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Abstract

Several important families of computational and statistical results in machine
learning and randomized algorithms rely on uniform bounds on quadratic forms
of random vectors or matrices. Such results include the Johnson-Lindenstrauss
(J-L) Lemma, the Restricted Isometry Property (RIP), randomized sketching al-
gorithms, and approximate linear algebra. The existing results critically depend
on statistical independence, e.g., independent entries for random vectors, inde-
pendent rows for random matrices, etc., which prevent their usage in dependent
or adaptive modeling settings. In this paper, we show that such independence
is in fact not needed for such results which continue to hold under fairly gen-
eral dependence structures. In particular, we present uniform bounds on random
quadratic forms of stochastic processes which are conditionally independent and
sub-Gaussian given another (latent) process. Our setup allows general dependen-
cies of the stochastic process on the history of the latent process and the latent
process to be influenced by realizations of the stochastic process. The results are
thus applicable to adaptive modeling settings and also allows for sequential design
of random vectors and matrices. We also discuss stochastic process based forms
of J-L, RIP, and sketching, to illustrate the generality of the results. 1

1 Introduction

Over the past few decades, a set of key developments in machine learning and randomized algo-
rithms have been relying on uniform large deviation bounds on quadratic forms involving random
vectors or matrices. The Restricted Isometry Property (RIP) is a well known and widely studied
result of this type, which has had a major impact in high-dimensional statistics [35, 5, 45, 46]. The
Johnson-Lindenstrauss (J-L) Lemma is another well known result of this type, which has led to ma-
jor statistical and algorithmic advances in the context of random projections [25, 2, 23]. Similar
substantial developments have been made in several other contexts, including sketching algorithms
based on random matrices [49, 26], advances in approximate linear algebra [32, 20], among others.
Such existing developments in one way or another rely on uniform bounds on quadratic forms of
random vectors or matrices. Let A be a set of (m × n) matrices and ξ ∈ Rn be a sub-Gaussian
random vector [45, 46]. The existing results stem from large deviation bounds of the following
random variable [28]:

CA(ξ) = sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22∣∣ . (1)

Results such as RIP and J-L can then be obtained in a straightforward manner from such bounds by
converting the matrix A into a vector θ = vec(A) and converting ξ into a suitable random matrix X
to get bounds on

CΘ(X) = sup
θ∈Θ

∣∣‖Xθ‖22 − E‖Xθ‖22∣∣ , (2)

