answering with Knowledge Bases

To jointly ‘reason’ about a set of answers for a given question-image pair, we develop a graph
convolution net (GCN) based approach for visual question answering with knowledge bases. In the
following we first provide an overview of the proposed approach before delving into details of the
individual components.

Overview: Our proposed approach is outlined in Fig. 2. Given an image I and a corresponding
question Q, the task is to predict an answer A while using an external knowledge base KB which
consists of facts, fi, i.e., KB = {f1, f2, . . . , f|KB|}. A fact is represented as a Resource Distribution
Framework (RDF) triplet of the form f = (x, r, y), where x is a visual concept grounded in the image,
y is an attribute or phrase, and r ∈ R is a relation between the two entities, x and y. The relations in
the knowledge base are part of a set of 13 possible relations R = {Category, Comparative, HasA,
IsA, HasProperty, CapableOf, Desires, RelatedTo, AtLocation, PartOf, ReceivesAction, UsedFor,
CreatedBy}. Subsequently we use x(f), y(f), or rel(f) to extract the visual concept x, the attribute
phrase y, or the relation r in fact f = (x, r, y) respectively.
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Figure 2: Outline of the proposed approach: Given an image and a question, we use a similarity scoring
technique (1) to obtain relevant facts from the fact space. An LSTM (2) predicts the relation from the question to
further reduce the set of relevant facts and its entities. An entity embedding is obtained by concatenating the
visual concepts embedding of the image (3), the LSTM embedding of the question (4), and the LSTM embedding
of the entity (5). Each entity forms a single node in the graph and the relations constitute the edges (6). A GCN
followed by an MLP performs joint assessment (7) to predict the answer. Our approach is trained end-to-end.

Every questionQ is associated with a single fact, f∗, that helps answer the question. More specifically,
the answer A is one of the two entities of that fact, i.e., either A = x∗ or A = y∗, both of which can
be extracted from f∗ = (x∗, r∗, y∗).

Wang et al. [50] formulate the task as prediction of a fact f̂ = (x̂, r̂, ŷ) for a given question-image pair,
and subsequently extract either x̂ or ŷ, depending on the result of an answer source classifier. As there
are over 190, 000 facts, retrieving the correct supporting fact f∗ is challenging and computationally
inefficient. Usage of question properties like ‘visual concept type’ makes the proposed approach hard
to extend.

Guided by the observation that the correct supporting fact f∗ is within the top-100 of a retrieval
model 84.8% of the time, we develop a two step solution: (1) retrieving the most relevant facts
for a given question-image pair. To do this, we extract the top-100 facts, i.e., f100 based on word
similarity between the question and the fact. Further, we obtain the set of relevant facts frel by
reducing f100 based on consistency of the fact relation r with a predicted relation r̂. (2) predicting
the answer as one of the entities in this reduced fact space frel. To predict the answer we use a GCN
to compute representations of nodes in a graph, where the nodes correspond to the unique entities
e ∈ E = {x(f) : f ∈ frel}∪{y(f) : f ∈ frel}, i.e., either x or y in the fact space frel. Two entities in
the graph are connected if a fact relates the two. Using a GCN permits to jointly assess the suitability
of all entities which makes our proposed approach different from classification based techniques.

For example, consider the image and the question shown in Fig. 2. The relation for this question is
“IsA” and the fact associated with this question-image pair is (Orange, IsA, Citric). The answer is
Orange. In the following we first discuss retrieval of the most relevant facts for a given question-image
pair before detailing our GCN approach for extracting the answer from this reduced fact space.

3.1 Retrieval of Relevant Facts

To retrieve a set of relevant facts frel for a given question-image pair, we pursue a score based
approach. We first compute the cosine similarity of the GloVe embeddings of the words in the fact
with the words in the question and the words of the visual concepts detected in the image. Because
some words may differ between question and fact, we obtain a fact score by averaging the Top-K
word similarity scores. We rank the facts based on their similarity and retrieve the top-100 facts for
each question, which we denote f100. We chose 100 facts as this gives the best downstream accuracy
as shown in Tab. 1. As indicated in Tab. 1, we observe a high recall of the ground truth fact in the
retrieved facts while using this technique. This motivates us to avoid a complex model which finds the
right fact, as used in [50] and [38], and instead use the retrieved facts to directly predict the answer.
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@1 @50 @100 @150 @200 @500
Fact Recall 22.6 76.5 84.8 88.4 91.6 93.1

Downstream Accuracy 22.6 58.93 69.35 68.23 65.61 60.22
Table 1: Recall and downstream accuracy for different number of facts.

