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Abstract

The broad set of deep generative models (DGMs) has achieved remarkable ad-
vances. However, it is often difficult to incorporate rich structured domain knowl-
edge with the end-to-end DGMs. Posterior regularization (PR) offers a principled
framework to impose structured constraints on probabilistic models, but has limited
applicability to the diverse DGMs that can lack a Bayesian formulation or even
explicit density evaluation. PR also requires constraints to be fully specified a
priori, which is impractical or suboptimal for complex knowledge with learnable
uncertain parts. In this paper, we establish mathematical correspondence between
PR and reinforcement learning (RL), and, based on the connection, expand PR to
learn constraints as the extrinsic reward in RL. The resulting algorithm is model-
agnostic to apply to any DGMs, and is flexible to adapt arbitrary constraints with
the model jointly. Experiments on human image generation and templated sentence
generation show models with learned knowledge constraints by our algorithm
greatly improve over base generative models.

1 Introduction

Generative models provide a powerful mechanism for learning data distributions and simulating
samples. Recent years have seen remarkable advances especially on the deep approaches [16} 25]]
such as Generative Adversarial Networks (GANSs) [[15], Variational Autoencoders (VAEs) [27],
auto-regressive networks [29, 42]], and so forth. However, it is usually difficult to exploit in these
various deep generative models rich problem structures and domain knowledge (e.g., the human
body structure in image generation, Figure[I). Many times we have to hope the deep networks can
discover the structures from massive data by themselves, leaving much valuable domain knowledge
unused. Recent efforts of designing specialized network architectures or learning disentangled
representations [5, 23] are usually only applicable to specific knowledge, models, or tasks. It is
therefore highly desirable to have a general means of incorporating arbitrary structured knowledge
with any types of deep generative models in a principled way.

On the other hand, posterior regularization (PR) [[13]] is a principled framework to impose knowledge
constraints on posterior distributions of probabilistic models, and has shown effectiveness in regulating
the learning of models in different context. For example, [21] extends PR to incorporate structured
logic rules with neural classifiers. However, the previous approaches are not directly applicable to the
general case of deep generative models, as many of the models (e.g., GANs, many auto-regressive
networks) are not straightforwardly formulated with the probabilistic Bayesian framework and do not
possess a posterior distribution or even meaningful latent variables. Moreover, PR has required a
priori fixed constraints. That means users have to fully specify the constraints beforehand, which can
be impractical due to heavy engineering, or suboptimal without adaptivity to the data and models. To
extend the scope of applicable knowledge and reduce engineering burden, it is necessary to allow
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Figure 1: Two example applications of imposing learnable knowledge constraints on generative
models. Left: Given a person image and a target pose (defined by key points), the goal is to generate
an image of the person under the new pose. The constraint is to force the human parts (e.g., head) of
the generated image to match those of the true target image. Right: Given a text template, the goal is
to generate a complete sentence following the template. The constraint is to force the match between
the infilling content of the generated sentence with the true content. (See sec E] for more details.)

users to specify only partial or fuzzy structures, while learning remaining parts of the constraints
jointly with the regulated model.

To this end, we establish formal connections between the PR framework with a broad set of algorithms
in the control and reinforcement learning (RL) domains, and, based on the connections, transfer
well-developed RL techniques for constraint learning in PR. In particular, though the PR framework
and the RL are apparently distinct paradigms applied in different context, we show mathematical
correspondence between the model and constraints in PR with the policy and reward in entropy-
regularized policy optimization [43] 45, |1]], respectively. This thus naturally inspires to leverage
relevant approach from the RL domain (specifically, the maximum entropy inverse RL [56, [11]) to
learn the PR constraints from data (i.e., demonstrations in RL).

Based on the unified perspective, we drive a practical algorithm with efficient estimations and
moderate approximations. The algorithm is efficient to regularize large target space with arbitrary
constraints, flexible to couple adapting the constraints with learning the model, and model-agnostic to
apply to diverse deep generative models, including implicit models where generative density cannot
be evaluated [40,[15]. We demonstrate the effectiveness of the proposed approach in both image and
text generation (Figure[I). Leveraging domain knowledge of structure-preserving constraints, the
resulting models improve over base generative models.