1The full version of this paper is available at https://arxiv.org/abs/1910.04930 [6].
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where Θ = {vec(A)|A ∈ A}. Results on other domains such as sketching [49, 26] and approximate
linear algebra [32, 20] can be similarly obtained. Further, note that such bounds are considerably
more general than the popular Hanson-Wright inequality [39, 22] for quadratic forms of random
vectors, which focus on a fixed matrix A instead of a uniform bound over a set A.
The key assumption in all existing results is that the entries ξj of ξ need to be statistically inde-
pendent. Such independence assumption shows up as element-wise independence of the random
vector ξ in quadratic forms like CA(ξ) and row-wise or element-wise independence of the random
matrixX in quadratic forms like CΘ(X). Existing analysis techniques, typically based on advanced
tools from empirical processes [45, 30], rely on such independence to get the large deviation bound.
In this paper, we consider a generalization of such existing results by allowing for statistical de-
pendence in ξ. In particular, we assume ξ = {ξj} to be a stochastic process where the marginal
random variables ξj are conditionally independent and sub-Gaussian given some other (latent) pro-
cess F = {Fj}. While hidden Markov models (HMMs) [7] are a simple example of such a setup,
with F being the latent variable sequence and ξ being the observations, our setup described in de-
tail in Section 2 allows for far more complex dependencies, and allows for many different types of
graphical models connecting ξ and F . In Section 2 we discuss two key conditions such graphical
models need to satisfy and give a set of concrete examples of graphical models which satisfy the
conditions illustrating the flexibility of the setup. Our main result is to establish a uniform large
deviation bound for CA(ξ) in (1) where ξ is any stochastic process following the setup outlined in
Section 2.
There are two broad implications of our results allowing for dependence in random quadratic forms.
First, there are several emerging domains where data collection, modeling and estimation take place
adaptively, including bandits learning, active learning, and time-series analysis [4, 40, 31]. The de-
pendence in such adaptive settings is hard to handle, and existing analysis for specific cases goes
to great lengths to work with or around such dependence [36, 18, 34]. The general tool we pro-
vide for such settings has the potential to simplify and generalize results in adaptive data collection,
e.g., our results are applicable to the smoothed analysis of contextual linear bandits considered in
[27]. Second, since our results allow for sequential construction of random vectors and matrices
by considering what has happened so far, algorithmic approaches such as J-L and sketching would
arguably be able to take advantage of such extra flexibility possibly leading to adaptive and more
computationally efficient algorithms. In Section 4, we illustrate how such basic results on adap-
tive regression, RIP, and J-L would look like by allowing for dependence in the random vectors or
matrices.
The technical analysis for our main result is a significant generalization of prior analysis on tail be-
havior of chaos processes [3, 28, 43] for random vectors with i.i.d. elements. To construct a uniform
bound on CA(ξ) in (1) for a stochastic process ξ with statistically dependent entries, we decom-
pose the analysis into two parts: 1) bounding the off-diagonal terms of ATA, and 2) bounding the
diagonal terms of ATA. Our analysis for the off-diagonal terms is based on two key tools: decou-
pling [38] and generic chaining [43], both with suitable generalizations from i.i.d. counter-parts to
stochastic processes ξ. For decoupling, we present a new result on decoupling of quadratic forms
of sub-Gaussian stochastic processes ξ satisfying the conditions of our setup. Our result general-
izes the classical decoupling result for vectors with i.i.d. entries [38, 28]. For generic chaining,
we develop new results of interest in our context as well as generalize certain existing results for
i.i.d. random vectors to stochastic processes. While generic chaining, as a technique, does not rely
on statistical independence [43], an execution of the chaining argument does rely on an atomic large
deviation bound such as the Hoeffding bound for independent elements [28]. In our setting, the
atomic deviation bound in generic chaining carefully utilizes conditional independence satisfied by
the stochastic process ξ. Our analysis for the diagonal terms is based on suitable use of symmetriza-
tion, de-symmetrization, and contraction inequalities [8, 29]. However, we cannot use the standard
form for symmetrization and de-symmetrization which are based on i.i.d. elements. We generalize
the classical symmetrization and de-symmetrization results [8] to stochastic processes ξ in our setup,
and subsequently utilize these inequalities to bound the diagonal terms. We present a gentle exposi-
tion to the analysis in Section 3 and the technical proofs are all in [6, Appendix]. We have tried to
make the exposition self-contained beyond certain key definitions and concepts such as Talagrand’s
γ-function and admissible sequence in generic chaining [43].
Notation. Our results are for stochastic processes ξ = {ξj} adapted to another stochastic process
F = {Fi} with both moment and conditional independence assumptions outlined in detail in Sec-
tion 2. We will consider conditional probabilities Xj = ξj |f1:j , where f1:j is a realization of F1:j ,
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F1 F2 F3 … Fn-1 Fn

ξ1 ξ2 ξ3 … ξn-1 ξn

F0

Figure 1: Graphical Model 1 (GM1) structure for stochastic process {ξi} adapted to {Fi} satisfies
(SP-2) by construction. While we show arrows only from one random variable, e.g., Fi−1 → ξi,
the conditional random variable ξi|F1:(i−1) can have dependence on the entire history F1:(i−1). All
these arrows are not depicted in this and other figures to avoid clutter.

and assume Xj to be zero-mean L-sub-Gaussian, i.e., P(|Xj | > τ) ≤ 2 exp(−τ2/L2) for some
constant L > 0 and all τ ≥ τ0, a constant [45, 46]. For the exposition, we will call a random
variable sub-Gaussian without explicitly referring to the constant L. With n denoting the length
of the stochastic process, we will abuse notation and consider a random vector ξ = [ξj ] ∈ Rn
corresponding to the stochastic process ξ = {ξj}, where the usage will be clear from the con-
text. Our results are based on two classes of complexity measures of a set of (m × n) matrices
A. The first class, denoted by dF (A) and d2→2(A), are the radius of A in the Frobenius norm
‖A‖F =

√
Tr(ATA) and the operator norm ‖A‖2→2 = sup‖x‖2≤1 ‖Ax‖2. For the set A, we

have dF (A) = supA∈A ‖A‖F , and d2→2(A) = supA∈A ‖A‖2→2. The second class is Talagrand’s
γ2(A, ‖ · ‖2→2) functional, defined in Section 3 [43, 42]. Recent literature have used the notion
of Gaussian width: w(A) = E supA∈A |Tr(GTA)| where G = [gi,j ] ∈ Rm×n have i.i.d. normal
entries, i.e., gi,j ∼ N(0, 1). It can be shown [43] that γ2(A, ‖ · ‖2→2) can be bounded by the Gaus-
sian width w(A), i.e., γ2(A, ‖ · ‖2→2) ≤ cw(A), for some constant c > 0. Our analysis will be
based on bounding Lp-norms of suitable random variables. For a random variable X , its Lp-norm
is ‖X‖Lp

= (E|X|p)1/p.

