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Abstract

While great progress has been made recently in automatic image manipulation, it
has been limited to object centric images like faces or structured scene datasets. In
this work, we take a step towards general scene-level image editing by developing
an automatic interaction-free object removal model. Our model learns to find and
remove objects from general scene images using image-level labels and unpaired
data in a generative adversarial network (GAN) framework. We achieve this
with two key contributions: a two-stage editor architecture consisting of a mask
generator and image in-painter that co-operate to remove objects, and a novel GAN
based prior for the mask generator that allows us to flexibly incorporate knowledge
about object shapes. We experimentally show on two datasets that our method
effectively removes a wide variety of objects using weak supervision only.

1 Introduction

Automatic editing of scene-level images to add/remove objects and manipulate attributes of objects
like color/shape etc. is a challenging problem with a wide variety of applications. Such an editor can
be used for data augmentation [1], test case generation, automatic content filtering and visual privacy
filtering [2]. To be scalable, the image manipulation should be free of human interaction and should
learn to perform the editing without needing strong supervision. In this work, we investigate such
an automatic interaction free image manipulation approach that involves editing an input image to
remove target objects, while leaving the rest of the image intact.

The advent of powerful generative models like generative adversarial networks (GAN) has led to
significant progress in various image manipulation tasks. Recent works have demonstrated altering
facial attributes like hair color, orientation [3], gender [4] and expressions [5] and changing seasons
in scenic photographs [6]. An encouraging aspect of these works is that the image manipulation is
learnt without ground truth supervision, but with using unpaired data from different attribute classes.
While this progress is remarkable, it has been limited to single object centric images like faces or
constrained images like street scenes from a single point of view [7]. In this work we move beyond
these object-centric images and towards scene-level image editing on general images. We propose an
automatic object removal model that takes an input image and a target class and edits the image to
remove the target object class. It learns to perform this task with only image-level labels and without
ground truth target images, i.e. using only unpaired images containing different object classes.

Our model learns to remove objects primarily by trying to fool object classifiers in a GAN framework.
However, simply training a generator to re-synthesize the input image to fool object classifiers leads
to degenerate solutions where the generator uses adversarial patterns to fool the classifiers. We
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address this problem with two key contributions. First we propose a two-stage architecture for
our generator, consisting of a mask generator, and an image in-painter which cooperate to achieve
removal. The mask generator learns to fool the object classifier by masking some pixels, while the
in-painter learns to make the masked image look realistic. The second part of our solution is a GAN
based framework to impose shape priors on the mask generator to encourage it to produce compact
and coherent shapes. The flexible framework allows us to incorporate different shape priors, from
randomly sampled rectangles to unpaired segmentation masks from a different dataset. Furthermore,
we propose a novel locally supervised real/fake classifier to improve the performance of our in-painter
for object removal. Our experiments show that our weakly supervised model achieves on par results
with a baseline model using a fully supervised Mask-RCNN [8] segmenter in a removal task on the
COCO [9] dataset.

An important use-case of our system would be in automatic content filtering, e.g. for privacy
or parental control. This would involve automatic removal of objects and sensitive content from
large databases or continuous streams of images. Content to be removed in these scenarios are
often personalized and beyond the usually studied object categories in computer vision. Thus a
system which can learn to remove these objects from cheap image-level labels would be useful. We
demonstrate the applicability of our object remover model to such content filtering task, by training it
to automatically remove brand logos from images with only image level labels.