2 Related Work

It is of increasing interest to incorporate problem structures and domain knowledge in machine
learning approaches [49, 13 21]. The added structure helps to facilitate learning, enhance general-
ization, and improve interpretability. For deep neural models, one of the common ways is to design
specialized network architectures or features for specific tasks (e.g., [2, 34} 28, 33]]). Such a method
typically has a limited scope of applicable tasks, models, or knowledge. On the other hand, for
structured probabilistic models, posterior regularization (PR) and related frameworks [13} 132} 4]
provide a general means to impose knowledge constraints during model estimation. [21]] develops
iterative knowledge distillation based on PR to regularize neural networks with any logic rules.
However, the application of PR to the broad class of deep generative models has been hindered, as
many of the models do not even possess meaningful latent variables or explicit density evaluation (i.e.,
implicit models). Previous attempts thus are limited to applying simple max-margin constraints [31]].
The requirement of a priori fixed constraints has also made PR impractical for complex, uncertain
knowledge. Previous efforts to alleviate the issue either require additional manual supervision [39] or
is limited to regularizing small label space [22]]. This paper develops a practical algorithm that is
generally applicable to any deep generative models and any learnable constraints on arbitrary (large)
target space.

Our work builds connections between the Bayesian PR framework and reinforcement learning. A
relevant, broad research topic of formalizing RL as a probabilistic inference problem has been
explored in the RL literature [6, (7,141, 30, 1, 48], where rich approximate inference tools are used
to improve the modeling and reasoning for various RL algorithms. The link between RL and PR
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Table 1: Unified perspective of the different approaches, showing mathematical correspondence
of PR with the entropy-regularized RL (sec [3.2.T) and maximum entropy IRL (sec[3.2.2)), and its
(conceptual) relations to (energy-based) GANSs (sec E])

has not been previously studied. We establish the mathematical correspondence, and, differing from
the RL literature, we in turn transfer the tools from RL to expand the probabilistic PR framework.
Inverse reinforcement learning (IRL) seeks to learn a reward function from expert demonstrations.
Recent approaches based on maximum-entropy IRL [56]] are developed to learn both the reward and
policy [11, 110} [12]]. We adopt the maximum-entropy IRL formulation to derive the constraint learning
objective in our algorithm, and leverage the unique structure of PR for efficient importance sampling
estimation, which differs from these previous approaches.

3 Connecting Posterior Regularization to Reinforcement Learning

3.1 PR for Deep Generative Models

PR [13]] was originally proposed to provide a principled framework for incorporating constraints on
posterior distributions of probabilistic models with latent variables. The formulation is not generally
applicable to deep generative models as many of them (e.g., GANs and autoregressive models) are not
formulated within the Bayesian framework and do not possess a valid posterior distribution or even
semantically meaningful latent variables. Here we adopt a slightly adapted formulation that makes
minimal assumptions on the specifications of the model to regularize. It is worth noting that though
we present in the generative model context, the formulations, including the algorithm developed later
(sec ), can straightforwardly be extended to other settings such as discriminative models.

Consider a generative model & ~ py(x) with parameters 6. Note that generation of & can condition
on arbitrary other elements (e.g., the source image for image transformation) which are omitted for
simplicity of notations. Denote the original objective of py () with £(0). PR augments the objective
by adding a constraint term encoding the domain knowledge. Without loss of generality, consider
constraint function f(x) € R, such that a higher f(«) value indicates a better « in terms of the
particular knowledge. Note that f can also involve other factors such as latent variables and extra
supervisions, and can include a set of multiple constraints.

A straightforward way to impose the constraint on the model is to maximize E,, [f(z)]. Such method
is efficient only when py is a GAN-like implicit generative model or an explicit distribution that
can be efficiently reparameterized (e.g., Gaussian [27]). For other models such as the large set of
non-reparameterizable explicit distributions, the gradient VyE,, [f(x)] is usually computed with
the log-derivative trick and can suffer from high variance. For broad applicability and efficient
optimization, PR instead imposes the constraint on an auxiliary variational distribution g, which is
encouraged to stay close to py through a KL divergence term:

L£(6,q) = KL(q(@)|Ipo () — oy [f ()], M
where « is the weight of the constraint term. The PR objective for learning the model is written as:
min@,q [’(0) + )“6(07 Q)7 (2)

where ) is the balancing hyperparameter. As optimizing the original model objective £(8) is
straightforward and depends on the specific generative model of choice, in the following we omit the
discussion of £(6) and focus on £(8, ¢) introduced by the framework.