We further reduce this set of 100 facts by assessing their relation attribute. To predict the relation
from a given question, we use the approach described in [38]. We retain the facts among the top-100
only if their relation agrees with the predicted relation r̂, i.e., frel = {f ∈ f100 : rel(f) = r̂}.
For every question, unique entities in the facts frel are grouped into a set of candidate entities,
E = {x(f) : f ∈ frel} ∪ {y(f) : f ∈ frel}, with |E| ≤ 200 (2 entities/fact and at most 100 facts).

Currently, we train the relation predictor’s parameters independently of the remaining model. In
future work we aim for an end-to-end model which includes this step.
3.2 Answer Prediction
Given the set of candidate entities E, we want to ‘reason’ about the answer, i.e., we want to predict
an entity ê ∈ E. To jointly assess the suitability of all candidate entities in E, we develop a Graph-
Convolution Net (GCN) based approach which is augmented by a multi-layer perceptron (MLP). The
nodes in the employed graph correspond to the available entities e ∈ E and their node representation
is given as an input to the GCN. The GCN combines entity representations in multiple iterative steps.
The final transformed entity representations learned by the GCN are then used as input in an MLP
which predicts a binary label, i.e., {1, 0}, for each entity e ∈ E, indicating if e is or isn’t the answer.

More formally, the goal of the GCN is to learn how to combine representations for the nodes e ∈ E
of a graph, G = (E, E). Its output feature representations depend on: (1) learnable weights; (2) an
adjacency matrix Aadj describing the graph structure E . We consider two entities to be connected if
they belong to the same fact; (3) a parametric input representation gw(e) for every node e ∈ E of
the graph. We subsume the original feature representations of all nodes in an |E| ×D-dimensional
feature matrix H(0) ∈ R|E|×D, where D is the number of features. In our case, each node e ∈ E is
represented by the concatenation of the corresponding image, question and entity representation, i.e.,
gw(e) = (gVw (I), gQw (Q), gCw (e)). Combining the three representations ensures that each node/entity
depends on the image and the question. The node representation is discussed in detail below.

The GCN consists of L hidden layers where each layer is a non-linear function f(·, ·). Specifically,

H(l) = f(H(l−1), A) = σ(D̃−1/2ÃD̃−1/2H(l−1)W (l−1)) ∀l ∈ {1, . . . , L}, (1)

where the input to the GCN is H(0), Ã = Aadj + I (I is an identity matrix), D̃ is the diagonal node
degree matrix of Ã, W (l) is the matrix of trainable weights at the l-th layer of the GCN, and σ(·) is a
non-linear activation function. We let the K-dimensional vector ĝ(e) ∈ RK refer to the output of the
GCN, extracted from H(L) ∈ R|E|×K . Hereby, K is the number of output features.

The output of the GCN, ĝ(e) is passed through an MLP to obtain the probability pNN
w (ĝ(e)) that

e ∈ E is the answer for the given question-image pair. We obtain our predicted answer Â via

Â = argmax
e∈E

pNN
w (ĝ(e)). (2)

As mentioned before, each node e ∈ E is represented by the concatenation of the corresponding
image, question and entity representation, i.e., gw(e) = (gVw (I), gQw (Q), gCw (e)). We discuss those
three representations subsequently.

1. Image Representation: The image representation, gVw (I) ∈ {0, 1}1176 is a multi-hot vector of
size 1176, indicating the visual concepts which are grounded in the image. Three types of visual
concepts are detected in the image: actions, scenes and objects. These are detected using the same
pre-trained networks described in [38].

2. Question Representation: An LSTM net is used to encode each question into the representation
gQw (Q) ∈ R128. The LSTM is initialized with GloVe embeddings [39] for each word in the question,
which is fine-tuned during training. The hidden representation of the LSTM constitutes the question
encoding.

