
We appreciate the detailed, insightful, and encouraging comments from the revewiers, as well as the constructive1

criticism. We first highlight the novelty of the results and analyses and discuss an use case for adaptive learning where2

the results will be drectly applicable. Subsequently, we respond to specific comments from individual reviewers.3

New results and analyses. As the reveiwers noted, the main technical results (Theorems 1 and 2) are new. The fact that4

the results match the corresponding results for the i.i.d. case is desirable, as this will allow extension of existing results5

from the i.i.d. to the MDS case in a seamless manner. However, the technical details rely on several new results for6

MDSs. First, for decoupling, the i.i.d. case is somewhat straightforward since one has to handle products of independent7

random variables (r.v.s). For MDSs (Appendix A), we worked with a quadratic form of dependent r.v.s, had to first8

show distributional equivalence of two such forms, and finally got the decoupling result by using a decoupled tangent9

sequence to the original MDS, but not an independent MDS (Theorem 3). Second, for uniformly bounding the Lp10

norms of r.v.s from the MDS quadratic form, we showed that or both sub-Gaussian and sub-exponential tails E[sup · · ·]11

can be upper bounded by supE[·], which is easier to handle, and an additive term which depends on Talagrand’s12

γ2 function. The analyses (Lemma 7 and 8) utilize the core argument in generic chaining along with concentration13

bounds (Azuma-Hoeffding and Azuma-Bernstein) for MDSs, leading to new results on uniform bounds on Lp norms of14

quadratic forms of MDSs (Theorems 4 and 5). We relegated most of such technical details to the appendix, but based15

on the constructive feedback we will discuss the core ideas behind these results and proofs in the main paper.16

Use case for adaptive learning: Linear contextual bandits. Our results on Restricted Isometry Property (RIP)17

have direct applications to many adaptive learning problems, including linear contextual bandit (LCB) learning. As18

a concrete example, consider the smoothed analysis model for LCB proposed in [1, 2]. The parameter estimation19

step involves solving an ordinary least squares (OLS) problem with a design matrix whose rows are sub-Gaussian20

MDS. The parameter estimation error rate depends on the minimum eigenvalue of the design matrix. Our results21

significantly simplifies the minimum eigenvalue analysis (Lemma B.1 of [1]), which currently uses cumbersome22

high-probability boundedness arguments to satisfy the boundedness requirement in [3]. In fact, our results provide a23

tighter high-probability bound on minimum eigenvalue of the design matrix. Moreover, our RIP results can be directly24

applied to the high-dimensional LCB setting where the latent parameter is assumed to have structure (such as sparsity)25

and parameter recovery requires RIP of the design matrix. We will expand on this LCB application in Sec. 3.26

R1. We will include a brief sketch of how the terms in (6) are bounded and give some details on what a, b, c are in (7).27

We appreciate the detailed comments and will update the draft to address these. Brief responses for some of the points28

raised: for compact sets, one can indeed use a covering argument along with Hanson-Wright, but generic chaining29

gives a sharper bound by using a hierarchical covering argument; lines 156, 164, its a typo, the expectation should be a30

conditional expectation, the analysis in Appendix B uses the correct form, we will fix it; line 199, we will update it to31

be ∀u ∈ A, the inf-sup form is sometimes used in high-d statistics; line 227, you are correct, we will fix them.32

R3. First, we give a concrete example above on LCB [1] where the main results can be directly used. Second, while the33

results for the i.i.d. and MDS cases match, note that the MDS results needed new tools and results which we developed34

as part of the work. For example, consider the decoupling results in Appendix A. Recall that for decoupling for the35

i.i.d. setting, one just needs to consider an independent copy of the random vector. However, for the MDS setting, an36

independent copy of the MDS does not lead to decoupling, so we had to develop the MDS decoupling result based on a37

decoupled tangent sequence. Similar new results were developed in the context of generic chaining. We appreciate38

the detailed comments, we will make a pass on the paper to incorporate these. Brief responses for some of the points39

raised: for (7), we plan to bring the technical results (Theorems 4 and 5 in Appendix B) in the main paper; a, b, c are40

independent of p; yes, we needed to introduce the γβ function because a, b in (9) depend on the γ2 function, this can be41

seen by comparing (9) with Theorems 1 and 2, but we will work on the writeup to make these clear; we in fact now42

have the sharper analysis which drops the extra log n term; for Corollary 1, as we discuss above, the vec-wise MDS43

shows up for LCB [1]; existing results on RIP for Toeplitz matrices rely on the (2p− 1) elements being drawn i.i.d.,44

and we extend the result to MDSs, but we plan to replace the Toeplitz example with the arguably more compelling LCB45

example; for CountSketch, you are right, each ηij is not sampled sequentially, but vec(X) is still a MDS since the46

Rademacher r.v.s δij are independent of ηij , the conditional expectation E[δijηij |.] = E[δij ]E[ηij |.] = 0.47

R4. We have discussed a concrete example on linear contextual bandits [1] where the main results can be directly used.48

Brief responses for some of the points raised: we will state (6) as a Lemma, and briefly sketch how the terms in (6) are49

bounded (in Appendix B); we agree with the historical remark, we will switch the RIP and JL sub-sections, make the50

presentation uniform (all Corollaries), and also add additional remarks on the countsketch example. We appreciate the51

detailed comments and will update the draft based on these.52
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