The problem is solved using an EM-style algorithm [[13} 21]]. Specifically, the E-step optimizes Eq.(T))
w.r.t ¢, which is convex and has a closed-form solution at each iteration given 0:

¢ (x) = po(x) exp{af ()} /Z, €



where Z is the normalization term. We can see ¢* as an energy-based distribution with the negative
energy defined by af (z) + log pg(x). With ¢ from the E-step fixed, the M-step optimizes Eq.(T)
w.r.t @ with:

ming KL(g()||pe(x)) = ming —E, [log pe(x)] 4 const. 4)

Constraint f in PR has to be fully-specified a priori and is fixed throughout the learning. It would be
desirable or even necessary to enable learnable constraints so that practitioners are allowed to specify
only the known components of f while leaving any unknown or uncertain components automatically
learned. For example, for human image generation in Figure[I] left panel, users are able to specify
structures on the parsed human parts, while it is impractical to also manually engineer the human part
parser that involves recognizing parts from raw image pixels. It is favorable to instead cast the parser
as a learnable module in the constraint. Though it is possible to pre-train the module and simply fix
in PR, the lack of adaptivity to the data and model can lead to suboptimal results, as shown in the
empirical study (Table[2)). This necessitates to expand the PR framework to enable joint learning of
constraints with the model.

Denote the constraint function with learnable components as f,(x), where ¢ can be of various
forms that are optimizable, such as the free parameters of a structural model, or a graph structure to
optimize.

Simple way of learning the constraint. A straightforward way to learn the constraint is to directly
optimize Eq.(I) w.r.t ¢ in the M-step, yielding

maXe ]E:z:Nq(:c) [f¢(17)] (5)

That is, the constraint is trained to fit to the samples from the current regularized model q. However,
such objective can be problematic as the generated samples can be of low quality, e.g., due to poor
state of the generative parameter @ at initial stages, or insufficient capability of the generative model
per se.

In this paper, we propose to treat the learning of constraint as an extrinsic reward, as motivated by the
connections between PR with the reinforcement learning domain presented below.

3.2 PRandRL

RL or optimal control has been studied primarily for determining optimal action sequences or
strategies, which is significantly different from the context of PR that aims at regulating generative
models. However, formulations very similar to PR (e.g., Eqs[I] and [3)) have been developed and
widely used, in both the (forward) RL for policy optimization and the inverse RL for reward learning.

To make the mathematical correspondence clearer, we intentionally re-use most of the notations from
PR. Table I]lists the correspondence. Specifically, consider a stationary Markov decision process
(MDP). An agent in state s draws an action a following the policy p,(a|s). The state subsequently
transfers to s’ (with some transition probability of the MDP), and a reward is obtained R(s,a) € R.
Let = (s, a) denote the state-action pair, and p,(x) = p™(s)px(a|s) where 1™ (s) is the stationary
state distribution [47]].

3.2.1 Entropy regularized policy optimization

The goal of policy optimization is to find the optimal policy that maximizes the expected reward.
The rich research line of entropy regularized policy optimization has augmented the objective with
information theoretic regularizers such as KL divergence between the new policy and the old policy
for stabilized learning. With a slight abuse of notations, let ¢, () denote the new policy and p, (x)
the old one. A prominent algorithm for example is the relative entropy policy search (REPS) [43]
which follows the objective:

ming, £(¢x) = KL(¢x(2)|p=(2)) — oy, [R(z)], (©)

where the KL divergence prevents the policy from changing too rapidly. Similar objectives have also
been widely used in other workhorse algorithms such as trust-region policy optimization (TRPO) [45]],
soft Q-learning [17, 46, and others.