2 Setup

We describe the formal set up of stochastic processes for which we provide large deviation bounds.
Let ξ = {ξi} = {ξ1, . . . , ξn} be a sub-Gaussian stochastic process which is decoupled when condi-
tioned on another stochastic process F = {Fi} = {F1, . . . , Fn}. In particular, we assume:

(SP-1) for each i = 1, . . . , n, ξi|f1:i is a zero mean sub-Gaussian random variable [46] for all
realizations f1:i of F1:i; and

(SP-2) for each i = 1, . . . , n, there exists an index %(i) ≤ i which is non-decreasing, i.e., %(j) ≤
%(i) for j < i, such that ξi ⊥ ξj |F1:%(i), j < i and ξi ⊥ Fk|F1:%(i), k > %(i).

where ⊥ denotes (conditional) independence. The stochastic process ξ = {ξi} is said to be adapted
to the process F = {Fi} satisfying (SP-1) and (SP-2).
(SP-1) is an assumption on the moments of the distributions ξi|f1:i. Note that the assumption allows
the specifics of the distribution to depend on the history. (SP-2) is an assumption on the conditional
independence structure of ξ. The assumption allows ξi to depend on the history F1:%(i). Further, we
can have Fi−1 depending on ξi−1 and ξi depending on Fi−1. Graphical models GM1 (Figure 1),
GM2 (Figure 2) and GM3 (Figure 3) are examples of graphical models satisfying (SP-2). For GM1,
%(i) = i− 1 and Fi depends on F1:(i−1), but not on ξi. Further, ξi can depend on the entire history
F1:(i−1). GM2 is a variant of GM1 and structurally resembles a HMM (hidden Markov model)
with %(i) = i, Fi depending on Fi−1 (or the entire history F1:(i−1)), and ξi depends on Fi (or
the entire history F1:i). GM3 is a more complex model with %(i) = i and Fi depends both on
F1:(i−1) and ξi. For GM1 and GM3, we consider an additional ‘prior’ F0, and the properties (SP-1)
and (SP-2) can be naturally extended to include such a prior. We also give concrete examples of
potential interest in the context of machine learning in Section 4. For certain graphical models, it
may be at times more natural to first construct a stochastic process {Zi} respecting the graphical
model structure governed by (SP-2), and then construct the sequence {ξi} by conditional centering,
i.e., ξi|F1:i = Zi|F1:i − E[Zi|F1:i] so that E[ξi|F1:i] = 0 as required by (SP-1). Such a centered
construction is inspired by how one can construct martingale difference sequences (MDS) from
martingales [48].
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F1 F2 F3 … Fn-1 Fn

ξ1 ξ2 ξ3 … ξn-1 ξn

Figure 2: Graphical Model 2 (GM2) structure for stochastic process {ξi} adapted to {Fi} satisfies
(SP-2) by construction. While we show arrows only from one random variable, e.g., Fi → ξi, the
conditional random variable ξi|F1:i can have dependence on the entire history F1:i.

F1 F2 F3 … Fn-1 Fn

ξ1 ξ2 ξ3 … ξn-1 ξn

F0

Figure 3: Graphical Model 3 (GM3) structure for stochastic process {ξi} adapted to {Fi} sat-
isfies (SP-2) by construction. Note that there is no restriction on the conditional distribution
Fi | (F1:(i−1), ξi), so that Fi can have arbitrary dependence on F1:(i−1) and Zi. While we show
arrows only to one random variable, e.g., Fi−1 → ξi, the conditional random variable ξi|F1:(i−1)

can have dependence on the entire history F1:(i−1). Similarly, Fi|F1:(i−1), Zi is illustrated only with
arrows from Fi−1, Zi to Fi to avoid clutter.