3. Entity Representation: For each question, the entity encoding gCw (e) is computed for every entity
e in the entity set E. Note that an entity e is generally composed of multiple words. Therefore, similar
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Method Accuracy
@1 @3

LSTM-Question+Image+Pre-VQA [50] 24.98 40.40
Hie-Question+Image+Pre-VQA [50] 43.41 59.44
FVQA [50] 56.91 64.65
Ensemble [50] 58.76 -
Straight to the Facts (STTF) [38] 62.20 75.60

Ours Q VC Entity MLP GCN Layers Rel
1 X - X X - - 10.32 13.15
2 X - X X - @1 13.89 16.40
3 X - X X 2 @1 14.12 17.75
4 X X X X - - 29.72 35.38
5 X X X X - @1 50.36 56.21
6 X X X - 2 @1 48.43 53.87
7 X X X X 1 @1 54.60 60.91
8 X X X X 1 @3 57.89 65.14
9 X X X X 3 @1 56.90 62.32

10 X X X X 3 @3 60.78 68.65
11 X X X X 2 @1 65.80 77.32
12 X X X X 2 @3 69.35 80.25

13 X X X X 2 gt 72.97 83.01

Human 77.99 -
Table 2: Answer accuracy over the FVQA dataset.

to the question encoding, the hidden representation of an LSTM net is used. It is also initialized with
the GloVe embeddings [39] of each word in the entity, which is fine-tuned during training.

The answer prediction model parameters consists of weights from the question embedding, entity
embedding, GCN, and MLP. These are trained end-to-end.

3.3 Learning
We note that the answer prediction and relation prediction model parameters are trained separately.
The dataset, D = {(I,Q, f∗, A∗)}, to train both these parameters is obtained from [50]. It contains
tuples (I,Q, f∗, A∗) each composed of an image I , a question Q, as well as the ground-truth fact f∗
and answer A∗.

To train the relation predictor’s parameters we use the subset D1 = {(Q, r∗)}, containing pairs
of questions and the corresponding relations r∗ = rel(f∗) extracted from the ground-truth fact f∗.
Stochastic gradient descent and classical cross-entropy loss are used to train the classifier.

The answer predictor’s parameters, consist of the question and entity embeddings, the two hidden
layers of the GCN, and the layers of the MLP. The model operates on question-image pairs and
extracts the entity label from the ground-truth answer A∗ of the dataset D, i.e., 0 if it isn’t the answer
and 1 if it is. Again we use stochastic gradient descent and binary cross-entropy loss.

4 Experimental Evaluation
Before assessing the proposed approach subsequently, we first review properties of the FVQA dataset.
We then present quantitative results to compare our proposed approach with existing baselines before
illustrating qualitative results.

Factual visual question answering dataset: To evaluate our model, We use the publicly available
FVQA [50] knowledge base and dataset. This dataset consists of 2,190 images, 5,286 questions, and
4,126 unique facts corresponding to the questions. The knowledge base consists of 193,449 facts,
which were constructed by extracting top visual concepts for all images in the dataset and querying
for those concepts in the knowledge bases, WebChild [47], ConceptNet [45], and DBPedia [3].

Retrieval of Relevant Facts: As described in Sec. 3.1, a similarity scoring technique is used to
retrieve the top-100 facts f100 for every question. GloVe 100d embeddings are used to represent each
word in the fact and question. An initial stop-word removal is performed to remove stop words (such
as “what,” “where,” “the”) from the question. To assign a similarity score to each fact, we compute
the word-wise cosine similarity of the GloVe embedding of every word in the fact with the words in
the question and the detected visual concepts. We choose the top K% of the words in the fact with
the highest similarity and average these values to assign a similarity score to the fact. Empirically we

6



Sub-component Error % @1
Fact-retrieval 15.20
Relation prediction 9.4
Answer prediction(GCN) 6.05

Total error 30.65
Table 3: Error contribution of the sub-components of the model to the total Top-1 error (30.65%).

found K = 80 to give the best result. The facts are sorted based on the similarity and the 100 highest
scoring facts are filtered. Tab. 1 shows that the ground truth fact is present in the top-100 retrieved
facts 84.8% of the time and is retrieved as the top-1 fact 22.5% of the time. The numbers reported are
an average over the five test sets. We also varied the number of facts retrieved in the first stage and
report the recall and downstream accuracy in Tab. 1. The recall @50 (76.5%) is lower than the recall
@100 (84.8%), which causes the final accuracy of the model to drop to 58.93%. When we retrieve
150 facts, recall is 88.4% and final accuracy is 68.23%, which is slightly below the final accuracy
when retrieving 100 facts (69.35%). The final accuracy further drops as we increase the number of
retrieved facts to 200 and 500.