We can see the close resemblance between Eq.(6) with the PR objective in Eq.(T]), where the generative
model py(x) in PR corresponds to the reference policy p, (), while the constraint f(x) corresponds



to the reward R(x). The new policy ¢, can be either a parametric distribution [45]] or a non-parametric
distribution [43| [T]]. For the latter, the optimization of Eq.(6) precisely corresponds to the E-step
of PR, yielding the optimal policy ¢ (x) that takes the same form of ¢*(x) in Eq.(3), with py and
f replaced with the respective counterparts p, and R, respectively. The parametric policy p; is
subsequently updated with samples from ¢}, which is exactly equivalent to the M-step in PR (EqH).

While the above policy optimization algorithms have assumed a reward function given by the external
environment, just as the pre-defined constraint function in PR, the strong connections above inspire
us to treat the PR constraint as an extrinsic reward, and utilize the rich tools in RL (especially the
inverse RL) for learning the constraint.

3.2.2 Maximum entropy inverse reinforcement learning

Maximum entropy (MaxEnt) IRL [56] is among the most widely-used methods that induce the reward
function from expert demonstrations « ~ pg(x), where p, is the empirical demonstration (data)
distribution. MaxEnt IRL adopts the same principle as the above entropy regularized RL (Eq6)
that maximizes the expected reward regularized by the relative entropy (i.e., the KL), except that,
in MaxEnt IRL, p, is replaced with a uniform distribution and the regularization reduces to the
entropy of ¢,. Therefore, same as above, the optimal policy takes the form exp{aR(x)}/Z. MaxEnt
IRL assumes the demonstrations are drawn from the optimal policy. Learning the reward function
Rg4(x) with unknown parameters ¢ is then cast as maximizing the likelihood of the distribution
qs(x) := exp{aRy(@)}/Zy:

¢* = arg maxy Exnp, [log gs ()] . )
Given the direct correspondence between the policy g4+« in MaxEnt IRL and the policy optimization
solution ¢} of Eq.(6)), plus the connection between the regularized distribution ¢* of PR (Eq[3) and ¢}
as built in sec[3.2.1} we can readily link ¢* and g¢~. This motivates to plug ¢* in the above maximum
likelihood objective to learn the constraint fy () which is parallel to the reward function Ry(x).
We present the resulting full algorithm in the next section. Table [T summarizes the correspondence
between PR, entropy regularized policy gradient, and maximum entropy IRL.

4 Algorithm

We have formally related PR to the RL methods. With the unified view of these approaches, we
derive a practical algorithm for arbitrary learnable constraints on any deep generative models. The
algorithm alternates the optimization of the constraint f, and the generative model py.

4.1 Learning the Constraint f;

As motivated in section instead of directly optimizing f, in the original PR objectives (Eq@)
which can be problematic, we treat fy4 as the reward function to be induced with the MaxEnt IRL
framework. That is, we maximize the data likelihood of ¢(x) (Eq w.r.t ¢, yielding the gradient:

VEanp, l0g¢(®)] = V4 [Exnp, [afs(x)] —log Zs]

= Eonp, [V fo(2)] = Eqea) [aV fo ()]
The second term involves estimating the expectation w.r.t an energy-based distribution E (4[], which
is in general very challenging. However, we can exploit the special structure of ¢ o pg exp{cfs}
for efficient approximation. Specifically, we use py as the proposal distribution, and obtain the
importance sampling estimate of the second term as following:
q()
Ey(z) [V =Epmpp(a) | —— - aV
a(@) [V fo(T)] po@ | gy @ o fo(T) ©)
=1/Zy - Earpy(a) [exp{afs (@)} - aVe fo(x)] .

Note that the normalization Z, = [ pg(x) exp{afs(x)} can also be estimated efficiently with MC
sampling: Zg = 1/N >0, explafs(xi)}, where @; ~ py. The base generative distribution py is a
natural choice for the proposal as it is in general amenable to efficient sampling, and is close to ¢
as forced by the KL divergence in Eq.(I). Our empirical study shows low variance of the learning
process (sec[3). Moreover, using py as the proposal distribution allows pg to be an implicit generative
model (as no likelihood evaluation of pg is needed). Note that the importance sampling estimation is
consistent yet biased.