2 Related work

Generative adversarial networks. Generative adversarial networks (GAN) [10] are a framework
where a generator learns by competing in an adversarial game against a discriminator network. The
discriminator learns to distinguish between the real data samples and the “fake” generated samples.
The generator is optimized to fool the discriminator into classifying generated samples as real. The
generator can be conditioned on additional information to learn conditional generative models [11].
Image manipulation with unpaired data. A conditional GAN based image-to-image translation
system was developed in [12] to manipulate images using paired supervision data. Li et al. [6]
alleviated the need for paired supervision using cycle constraints and demonstrated translation
between two different domains of unpaired images including (horse↔zebras) and (summer↔winter).
Similar cyclic reconstruction constraints were extended to multiple domains to achieve facial attributes
manipulation without paired data [5]. Nevertheless these image manipulation works have been limited
to object centric images like faces [5] or constrained images like street scenes from one point of
view [6]. In our work we take a step towards general scene-level manipulation by addressing the
problem of object removal from generic scenes. Prior works on scene-level images like the COCO
dataset have focused on synthesizing entire images conditioned on text [13–15] and scene-graphs [16].
However generated image quality on scene-level images [16] is still significantly worse than on
structured data like faces [17]. In contrast we focus on the manipulation of parts of images rather
than full image synthesis and achieve better image quality and control.
Object removal. We propose a two-staged editor with a mask-generator and image in-painter which
jointly learn to remove the target object class. Prior works on object removal focus on algorithmic
improvements to in-painting while assuming users provide the object mask [18–20]. One could argue
that object segmentation masks can be obtained by a stand alone segmenter like Mask-RCNN [8]
and just in-paint this masked region to achieve removal. However, this needs expensive mask
annotation to supervise the segmentation networks for every category of image entity one wishes to
remove for example objects or brand logos.Additionally, as we show in our experiments, even perfect
segmentation masks are not sufficient for perfect removal. They tend to trace the object shapes too
closely and leave object silhouettes giving away the object class. In contrast, our model learns to
perform removal by jointly optimizing the mask generator and the in-painter for the removal task with
only weak supervision from image-level labels. This joint optimization allows the two components to
cooperate to achieve removal performance on par with a fully supervised segmenter based removal.

3 Learning to remove objects

We propose an end-to-end model which learns to find and remove objects automatically from images
without any human interaction. It learns to perform this removal with only access to image-level
labels without needing expensive ground-truth location information like bounding boxes or masks.
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Figure 1: Illustrating (a) the proposed two-staged architecture and (b) the motivation for this approach

Additionally, we do not have ground-truth target images showing the expected output image with the
target object removed since it is infeasible to obtain such data in general.

We overcome the lack of ground-truth location and target image annotations by designing a generative
adversarial framework (GAN) to train our model with only unpaired data. Here our editor model
learns from weak supervision from three different classifiers. The model learns to locate and remove
objects by trying to fool an object classifier. It learns to produce realistic output by trying to fool an
adversarial real/fake classifier. Finally, it learns to produce realistic looking object masks by trying to
fool a mask shape classifier. Let us examine these components in detail.

3.1 Editor architecture: A two-staged approach

Recent works [4, 5] on image manipulation utilize a generator network which takes the input image
and synthesizes the output image to reflect the target attributes. While this approach works well
for structured images of single faces, we found in own experiments that it does not scale well for
removing objects from general scene images. In general scenes with multiple objects, it is difficult
for the generator to remove only the desired object while re-synthesizing the rest of the image
exactly. Instead, the generator finds the easier solution to fool the object classifier by producing
adversarial patterns. This is also facilitated by the fact that the object classifier in crowded scenes
has a much harder task than a classifier determining hair-colors in object centric images and thus is
more susceptible to adversarial patterns. Figure 1b illustrates this observation, where a single stage
generator from [5] trying to remove the person, fools the classifier using adversarial noise. We can
also see that the colors of the entire image have changed even when removing a single local object.

We propose a two-staged generator architecture shown in Figure 1a to address this issue. The first
stage is a mask generator, GM , which learns to locate the target object class, ct, in the input image x
and masks it out by generating a binary mask m = GM (x, ct). The second stage is the in-painter, GI ,
which takes the generated mask and the masked-out image as input and learns to in-paint to produce
a realistic output. Given the inverted mask m̃ = 1−m, final output image y is computed as

y = m̃ · x+m ·GI (m̃ · x) (1)

The mask generator is trained to fool the object classifier for the target class whereas the in-painter is
trained to only fool the real/fake classifier by minimizing the loss functions shown below.