3 Main Results

Let A be a set of (m × n) matrices and let ξ be a L-sub-Gaussian random vector. The random
variable of interest for the current analysis is:

CA(ξ) , sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22∣∣ . (3)

Based on the literature on empirical processes and generic chaining [43, 30], the random variable
CA(ξ) can be referred to as an order-2 sub-Gaussian chaos [43, 28]. While widely used results like
the restricted isometry property (RIP) [10, 19] and Johnson-Lindenstrauss (J-L) lemma [25, 49] do
not explicitly appear in the above form, getting such results from a large deviation bound on CA(ξ)
is straightforward [28, 33]. For ease of exposition, we will refer to such converted but otherwise
equivalent form as the random matrix form of CA(ξ).

3.1 The Main Result: Warm-up

The main technical result in the paper is a large deviation bound on CA(ξ) for the setting when ξ is
a stochastic process adapted to F satisfying (SP-1) and (SP-2), as defined in Section 2. To develop
large deviation bounds on CA(ξ), we decompose the quadratic form into terms depending on the
off-diagonal and the diagonal elements of ATA respectively. First note that the contributions from
the off-diagonal terms of ATA to E‖Aξ‖22 is 0. To see this, with Aj denoting the jth column of A,
by linearity of expectation we have

Eξ

 n∑
j,k=1
j 6=k

ξjξk〈Aj , Ak〉

 =

n∑
j,k=1
j 6=k

Eξj ,ξk [ξjξk]〈Aj , Ak〉 =

n∑
j,k=1
j 6=k

EF1:n

[
Eξj ,ξk|F1:n

[ξjξk]
]
〈Aj , Ak〉

(a)
=

n∑
j,k=1
j 6=k

EF1:n

[
Eξj |F1:n

[ξj ]Eξk|F1:n
[ξk]
]
〈Aj , Ak〉

(b)
= 0 ,

where (a) follows since ξj ⊥ ξk|F1:n by (SP-2) , and (b) follows since Eξj |F1:n
[ξj ] = Eξk|F1:n

[ξk] =
0 by (SP-1).
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Now, by definition and Jensen’s inequality, we have
CA(ξ) = sup

A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣

= sup
A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξk〈Aj , Ak〉+

n∑
j=1

(|ξj |2 − E|ξj |2)‖Aj‖22

∣∣∣∣∣∣∣∣
≤ sup

A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξk〈Aj , Ak〉

∣∣∣∣∣∣∣∣+ sup
A∈A

∣∣∣∣∣∣
n∑
j=1

(|ξj |2 − E|ξj |2)‖Aj‖22

∣∣∣∣∣∣
= BA(ξ) +DA(ξ)

Therefore, for any p ∈ [1,∞), we have
‖CA(ξ)‖Lp

≤ ‖BA(ξ)‖Lp
+ ‖DA(ξ)‖Lp

. (4)
Our approach to getting a large deviation bound for CA(ξ) is based on bounding ‖CA(ξ)‖Lp

,
which in turn is based on bounding ‖BA(ξ)‖Lp

and ‖DA(ξ)‖Lp
. For convenience, we will re-

fer to BA(ξ) as the off-diagonal term and DA(ξ) as the diagonal term. Such bounds lead to a bound
on ‖CA(ξ)‖Lp

of the form
‖CA(ξ)‖Lp

≤ a+
√
p · b+ p · c , ∀p ≥ 1 , (5)

where a, b, c are constants which do not depend on p. Note that by using the moment-generating
function and Markov’s inequality [48, 44], these Lp-norm bounds imply, for all u > 0

P (|CA(ξ)| ≥ a+ b ·
√
u+ c · u) ≤ e−u , (6)

or, equivalently

P (|CA(ξ)| ≥ a+ u) ≤ exp

{
−min

(
u2

4b2
,
u

2c

)}
, (7)

which yields the desired large deviation bound.

3.2 Upper Bounding BA(ξ) and DA(ξ)

The bound on ‖BA(ξ)‖Lp is based on two techniques: decoupling [38] and generic chaining [43].
Our main result in decoupling extends the classical result for ξ with i.i.d. entries to stochastic pro-
cesses ξ satisfying (SP-1) and (SP-2). The second part of the analysis uses generic chaining [43, 42]
which is arguably one of the most powerful tools for such analysis. Since we use generic chaining,
the results are in terms of Talagrand’s γ-functions [43] defined below.

Definition 1 For a metric space (T, d), an admissible sequence of T is a collection of subsets of T ,
{Tr : r ≥ 0}, with |T0| = 1 and |Tr| ≤ 22r

for all r ≥ 1. For β ≥ 1, the γβ functional is defined by

γβ(T, d) = inf sup
t∈T

∞∑
r=0

2r/βd(t, Tr) , (8)

where the infimum is over all admissible sequences of T .