3



4.2 Learning the Generative Model py

Given the current parameter state (0 = 6%, ¢ = ¢!), and g(x) evaluated at the parameters, we
continue to update the generative model. Recall that optimization of the generative parameter 0 is
performed by minimizing the KL divergence in Eq.(@), which we replicate here:

ming KL(g(x)||pe(x)) = ming —E () [log pe(x)] + const. (10)

The expectation w.r.t g(z) can be estimated as above (Eq[9). A drawback of the objective is the
requirement of evaluating the generative density pg(x), which is incompatible to the emerging
implicit generative models [40] that only permit simulating samples but not evaluating density.

To address the restriction, when it comes to regularizing implicit models, we propose to instead
minimize the reverse KL divergence:

po - Z¢t
por exp{afyr} (11)
=ming —E,, [afse(x)] + KL(po||pet) + const.

ming KL (po (@) q(@)) = ming Ey, |log

By noting that VoKL (pg||pet ) |9=¢¢+ = 0, we obtain the gradient w.r.t 8:
VoKL (po(x)[la(x)) lo=pt = —VoEp, [afye ()] lo=pt- (12)

That is, the gradient of minimizing the reversed KL divergence equals the gradient of maximizing
E,, [afst (x)]. Intuitively, the objective encourages the generative model pg to generate samples that
the constraint function assigns high scores. Though the objective for implicit model deviates the
original PR framework, reversing KL for computationality was also used previously such as in the
classic wake-sleep method [[19]. The resulting algorithm also resembles the adversarial learning in
GANS, as we discuss in the next section. Empirical results on implicit models show the effectiveness
of the objective.

The resulting algorithm is summarized in Alg][]

Algorithm 1 Joint Learning of Deep Generative Model and Constraints

Input: The base generative model py(x)
The (set of) constraints fy(x)
1: Initialize generative parameter 6 and constraint parameter ¢
2: repeat
3:  Optimize constraints ¢ with Eq.(8)

4:  if pg is an implicit model then

5: Optimize model 8 with Eq.(T2) along with minimizing original model objective £(0)
6: else

7: Optimize model 8 with Eq.(I0) along with minimizing £(8)

8: endif

9: until convergence
Output: Jointly learned generative model pg- () and constraints fy« ()

Connections to adversarial learning For implicit generative models, the two objectives w.r.t ¢
and 6 (Eq[8|and Eq[I2) are conceptually similar to the adversarial learning in GANs [15]] and the
variants such as energy-based GANs [26] 55| [54][50]. Specifically, the constraint f,(x) can be seen
as being optimized to assign lower energy (with the energy-based distribution g()) to real examples
from p4(x), and higher energy to fake samples from g(x) which is the regularized model of the
generator pg(x). In contrast, the generator pg () is optimized to generate samples that confuse f
and obtain lower energy. Such adversarial relation links the PR constraint f,;(x) to the discriminator
in GANs (Table [1). Note that here fake samples are generated from ¢(x) and pg(x) in the two
learning phases, respectively, which differs from previous adversarial methods for energy-based
model estimation that simulate only from a generator. Besides, distinct from the discriminator-centric
view of the previous work [26} 54} 150], we primarily aim at improving the generative model by
incorporating learned constraints. Last but not the least, as discussed in sec the proposed
framework and algorithm are more generally and efficiently applicable to not only implicit generative
models as in GANSs, but also (non-)reparameterizable explicit generative models.



5 Experiments

We demonstrate the applications and effectiveness of the algorithm in two tasks related to image and
text generation [24], respectively.

Method SSIM  Human 18,

1 Maetal. [38] 0614 — i e e etraint

2 Pumarola et al. [44] 0747 — 1 With loa e
3 Maetal [37) 0762  — Bl —h earnec consTralm
4 Base model 0.676  0.03 g |

5  With fixed constraint 0.679  0.12 i

6  With learned constraint  0.727  0.77 6/ |

Table 2: Results of image generation on Structural

.. . 0 400 800 1200 1600
Similarity (SSIM) [52] between generated and true Iterations

images, and human survey where the full model Figure 2: Training losses of the three mod-
yields better generations than the base models (Rows  als. The model with learned constraint con-
5-6) on 77% test cases. See the text for more results verges smoothly as base models.

and discussion.

Learned Fixed Base
source image target pose target image constraint constraint model

M
1

Figure 3: Samples generated by the models in Table The model with learned human part constraint
generates correct poses and preserves human body structure much better.