Lcls(GM ) = −Ex [log(1−Dcls(y, ct))] (2)
Lrf(GI) = −Ex [Drf(y)] (3)

where Dcls(y, ct) is the object classifier score for class ct and Drf is the real/fake classifier.

Here Drf is adversarial, i.e. it is constantly updated to classify generated samples y as “fake”. The
object classifier Dcls however is not adversarial, since it leads to the classifier using the context to
predict the object class even when the whole object is removed. Instead, to make the Dcls robust to
partially removed objects, we train it on images randomly masked with rectangles. The multiplicative
configuration in (1) makes it easy for GM to remove the objects by masking them out. Additionally,
the in-painter also does not produce adversarial patterns as it is not optimized to fool the object
classifier but only to make the output image realistic. The efficacy of this approach is illustrated in
the image on the right on Figure 1b, where our two-staged model is able to cleanly remove the person
without affecting the rest of the image.
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Figure 2: Imposing mask priors with a GAN framework

While the two-stage architecture avoids ad-
versarial patterns and converge to desirable
solutions, it is not sufficient. The mask gen-
erator can still produce noisy masks or con-
verge to bad solutions like masking most
of the image to fool the object classifier.
A simple solution is to favor small sized
masks. We do this by simply minimizing
the exponential function of the mask size,
exp(Σijmij). But this only penalizes large
masks but not noisy or incoherent masks.

To avoid these degenerate solutions, we
propose a novel mechanism to regularize
the mask generator to produce masks close
to a prior distribution. We do this by minimizing the Wasserstein distance between the generated
mask distribution and the prior distribution P (m) using Wasserstein GAN (WGAN) [21] as shown
in Figure 2. The WGAN framework allows flexibility while choosing the prior since we only need
samples from the prior and not a parametric form for the prior.

The prior can be chosen with varying complexity depending on the amount of information available,
including knowledge about shapes of different object classes. For example we can use unpaired
segmentation masks from a different dataset as a shape prior to the generator. When this is not
available, we can impose the prior that objects are usually continuous coherent shapes by using
simple geometric shapes like randomly generated rectangles as the prior distribution.

Given a class specific prior mask distribution, P (mp|ct), we setup a discriminator, DM to assign
high scores to samples from this prior distribution and the masks generated by GM (x, ct). The
mask generator is then additionally optimized to fool the discriminator DM . The adversarial losses
minimized by DM and GM are as below:

L(DM ) = Ex [DM (GM (x, ct), ct)]− Emp∼P (mp|ct) [DM (mp, ct)] (4)

Lprior(GM ) = −Ex [DM (GM (x, ct), ct)] (5)

3.3 Optimizing the in-painting network for removal

The in-painter network GI is tasked with synthesizing a plausible image patch to fill the region
masked-out by GM , to produce a realistic output image. Similar to prior works on in-painting [22–
24], we train GI with self-supervision by trying to reconstruct random image patches and weak
supervision from fooling an adversarial real/fake classifier. The reconstruction loss encourages GI to
keep consistency with the image while the adversarial loss encourages it to produce sharper images.
Reconstruction losses. To obtain self-supervision to the in-painter we mask random rectangular
patches mr from the input and ask GI to reconstruct these patches. We minimize the L1 loss and the
perceptual loss [25] between the in-painted image and the input as follows:

Lrecon(GI) = ‖GI (m̃r · x)− x‖1 + Σk ‖φk (GI (m̃r · x))− φk(x)‖1 (6)