In particular, our results are in terms of γ2(A, ‖ · ‖2→2), which is related to the Gaussian width of
the set by the majorizing measure theorem [42, Theorem 2.1.1][43, Theorem 2.4.1]. Recent years
have seen major advances in using Gaussian width for both statistical and computational analysis in
the context of high-dimensional statistics and related areas [11, 5, 37, 13]. Hence, recent tools for
bounding Gaussian width [11, 13] can be applied to our setting to get concrete bounds for cases of
interest. For example, if A is a set of s-sparse (m× n) matrices, γ2(A, ‖ · ‖2→2) ≤ c

√
s log(mn),

for some constant c [30, 45] (also see Section 4).
While the diagonal term DA(ξ) does not have any interaction terms of the form ξjξk, the term
depends on centered random variables |ξj |2 − E|ξj |2. Our analysis relies on three key results: sym-
metrization, de-symmetrization, and contraction [8, 29]. Our overall approach reduces to showing
that upper bounds onDA(ξ) can be derived from upper bounds onDA(g), where g has i.i.d. normal
entries, and additional terms which can be bounded using generic chaining [43]. Bounds on DA(g)
can be obtained using existing results [28].

5



3.3 The Main Result

Based on the analysis above, we have our main result as stated below

Theorem 1 Let A be a set of (m × n) matrices and let ξ be a stochastic process adapted to F
satisfying (SP-1) and (SP-2). Let

M = γ2(A, ‖ · ‖2→2) ·
(
γ2(A, ‖ · ‖2→2) + dF (A)

)
(9)

V = d2→2(A) ·
(
γ2(A, ‖ · ‖2→2) + dF (A)

)
(10)

U = d2
2→2(A) . (11)

Then, for any ε > 0,

P

(
sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣ ≥ c1M + ε

)
≤ 2 exp

(
−c2 min

{
ε2

V 2
,
ε

U

})
, (12)

where c1, c2 are constants which depend on the support.

It is instructive to compare our bounds for stochastic processes ξ satisfying (SP-1) and (SP-2) to the
sharpest existing bound on CA(ξ) for the special case when ξ has i.i.d. sub-Gaussian entries [28].
For this i.i.d. sub-Gaussian case, [28] showed a large deviation bound based on

M ′ = γ2(A, ‖ · ‖2→2) ·
(
γ2(A, ‖ · ‖2→2) + dF (A)

)
+ dF (A) · d2→2(A) (13)

V ′ = d2→2(A) ·
(
γ2(A, ‖ · ‖2→2) + dF (A)

)
(14)

U ′ = d2
2→2(A) . (15)

By comparing the terms with those in Theorem 1, we note that U = U ′ and V = V ′ and while
M ′ has an extra additional term dF (A) · d2→2(A), for symmetric sets A with A = −A we have
d2→2(A) ≤ γ2(A, ‖ · ‖2→2), so the terms are of the same order. Thus, the generalization to the
stochastic process ξ yields the same order bound as the i.i.d. case which allows seamless extension
of applications of the result to random vectors/matrices with statistical dependence.
Finally, our results can be extended to the case of non-zero mean stochastic processes. In particular
with x = ξ + µ, where ξ is the stochastic process satisfying (SP-1) and (SP-2) and µ is the mean
vector, i.e., E[x] = µ, we have ‖Ax‖2 − E‖Ax‖22 = (‖Aξ‖22 − E‖Aξ‖22) + 〈ξ, 2ATAµ〉, where
the first term is what we analyze and bound in Theorem 1, and the second term is a linear form of ξ.
For the uniform bound, the two terms can be separated using Jensen’s inequality, the first term can
be bounded using Theorem 1 and the second term can be bounded using a standard application of
generic chaining using (SP-1) and (SP-2). Thus, mean shifted versions of our results also hold.

4 Implications of the Main Results

We show several applications of our results, including the Johnson Lindenstrauss (J-L), Restricted
Isometry Property (RIP), and sketching. All proofs can be found in [6, Section 4].

4.1 Johnson-Lindenstrauss with Stochastic Processes

Let X ∈ Rn×p , n < p and let A be any set of N vectors in Rp. X is a Johnson-Lindenstrauss
transform (JLT) [25, 2] if for any ε > 0,

(1− ε)‖u‖22 ≤ ‖Xu‖22 ≤ (1 + ε)‖u‖22 for all u ∈ A . (16)

JLT is a random projection which embeds high-dimensional data into lower-dimensional space while
approximately preserving all pairwise distances [49, 32, 24]. JLT has found numerous applications
that include searching for an aproximate nearest neighbor in high-dimensional Euclidean space [23],
dimension reduction in data bases [1], learning mixture of Gaussians [15] and sketching [49]. It is
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well known that X = 1√
n
X̃ , where X̃ contains standard i.i.d. normal elements, is a JLT with high

probability when n = Ω(logN) [25]. .