5.1 Pose Conditional Person Image Generation

Given a person image and a new body pose, the goal is to generate an image of the same person under
the new pose (Figure[l] left). The task is challenging due to body self-occlusions and many cloth
and shape ambiguities. Complete end-to-end generative networks have previously failed [37] and
existing work designed specialized generative processes or network architectures [37, 44, [38]]. We
show that with an added body part consistency constraint, a plain end-to-end generative model can
also be trained to produce highly competitive results, significantly improving over base models that
do not incorporate the problem structure.

Setup. We follow the previous work [37]] and obtain from DeepFashion [33]] a set of triples (source
image, pose keypoints, target image) as supervision data. The base generative model p is an implicit
model that transforms the input source and pose directly to the pixels of generated image (and
hence defines a Dirac-delta distribution). We use the residual block architecture [S1]] widely-used in
image generation for the generative model. The base model is trained to minimize the L1 distance
loss between the real and generated pixel values, as well as to confuse a binary discriminator that
distinguishes between the generation and the true target image.

Knowledge constraint. Neither the pixel-wise distance nor the binary discriminator loss encode
any task structures. We introduce a structured consistency constraint f, that encourages each of the
body parts (e.g., head, legs) of the generated image to match the respective part of the true image.
Specifically, the constraint f, includes a human parsing module that classifies each pixel of a person
image into possible body parts. The constraint then evaluates cross entropies of the per-pixel part



Model Perplexity Human acting
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Table 3: Sentence generation results on test set per-  Table 4: Two test examples, including the
plexity and human survey. Samples by the full model  template, the sample by the base model, and
are considered as of higher quality in 24% cases. the sample by the constrained model.

distributions between the generated and true images. The average negative cross entropy serves as
the constraint score. The parsing module is parameterized as a neural network with parameters ¢,
pre-trained on an external parsing dataset [14], and subsequently adapted within our algorithm jointly
with the generative model.

Results. Table[?]compares the full model (with the learned constraint, Row 6) with the base model
(Row 4) and the one regularized with the constraint that is fixed after pre-training (Row 5). Human
survey is performed by asking annotators to rank the quality of images generated by the three models
on each of 200 test cases, and the percentages of ranked as the best are reported (Tied ranking is
treated as negative result). We can see great improvement by the proposed algorithm. The model
with fixed constraint fails, partially because pre-training on external data does not necessarily fit to
the current problem domain. This highlights the necessity of the constraint learning. Figure [3]shows
examples further validating the effectiveness of the algorithm.

In sec ] we have discussed the close connection between the proposed algorithm and (energy-based)
GANSs. The conventional discriminator in GANs can be seen as a special type of constraint. With this
connection and given that the generator in the task is an implicit generative model, here we can also
apply and learn the structured consistency constraint using GANs, which is equivalent to replacing
q(z) in Eq.(8) with pg(x). Such a variant produces a SSIM score of 0.716, slightly inferior to the
result of the full algorithm (Row 6). We suspect this is because fake samples by ¢ (instead of p) can
help with better constraint learning. It would be interesting to explore this in more applications.

To give a sense of the state of the task, Table[2]also lists the performance of previous work. It is worth
noting that these results are not directly comparable, as discussed in [44], due to different settings
(e.g., the test splits) between each of them. We follow [37, [38] mostly, while our generative model is
much simpler than these work with specialized, multi-stage architectures. The proposed algorithm
learns constraints with moderate approximations. Figure 2] validates that the training is stable and
converges smoothly as the base models.

5.2 Template Guided Sentence Generation

The task is to generate a text sentence « that follows a given template ¢ (Figure[T] right). Each missing
part in the template can contain arbitrary number of words. This differs from previous sentence
completion tasks [9,|57] which designate each masked position to have a single word. Thus directly
applying these approaches to the task can be problematic.

Setup. We use an attentional sequence-to-sequence (seq2seq) [3] model py(x|t) as the base
generative model for the task. Paired (template, sentence) data is obtained by randomly masking out
different parts of sentences from the IMDB corpus [[8]. The base model is trained in an end-to-end
supervised manner, which allows it to memorize the words in the input template and repeat them
almost precisely in the generation. However, the main challenge is to generate meaningful and
coherent content to fill in the missing parts.