Mask buffer. The masks generated by GM (x, ct) can be of arbitrary shape and hence the in-painter
should be able to fill in arbitrary holes in the image. We find that the in-painter trained only on
random rectangular masks performs poorly on masks generated by GM . However, we cannot simply
train the in-painter with reconstruction loss in (6) on masks generated by GM . Unlike random masks
mr which are unlikely to align exactly with an object, generated masks GM (x, ct) overlap the objects
we intend to remove. Using reconstruction loss here would encourage the in-painter to regenerate
this object. We overcome this by storing generated masks from previous batches in a mask buffer and
randomly applying them on images from the current batch. These are not objects aligned anymore
due to random pairing and we train the in-painter GI with the reconstruction loss, allowing it to adapt
to the changing mask distribution produced by the GM (x, ct).
Local real/fake loss. In recent works on in-painting using adversarial loss [22–24], in-painter is
trained adversarially against a classifier Drf which learns to predict global “real” and “fake” labels for
input x and the generated images y respectively. A drawback with this formulation is that only a small
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percentage of pixels in the output y is comprised of truly “fake” pixels generated by the in-painter, as
seen in Equation (1). This is a hard task for the classifier Drf hard since it has to find the few pixels
that contribute to the global “fake” label. We tackle this by providing local pixel-level real/fake labels
on the image to Drf instead of a global one. The pixel-level labels are available for free since the
inverted mask m̃ acts as the ground-truth “real” label for Drf. Note that this is different from the
patch GAN [12] where the classifier producing patch level real/fake predictions is still supervised
with a global image-level real/fake label. We use the least-square GAN loss [26] to train the Drf,
since we found the WGAN loss to be unstable with local real/fake prediction. This is because, Drf
can minimize the WGAN loss with assigning very high/low scores to one patch, without bothering
with the other parts of the image. However, least-squares GAN loss penalizes both very high and
very low predictions, thereby giving equal importance to different image regions.

L(Drf) =
1

Σijm̃ij

∑
ij

m̃ij · (Drf(y)ij − 1)2 +
1

Σijmij

∑
ij

mij · (Drf(y)ij + 1)2 (7)

Penalizing variations. We also incorporate the style-loss (Lsty) proposed in [24] to better match the
textures in the in-painting output with that of the input image and the total variation loss (Ltv) since it
helps produce smoother boundaries between the in-painted region and the original image.

The mask generator and the in-painter are optimized in alternate epochs using gradient descent. When
the GM is being optimized, parameters of GI are held fixed and vice-versa when GI is optimized.
We found that optimizing both the models at every step led to unstable training and many training
instances converged to degenerate solutions. Alternate optimization avoids this while still allowing
the mask generator and in-painter to co-adapt. The final loss function for GM and GI is given as:

Ltotal(GM ) = λcLcls + λpLprior + λsz exp(Σijmij) (8)
Ltotal(GI) = λrfLrf + λrLrecon + λtvLtv + λstyLsty (9)

4 Experimental setup
Datasets. Keeping with the goal of performing removal on general scene images, we train and test
our model mainly on the COCO dataset [9] since it contains significant diversity within object classes
and in the contexts in which they appear. We test our proposed GAN framework to impose priors
on the mask generator with two different priors namely rotated boxes and unpaired segmentation
masks. We use the segmentation masks from Pascal-VOC 2012 dataset [27] (without the images) as
the unpaired mask priors. To facilitate this we restrict our experiments on 20 classes shared between
the COCO and Pascal datasets. To demonstrate that our editor model can generalize beyond objects
and can learn to remove to different image entities, we test our model on the task of removing logos
from natural images. We use the Flickr Logos dataset [28], which has a training set of 810 images
containing 27 annotated logo classes and a test set of 270 images containing 5 images per class
and 135 random images containing no logos. Further details about data pre-processing and network
architectures is presented in the supplementary material.

Evaluation metrics. We evaluate our object removal for three aspects: removal performance to
measure how effective is our model at removing target objects and image quality assessment to
quantify how much of the original image is edited and finally human evaluation to judge removal.
• Removal performance: We quantify the removal performance by measuring the performance
of an object classifier on the edited images using two metrics. Removal success rate measures the
percentage of instances where the editor successfully fools the object classifier score below the
decision boundary for the target object class.False removal rate measures the percentage of cases
where the editor removes the wrong objects while trying to remove the target class. This is again
measured by monitoring if the object classifier score drops below decision boundary for other classes.
• Image quality assessment: To be useful, our editor should remove the target object class while
leaving the rest of the image intact.Thus, we quantify the usefulness by measuring similarity between
the output and the input image using three metrics namely peak signal-to-noise ratio (pSNR), structural
similarity index (ssim) [29] and perceptual loss [30]. The first two are standard metrics used in image
in-painting literature, whereas the perceptual loss [30] was recently proposed as a learned metric to
compare two images. We use the squeezenet variant of this metric.
• Human evaluation: We conduct a study to obtain human judgments of removal performance.
We show hundred randomly selected edited images to a human judge and asked if they see the
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Figure 3: Qualitative examples of removal of different object classes