Predicting the relation: As described earlier, we use the network proposed in [38] to determine the
relation given a question. Using this approach, the Top-1 and Top-3 accuracy for relation prediction
are 75.4% and 91.97% respectively.

Predicting the Correct Answer: Sec. 3.2 explains in detail the model used to predict an answer
from the set of candidate entities E. Each node of the graph G is represented by the concatenation of
the image, question, and entity embeddings. The image embedding gVw (I) is a multi-hot vector of size
1176, indicating the presence of a visual concept in the image. The LSTM to compute the question
embedding gQw (Q) is initialized with GloVe 100d embeddings for each of the words in the question.
Batch normalization and a dropout of 0.5 is applied after both the embedding layer and the LSTM
layer. The question embedding is given by the hidden layer of the LSTM and is of size 128. Each
entity e ∈ E is also represented by a 128 dimensional vector gCw (e) which is computed by an LSTM
operating on the words of the entity e. The concatenated vector gw(e) = (gVw (I), gQw (Q), gCw (e)) has
a dimension of 1429 (i.e., 1176+128+128).

For each question, the feature matrix H(0) is constructed from the node representations gw(e). The
adjacency matrix Aadj denotes the edges between the nodes. It is constructed by using the Top-1 or
Top-3 relations predicted in Sec. 3.1. The adjacency matrix Aadj ∈ {0, 1}200×200 is of size 200× 200
as the set E has at most 200 unique entities (i.e., 2 entities per fact and 100 facts per question). The
GCN consists of 2 hidden layers, each operating on 200 nodes, and each node is represented by a
feature vector of size 512. The representations of each node from the second hidden layer, i.e., H(2)

are used as input for a multi-layer perceptron which has 512 input nodes and 128 hidden nodes. The
output of the hidden nodes is passed to a binary classifier that predicts 0 if the entity is not the answer
and 1 if it is. The model is trained end-to-end over 100 epochs with batch gradient descent (Adam
optimizer) using cross-entropy loss for each node. Batch normalization and a dropout of 0.5 was
applied after each layer. The activation function used throughout is ReLU.

To prove the effectiveness of our model, we show six ablation studies in Tab. 2. Q, VC, Entity denote
question, visual concept, and entity embeddings respectively. ‘11’ is the model discussed in Sec. 3
where the entities are first filtered by the predicted relation and each node of the graph is represented
by a concatenation of the question, visual concept, and entity embeddings. ‘12’ uses the top three
relations predicted by the question-relation LSTM net and retains all the entities which are connected
by these three relations. ‘13’ uses the ground truth relation for every question.

To validate the approach we construct some additional baselines. In ‘1,’ each node is represented using
only the question and the entity embeddings and the entities are not filtered by relation. Instead, all
the entities in E are fed to the MLP. ‘2’ additionally filters based on relation. ‘3’ introduces a 2-layer
GCN before the MLP. ‘4’ is the same as ‘1’ except each node is now represented using question,
entity and visual concept embeddings. ‘5’ filters by relation and skips the GCN by feeding the entity
representations directly to the MLP. ‘6’ skips the MLP and the output nodes of the GCN are directly
classified using a binary classifier. We observe that there is a significant improvement in performance
when we include the visual concept features in addition to question and entity embeddings, thus
highlighting the importance of the visual concepts. Without visual concepts, the facts retrieved in the
first step have low recall which in turn reduces the downstream test accuracy.
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Question: Which object in this image can fly?
Predicted/GT Relation: CapableOf
Relevant Visual Concept: Frisbee
Supporting Fact: (Frisbee, CapableOf, Flying)
Predicted/GT Answer: Frisbee

Question: Which is the yellow fruit in this image?
Predicted/GT Relation: IsA
Relevant Visual Concept: Banana
Supporting Fact: (Banana, IsA, Yellow fruit)
Predicted/GT Answer: Banana

Figure 3: Visual Concepts (VCs) detected by our model. For each image we detect objects, scenes, and
actions. We observe the supporting facts to have strong alignment with the VCs which proves the effectiveness
of including VCs in our model.