Knowledge constraint. To tackle the issue, we add a constraint that enforces matching between
the generated sentence and the ground-truth text in the missing parts. Specifically, let £_ be the
masked-out true text. That is, plugging £_ into the template ¢ recovers the true complete sentence.
The constraint is defined as f4 (2, t_) which returns a high score if the sentence & matches ¢t_ well.
The actual implementation of the matching strategy can vary. Here we simply specify f4 as another
seq2seq network that takes as input a sentence x and evaluates the likelihood of recovering t_—This



is all we have to specify, while the unknown parameters ¢ are learned jointly with the generative
model. Despite the simplicity, the empirical results show the usefulness of the constraint.

Results. Table [3|shows the results. Row 2 is the base model with an additional binary discriminator
that adversarial distinguishes between the generated sentence and the ground truth (i.e., a GAN
model). Row 3 is the base model with the constraint learned in the direct way through Eq.(3). We see
that the improper learning method for the constraint harms the model performance, partially because
of the relatively low-quality model samples the constraint is trained to fit. In contrast, the proposed
algorithm effectively improves the model results. Its superiority over the binary discriminator (Row 2)
shows the usefulness of incorporating problem structures. Table ] demonstrates samples by the base
and constrained models. Without the explicit constraint forcing in-filling content matching, the base
model tends to generate less meaningful content (e.g., duplications, short and general expressions).

6 Discussions: Combining Structured Knowledge with Black-box NNs

We revealed the connections between posterior regularization and reinforcement learning, which
motivates to learn the knowledge constraints in PR as reward learning in RL. The resulting algorithm
is generally applicable to any deep generative models, and flexible to learn the constraints and model
jointly. Experiments on image and text generation showed the effectiveness of the algorithm.

The proposed algorithm, along with the previous work (e.g., [21} 122} [18} 136} 123]]), represents a general
means of adding (structured) knowledge to black-box neural networks by devising knowledge-inspired
losses/constraints that drive the model to learn the desired structures. This differs from the other
popular way that embeds domain knowledge into specifically-designed neural architectures (e.g.,
the knowledge of translation-invariance in image classification is hard-coded in the conv-pooling
architecture of ConvNet). While the specialized neural architectures can usually be very effective
to capture the designated knowledge, incorporating knowledge via specialized losses enjoys the
advantage of generality and flexibility:

e Model-agnostic. The learning framework is applicable to neural models with any architectures,
e.g., ConvNets, RNNs, and other specialized ones [21]].

o Richer supervisions. Compared to the conventional end-to-end maximum likelihood learning
that usually requires fully-annotated or paired data, the knowledge-aware losses provide ad-
ditional supervisions based on, e.g., structured rules [21], other models [18 122} 53 20]], and
datasets for other related tasks (e.g., the human image generation method in Figure|l| and [23]]).
In particular, [23] leverages datasets of sentence sentiment and phrase tense to learn to control
the both attributes (sentiment and tense) when generating sentences.

e Modularized design and learning. With the rich sources of supervisions, design and learning
of the model can still be simple and efficient, because each of the supervision sources can be
formulated independently to each other and each forms a separate loss term. For example, [23]]
separately learns two classifiers, one for sentiment and the other for tense, on two separate
datasets, respectively. The two classifiers carry respective semantic knowledge, and are then
Jjointly applied to a text generation model for attribute control. In comparison, mixing and
hard-coding multiple knowledge in a single neural architecture can be difficult and quickly
becoming impossible when the number of knowledge increases.

o Generation with discrimination knowledge. In generation tasks, it can sometimes be difficult
to incorporate knowledge directly in the generative process (or model architecture), i.e., defining
how to generate. In contrast, it is often easier to instead specify a evaluation metric that measures
the quality of a given sample in terms of the knowledge, i.e., defining what desired generation is.
For example, in the human image generation task (Figure|[T), evaluating the structured human
part consistency could be easier than designing a generator architecture that hard-codes the
structured generation process for the human parts.

It is worth noting that the two paradigms are not mutually exclusive. A model with knowledge-inspired
specialized architecture can still be learned by optimizing knowledge-inspired losses. Different types
of knowledge can be best fit for either architecture hard-coding or loss optimization. It would be
interesting to explore the combination of both in the above tasks and others.
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