target object class. To keep the number of annotations reasonable, we conduct the human evaluation
only on the person class (largest class). Each image is shown to three separate judges and removal
is considered successful when all three humans agree that they do not see the object class. The
participants in the study were not aware of the project and were just asked to determine if they see a
’person’ (either full body or clear body parts/ silhouettes) in the images shown. The outputs from
different models were all shown in the same session to a human judge in a randomized order to
prevent biasing the results against latter models. This human study evaluates the removal system
holistically and helps verify that the removal performance measured by a classifier is similar to as
perceived by the humans, and thus validating the automatic evaluation protocol.

Baselines with additional supervision. Since there is no prior work proposing a fully automatic
object removal solution, we compare our model against removal using a stand-alone fully supervised
segmentation model, Mask-RCNN [8]. We obtain segmentation mask predictions from Mask-RCNN
and use our trained in-painter to achieve removal. Additionally we also compare our model to a
weakly supervised segmentation method from [31] (referred to as SDI), which learns to segment
objects by using ground truth bounding boxes as supervision. Please note that both the above methods
use stronger supervision in terms of object bounding boxes (Mask-RCNN and SDI) and object
segmentation (Mask-RCNN) than our proposed method, which uses only image level labels.

5 Results
We present qualitative and quantitative evaluations of our editor and comparisons to the Mask-RCNN
based removal. Qualitative results show that our editor model works well across diverse scene types
and object classes. Quantitative analysis shows that our weakly supervised model performs on par
with the fully supervised Mask-RCNN in the removal task, in both automatic and human evaluation.

5.1 Qualitative results

Figure 3 shows the results of object removal performed by our model (last row) on the COCO dataset
compared to the Mask-RCNN baseline. We see that our model works across diverse scene types, with
single objects (columns 1-4) or multiple instances of the same object class (col. 5-6) and even for a
fairly large object (last column). Figure 3 also highlight the problems with simply using masks from
a segmentation model, Mask-RCNN, for removal. Mask-RCNN is trained to accurately segment
the objects and thus the masks it produces very closely trace the object boundary, too closely for
removal purposes. We can clearly see the silhouettes of objects in all the edited images on the second
row. These results justify our claim that segmentation annotations are not needed to learn to remove
objects and might not be the right annotations anyway.

Our model is not tied to notion of objectness and can be easily extended to remove other image
entities. The flexible GAN based mask priors allow us to use random rectangular boxes as priors
when object shapes are not available. To demonstrate this we apply our model to the task of removing
brand logos automatically from images. The model is trained using image level labels and box prior.
Qualitative examples in Figure 4 shows that our model works well for this task, despite the fairly
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small training set (800 images). It is able to find and remove logos in different contexts with only
image level labels. The image on the bottom left shows a failure case where the model fails to realize
that the text “NBC” belongs to the logo.

Figure 5 shows the masks generated by our model with different mask priors on the COCO dataset.
These examples illustrate the importance of the proposed mask priors. The masks generated by the
model using no prior (second row) are very noisy since the model has no information about object
shapes and is trying to infer everything from the image level classifier. Adding the box prior already
makes the masks much cleaner and more accurate. We can note that the generated masks are “boxier”
while not strictly rectangles. Finally using unpaired segmentation masks from the pascal dataset as
shape priors makes the generated masks more accurate and the model is able to recover the object
shapes better. This particularly helps in object with diverse shapes, for example people and dogs.

5.2 Quantitative evaluation of removal performance

To quantify the removal performance we run an object classifier on the edited images and measure its
performance. We use a separately trained classifier for this purpose, not the one used in our GAN
training, to fairly compare our model and the Mask-RCNN based removal.