We also report the top-1 and top-3 accuracy obtained by varying the number of layers in the GCN.
With 3 layers (‘9’ and ‘10’), our model overfits, causing the test accuracy to drop to 60.78%. With
1 layer (‘7’ and ‘8’), the accuracy is 57.89% and we hypothesize that this is due to the limited
information exchange that occurs with one GCN layer. We observe a correlation between the sparsity
of the adjacency matrix and the performance of the 1 layer GCN model. When the number of facts
retrieved is large and the matrix is less sparse, the 1 layer GCN model makes a wrong prediction.
This indicates that the 2nd layer of the GCN allows for more message passing and provides a stronger
signal when there are many facts to analyze.

We compare the accuracy of our model with the FVQA baselines and our previous work, STTF in
Tab. 2. The accuracy reported here is averaged over all five train-test splits. As shown, our best
model ‘13’ outperforms the state-of-the-art STTF technique by more than 7% and the FVQA baseline
without ensemble by over 12%. Note that combining GCN and MLP clearly outperforms usage of
only one part. FVQA and STTF both try to predict the ground truth fact. If the fact is predicted
incorrectly, the answer will also be wrong, thus causing the model to fail. Our method circumvents
predicting the fact and instead uses multiple relevant facts to predict the answer. This approach clearly
works better.

Synonyms and homographs: Here we show the improvements of our model compared to the
baseline with respect to synonyms and homographs. To retrieve the top 100 facts, we use trainable
word embeddings which are known to group synonyms and separate homographs.

We ran additional tests using Wordnet to determine the number of question-fact pairs which contain
synonyms. The test data contains 1105 such pairs out of which our model predicts 95.38% correctly,
whereas the FVQA and STTF models predict 78% and the 91.6% correctly. In addition, we manually
generated 100 synonymous questions by replacing words in the questions with synonyms (e.g. “What
in the bowl can you eat?", is rephrased as, “What in the bowl is edible?"). Tests on these 100 new
samples find that our model predicts 91 of these correctly, whereas the key-word matching FVQA
technique gets only 61 of these right. As STTF also uses GloVe embeddings, it gets 89 correct.
With regards to homographs, the test set has 998 questions which contain words that have multiple
meanings across facts. Our model predicts correct answers for 81.16%, whereas the FVQA model
and STTF model get 66.33% and 79.4% correct, respectively.

Qualitative results: As described in Sec. 3.2, the image embedding is constructed based on the
visual concepts detected in the image. Fig. 3 shows the object, scene, and action detection for two
examples in our dataset. We also indicate the question corresponding to the image, the supporting
fact, relation, and answer detected by our model. Using the high-level features helps summarize the
salient content in the image as the facts are closely related to the visual concepts. We observe our
model to work well even when the question does not focus on the main visual concept in the image.
Tab. 2 shows that including the visual concept improves the accuracy of our model by nearly 20%.

Fig. 4 depicts a few success and failure examples of our method. In our model, predicting the correct
answer involves three main steps: (1) Selecting the right supporting fact in the Top-100 facts, f100;
(2) Predicting the right relation; (3) Selecting the right entity in the GCN. In the top two rows of
examples, our model correctly executes all the three steps. As shown, our model works for visual
concepts of all three types, i.e., actions, scenes and objects. Examples in the second row indicates
that our model works well with synonyms and homographs as we use GloVe embeddings of words.
The second example in the second row shows that our method obtains the right answer even when the
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Question: What in this image is made 
by baking? 
Pred. Relation: Category
Pred. Visual Concept: Donut (object) 
Supporting Fact: 
(Donut, Category, Cooking) 

Pred./GT Answer: Donut

Question: What object in this image is 
spiky? 
Pred. Relation: RelatedTo
Pred. Visual Concept: Pineapple 
(object) 
Supporting Fact: 
(Pineapple, RelatedTo, Spiky)
Pred./GT Answer: Pineapple

Question: Which object in this image is 
venomous?
Pred. Relation: HasProperty
Pred. Visual Concept: Snake (object) 
Supporting Fact: 
(Snake, HasProperty, Venomous)

