
We thank all the reviewers for their time spent on our submissions and for their valuable comments. We would like to1

make the following clarifications here. Minor points will be addressed in the revised manuscript if accepted.2

We thank Reviewer 1 for their positive feedback. As is standard in prior work on LUCB [1,2], determining βt requires3

S, L, λ, and R. Our algorithm additionally requires λ− defined in (4) for correct tuning of T ′. It is possible to explicitly4

determine λ− as follows. Find the largest 0 < ε ≤ C/S such that {x ∈ Rd | ‖Bx‖2 = ε} ⊂ Dw. Then, by generating5

iid samples xt = εB−1zt, where zt is uniform on the unit sphere, it can be shown that λ− = ε2

d‖B‖2 . We have chosen to6

defer the discussion on computational issues to the appendix due to space constraints and because similar ideas have7

been mostly developed in previous work [1]. However, as per the reviewer’s recommendation, we will explicitly state8

after Eqn. (8) that the involved optimization is non-convex in general and a computationally tractable modification is9

presented in Appendix D. We also thank the reviewer for their suggestion to provide error bars for our experimental10

results in Fig. 1. We have now done this and will include in the paper (not shown here due to space constraints).11

As per Reviewers’ 2 and 3 suggestion, we acknowledge that a more elaborate comparison with prior works [14,22,25,27]12

will benefit the reader; we will do so in Sec. 1.2 of the manuscript. As a general comment: despite certain similarities to13

these works, we are confident that our submission differs substantially in its core contributions as explained next. In [14],14

the authors study a variant of LUCB in which the actions x1, . . . , xt are constrained such that the cumulative reward15

remains strictly greater than (1− α) times a given baseline reward for all t. In contrast, the safety requirements in our16

paper requires µTBxt ≤ C which is same for every action xt, independently of actions chosen at other time instants.17

The two constraints are different, thus the algorithm and analysis of [14] are not applicable in our setting. Interestingly18

though, the assumption αr` > 0 in [14] is somewhat reminiscent of the case ∆ > 0 studied in our paper. Similarities to19

the recent work [25] include the defined safety constraint and using confidence region to ensure that actions are safe20

(also similar to [22,27]). However, the two works differ drastically as we aim to provide regret guarantees for a linear21

but otherwise unknown objective, whereas [25] allows for more general convex objective and aims at convergence22

guarantees rather than regret bounds. We thank Reviewers 2 and 3 for bringing [27] to our attention. To the best of our23

knowledge, [22,27] are important “safe" counterparts of [28], which introduces a UCB-type algorithm and proves regret24

guarantees extending standard Linear-UCB works [1,2,3] to nonlinear bandits modeled by Gaussian processes (GPs).25

Regret guarantees imply convergence guarantees from an optimization perspective (see [28]), but not the other way26

around. The algorithms in [22,27] come with convergence guarantees, but no regret bounds as done in our paper. This27

is the first important difference to our work that proves regret bounds providing a “safe" counterpart of [1,2,3]. Even28

beyond theoretical guarantees, the experiments in [22] show a notion of regret (rt = f∗0 −maxi∈[t] f(xi)) that deviates29

from the more popular notion used in our work (rt = f∗ − f(xt)). Of course, our analysis relies on the fact that the30

cost function comes from a finite dimensional linear space. Extensions to infinite-dimensional linear spaces (hence to31

GPs) is beyond the paper’s scope, but it is very interesting to attempt combining our ideas with those in [27] to prove32

regret bounds for the nonlinear bandit with GPs. In this direction, it is worth emphasizing (we will do so in the revised33

manuscript) that the algorithm in [27] also consists of two phases: one that expands the safe region and a second that34

aims at utility optimization. We hope that our contribution motivates further investigations in this critical direction.35

Some other differences of our work to [22,27] are as follows. The finite-dimensional setting allows us to compare36

performance against the optimal cost within the actual true safe set, rather than an estimated subset of it (Eqn. (1) in37

[22]) as done in [22,27]. Also, Algorithm 1 and Thm. 2 & 3, do apply beyond the K-arm setting to compact convex38

decision sets that include infinite number of actions. For supporting experimental results please see Figs 1.b and 2.39

Now, we respond to other questions posed by Reviewer 2. Regarding solving Eqns. (7) & (8), please see App. D40

and lines 6-10 here. For GSLUCB, we remark that by design the duration of its first phase never exceeds the worst41

case T ′, i.e. T0. Thus, even if the safety gap is overestimated, the second phase begins after at most T0 rounds and42

Thm. 3 naturally applies. Also, please refer to App. E for details on how we calculate the lower confidence bound ∆t.43

Regarding reducing the duration of the pure exploration phase, it is actually possible to achieve a constant T ′ (rather44

than logarithmic as in Lem. 4) by simply taking intersection of the previous sets with the confidence set at round t45

such that . . . ⊆ Dst−1 ⊆ Dst ⊆ Dst+1 ⊆ . . .. Thus T ′ is the smallest value satisfying 2
√

2‖B‖LβT ′ ≤ ∆
√

2λ+ λ−T ′.46

Note however that this does not change the order of regret in Thm. 2. Finally, the reviewer makes an interesting point47

about having the constraint depend on another unknown vector other than µ. We have also thought of this modification48

and we agree that is worth discussing in the appendix. Having the constraint depend on another unknown parameter49

does not affect the analysis. We have chosen to focus on the current setting in the main paper since: (a) we believe50

it makes the presentation clearer without loosing anything substantial; (b) our initial motivation comes from specific51

power applications where the safety constraints and the cost functions both depend on the same parameter. Besides,52

none of the two settings is a special case of the other: choosing λ = B†µ is close but not identical to our current setting53

since we do not observe (noisy versions of) λ†xt = µ†Bxt.54

[27] Sui, Zhuang, Burdick, Yue: “Stagewise-safe Bayesian Optimization with Gaussian Processes"; [28] Srinivas,55

Krause, Kakade, Seeger: “Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design".56