Sanity of object classifier performance. The classifier we use to evaluate our model achieves
per-class average F1-score of 0.57, overall average F1-score of 0.67 and mAP of 0.58. This is close to
the results achieved by recent published work on multi-label classification [32] on the COCO dataset,
which achieves class average F1-score of 0.60, overall F1-score of 0.68 and mAP of 0.61. While
these numbers are not directly comparable (different image resolution, different number of classes),
it shows that our object classifier has good performance and can be relied upon. Furthermore, human
evaluation shows similar results as our automatic evaluation.

Effect of priors. Table 1 compares the different versions of our model using different priors. The
box prior uses randomly generated rectangles of different aspect ratios, area and rotations. The Pascal
(n) prior uses n randomly chosen unpaired segmentation masks for each class from the Pascal dataset.
The table shows metrics measuring the removal performance, image quality and mask accuracy.
The arrows ↑ and ↓ indicate if higher or lower is better for the corresponding metric. Comparing
removal performance in Table 1 we see that while the model with no prior achieves very high removal
rate (94%), but it does so with large masks (37 %) which causes low output image quality. As we
add priors, the generated masks become smaller and compact. We also see that mIou of the masks
increase with stronger priors (0.22-0.23 for pascal prior), indicating they are more accurate. Smaller
and more accurate masks also improve the image quality metrics and false removal rates which drop
more than half from 36% to 16%. This is inline with the visual examples in Figure 5, where model
without prior produces very noisy masks and quality of the masks improve with priors.

Another interesting observation from Table 1 is that using very few segmentation masks from pascal
dataset leads to a drop in removal success rate, especially for the person class. This is because the
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Table 1: Quantifying the effect of using more accurate mask priors

Prior
Removal Performance Image quality metrics Mask accuracy

removal success ↑ false ↓
removal

percep.
loss ↓ pSNR ↑ ssim ↑ mIou ↑ % masked

area ↓all person

None 94 96 36 0.13 19.97 0.743 0.15 37.7
boxes 83 88 23 0.11 20.41 0.777 0.18 28.1
pascal (10) 67 59 17 0.07 23.81 0.833 0.23 16.7
pascal (100) 70 75 16 0.07 23.02 0.821 0.22 18.1
pascal (all) 73 81 16 0.08 22.64 0.803 0.22 20.2

Table 3: Comparison to ground truth masks and Mask-RCNN baselines.

Model Supervision
Removal Performance Image quality metrics

removal success ↑ false ↓
removal

percep.
loss ↓ pSNR ↑ ssim ↑

all person

GT masks - 66 72 5 0.04 27.43 0.930
Mask RCNN Seg. masks &

bound boxes
68 73 6 0.05 25.59 0.900

Mask RCNN (dil. 7x7) 75 77 10 0.07 24.13 0.882

ours-pascal image labels &
unpaired masks 73 81 16 0.08 22.64 0.803

person class has very diverse shapes due to varying poses and scales. Using only ten masks in the prior
fails to capture this diversity and performs poorly (59%). As we increase the number of mask samples
in the prior, removal performance jumps significantly to 81% on the person class. Considering these
results, we note that the pascal all version offers the best trade-off between removal and image quality
due to more accurate masks and we will use this model in comparison to benchmarks.

Benchmarking against GT and Mask-RCNN. Table 3 compares the performance of our model
against baselines using ground-truth (GT) masks and Mask-RCNN segmentation masks for removal.
These benchmarks use the same in-painter as our-pascal model. We see that our model outperforms
the fully supervised Mask-RCNN masks and even the GT masks in terms of removal (66%& 68%
vs 73%). While surprising, this is explained by the same phenomenon we saw in qualitative results
with Mask-RCNN in Figure 3. The GT and Mask-RCNN masks for segmentation are too close to the
object boundaries and thus leave object silhouettes behind when used for removal. When we dilate the
masks produced by Mask-RCNN before using for removal, the performance improves overall and is
on par with our model (slightly better in all classes and a bit worse in the person class). The drawback
of weak supervision is that masks are a bit larger which leads to bit higher false removal rate (16%
ours compared to 10% Mask-RCNN dilated) and lower image quality metrics. However this is still
a significant result, given that our model is trained without expensive ground truth segmentation
annotation for each image, but instead uses only unpaired masks from a smaller dataset.