Pred./GT Answer: Snake

Question: Which action shown here is 
faster than walking?
Pred. Relation: Comparative (faster)
Pred. Visual Concept: Cycling (action) 
Supporting Fact: 
(Cycling, Faster, Walking)

Pred./GT Answer: Cycling

Question: Which vehicle shown here 
can float? 
Pred. Relation: CapableOf
Pred. Visual Concept: Boat 
(object) 
Supporting Fact: 
(Boat, CapableOf, Sailing) 
Pred./GT Answer: Boat

Question: What is the place in this 
image used for? 
Pred. Relation: UsedFor
Pred. Visual Concept: Kitchen 
(scene) 
Supporting Fact: 
(Kitchen, UsedFor, Cooking) 
Pred./GT Answer: Kitchen

Question: What does the animal in 
the image like to chase? 
Pred. Relation: CapableOf
Pred. Visual Concept: Cat (object) 
Supporting Fact: 
(Cat, CapableOf, Hunting mice) 

Pred./GT Answer: Cat

Question: What is the plant-eating 
animal shown here? 
Pred. Relation: Category
Pred. Visual Concept: Giraffe 
(object) 
Supporting Fact: 
(Giraffe, Category, Herbivore) 
Pred./GT Answer: Giraffe

Question: What is the object that the 
picture is taken from used for?
Pred. Relation: UsedFor
GT Supporting Fact: (Airplane, 
UsedFor, Flying)
Pred. Answer: Printing pictures 
GT Answer: Flying 

Error: GT Fact not retrieved in Top–
100. 

Question: What object in this image is 
used for entering data? 
Pred. Relation: UsedFor
GT Supporting Fact: (Keyboard, 
UsedFor, Data entry) 
Pred. Answer: Laptop
GT Answer: Keyboard

Error: GCN predicted the wrong node.

Question: What object in this image is 
used to play polka music? 
Pred. Relation: UsedFor
GT Relation: ReceivesAction
GT Supporting Fact: 
(Accordion, ReceivesAction, Polka Music) 
Pred. Answer: Guitar
GT Answer: Accordion
Error: Incorrect annotation / 
Wrong relation predicted.

Question: What game is shown here? 
Pred. Relation: IsA
GT Supporting Fact: (Rock-paper-
scissors, IsA, Game) 
Pred. Answer: Soccer
GT Answer: Rock-paper-scissors 

Error: GT Fact not retrieved in Top–
100. 

Figure 4: Success and failure cases: Success cases are shown in the top two rows. Our method correctly predicts
the relation, visual concept, and the answer. The bottom row shows three different failure cases.

question and the fact do not have many words in common. This is due to the comparison with visual
concepts while retrieving the facts.

The last row shows failure cases. Our method fails if any of the three steps produce incorrect output.
In the first example the ground-truth fact (Airplane, UsedFor, Flying) isn’t part of the top-100. This
happens when words in the fact are neither related to the words in the question nor the list of visual
concepts. A second failure mode is due to wrong node/entity predictions (selecting laptop instead
of keyboard), e.g., because a similar fact, (Laptop, UsedFor, Data processing) exists. These type of
errors are rare (Tab. 3) and happen only when the fact space contains a fact similar to the ground truth
one. The third failure mode is due to relation prediction accuracies which are around 75%, and 92%
for Top-1 and Top-3 respectively, as shown in [38].

5 Conclusions
We developed a method for ‘reasoning’ in factual visual question answering using graph convolution
nets. We showed that our proposed algorithm outperforms existing baselines by a large margin of
7%. We attribute these improvements to ‘joint reasoning about answers,’ which facilitates sharing
of information before making an informed decision. Further, we achieve this high increase in
performance by using only the ground truth relation and answer information, with no reliance on the
ground truth fact. Currently, all the components of our model except for fact retrieval are trainable
end-to-end. In the future, we plan to extend our network to incorporate this step into a unified
framework.
Acknowledgments: This material is based upon work supported in part by the National Science
Foundation under Grant No. 1718221 and Grant No. 1563727, Samsung, 3M, IBM-ILLINOIS Center
for Cognitive Computing Systems Research (C3SR), Amazon Research Award, and AWS Machine
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