Comparison to weakly supervised segmentation. We compare to the weakly supervised SDI [31]
model in Table 2. We use the the output masks generated by SDI to mask the image and use the
in-painter trained with our model to fill in the masked region. Simply using the masks from SDI
without dilation results in poor removal performance with only 54% success overall and 45% success
on the ‘person’ class. Upon dilation, the performance improves, but is still significantly worse than
our model and Mask-RCNN.

Model dil Rem. Succ.
all person

SDI: supervised
with GT boxes

- 54 45
7x7 64 65

Ours - 73 81

Table 2: Comparison to weakly supervised
semantic segmentation model, SDI [31]

Additionally, SDI method starts from boxes generated
by a fully supervised RCNN network and generates
segmentation with weak supervision, whereas our
model uses only image-level labels and hence is more
generally applicable.

Human evaluation. We verify our automatic evalu-
ation results using a user study to evaluate removal
success as described in Section 4. The human judge-
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Figure 6: Comparing global and local GAN
loss. Global loss smooth blurry results, while
local one produce sharp, texture-rich images.

Table 4: Evaluating in-painting components

Mask
buffer

GAN TV+
Style

percep.
loss ↓ pSNR ↑ ssim ↑

- G - 0.13 20.0 0.730
X G - 0.12 21.9 0.772
X L - 0.10 21.5 0.758
X L X 0.10 21.6 0.763

Table 5: Joint training helps improve both mask
generation and in-painting

Joint
training

Removal
success ↑ mIou ↑ percep.

loss ↓
- 0.68 0.19 0.10
X 0.73 0.22 0.08

ments of removal performance follow the same trend seen in automatic evaluation, except that
human judges penalize the silhouettes more severely.Our model clearly outperforms the baseline
Mask-RCNN model without dilation by achieving 68% removal rate compared to only 30% achieved
by Mask-RCNN. With dilated masks, Mask-RCNN performs similar to our model in terms of removal
achieving 73% success rate.

5.3 Ablation studies

Joint optimization. We conduct an experiment to test if jointly training the mask generator and the
in-painter helps. We pre-train the in-painter using only random boxes and hold it fixed while training
the mask generator. The results are shown in Table 5. Not surprisingly, the in-painting quality suffers
with higher perceptual loss (0.10 vs 0.08) since it has not adapted to the masks being generated. More
interestingly, the mask generator also degrades with a fixed in-painter, as seen by lower mIou (0.19
vs 0.22) and lower removal success rate (0.68 vs 0.73). This result shows that it is important to train
both the models jointly to allow them to adapt to each other for best performance.
In-painting components. Table 4 shows the ablation of the in-painter network components. We
note that the proposed mask-buffer, which uses masks from previous batch to train the in-painter with
reconstruction loss, significantly improves the results significantly in all three metrics. Using local
loss improves the results in-terms of perceptual loss (0.10 vs 0.12) while being slightly worse in the
other two metrics. However on examining the results visually in Figure 6, we see that the version with
the global GAN loss produces smooth and blurry in-painting, whereas the version with local GAN
loss produces sharper results with richer texture. While these blurry results do better in pixel-wise
metrics like pSNR and ssim, they are easily seen by the human eye and are not suitable for removal.
Finally addition of total variation and style loss helps slighlty improve the pSNR and ssim metrics.

6 Conclusions

We presented an automatic object removal model which learns to find and remove objects from
general scene images. Our model learns to perform this task with only image level labels and unpaired
data. Our two-stage editor model with a mask-generator and an in-painter network avoids degenerate
solutions by complementing each other. We also developed a GAN based framework to impose
different priors to the mask generator, which encourages it to generate clean compact masks to
remove objects. Results show that our model achieves similar performance as a fully-supervised
segmenter based removal, demonstrating the feasibility of weakly supervised solutions for the general
scene-level editing task.
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