Now denote the element in the i-th row and j-th column of X̃ as X̃i,j , and the i-th row as X̃i,:. Let
the entries of X̃i,j being sequentially generated as follows:

1. Initially, draw the first element X̃1,1 from a zero-mean sub-Gaussian distribution.

2. X̃i,j is a conditionally 1-sub-Gaussian random variable satisfying E[X̃i,j |fi,j ] = 0. The
fi,j are realizations of a stochastic process which can possibly depend on the entries
{{X̃i′,:}i′<i, {X̃i,j′}j′<j}.

3. X̃i,j ⊥ {{X̃i′,:}i′<i, {X̃i,j′}j′<j} | fi,j and X̃i,j ⊥ {{fi,j′}j′>j , {fi′,:}i′>i} | fi,j

The following result is an immediate consequence of Theorem 1

Corollary 1 (JL) Let X ∈ Rn×p be a matrix constructed as X = 1√
n
X̃ . If we choose n =

Ω(ε−2 logN), X is a JLT with probability at least 1− 1
Nc for a constant c > 0.

4.2 Restricted Isometry Property (RIP) with Stochastic Processes

Matrices satisfying Restricted Isometry Property (RIP) are approximately orthonormal on sparse
vectors [10, 9]. Let X ∈ Rn×p and let A be the set of all s-sparse vectors in Rp. We define matrix
X to satisfy RIP with the restricted isometry constant δs ∈ (0, 1) if for all u ∈ A,

(1− δs)‖u‖22 ≤
1

n
‖Xu‖22 ≤ (1 + δs)‖u‖22 . (17)

Matrices satisfying RIP are of interest in high-dimensional statistics and compressed sensing prob-
lems where the goal is to recover a sparse signal θ∗ ∈ Rp from limited noisy linear measure-
ments [47, 46]. Sub-Gaussian random matrices with i.i.d. rows, e.g., rows sampled from a
N(0, σ2Ip×p) satisfies RIP [10, 9, 35, 5] when n = Ω(s log p). But the i.i.d. rows assumption is vi-
olated in many practical settings when data is generated adaptively/sequentially. Examples include
times-series regression and bandits problems [31, 27], active learning [40, 21] or volume sampling
[16, 17]. An application of our new results shows that the i.i.d. assumption is not necessary and
design matrices generated from dependent elements also satisfy RIP when n = Ω(s log p). For
example, the following result holds for matrices X generated similar to matrix X̃ in Section 4.1.

Corollary 2 (RIP) Let X ∈ Rn×p be a matrix generated from the process outlined earlier. Then

for any ε > 0, if we choose n = Ω(ε−2s log(2p/s)), then δs ≤ ε with probability at least 1−
(
s
2p

)cs
for a constant c > 0.

RIP for adaptively generated rows. Sequential learning problems like linear contextual bandits
involve estimating a parameter with a design matrix whose rows are adverserially generated based
on previously observed rows and rewards which are linear functions of the rows. An example is
the linear contextual bandit problem considered, e.g., in [27, 41]. The data in any time step t is
generated as follows [27, 41]: .

1. Let Ht−1 denote historical data observed until time t − 1. In time step t − 1 an adaptive
adversary At−1 maps the histories to k contexts µ1

t , . . . , µ
k
t in Rp with ‖µ1

t‖2 ≤ 1, i.e.,
At−1 : Ht−1 → (Bp2)k where Bp2 represents the unit ball in p dimensions. Nature perturbs
the contexts with random Gaussian noise, i.e., xit = µit+git with git ∼ N(0, σ2Ip×p). Now,
in the context of GM3,Ht−1 ∪ {x1

t , . . . , x
k
t } represents F1:t−1.

2. In time step t, a learner chooses one among k contexts {x1
t , . . . , x

k
t } based on historical

data Ht−1. Let xitt denote the selected context and gitt denote the corresponding Gaussian
perturbation. In the context of GM3, we denote the centered Gaussian perturbation gitt −
E[gitt ] by ξt. The learner receives the noisy reward yt = 〈xitt , θ∗〉 + ωt where ωt is an
unknown sub-Gaussian noise. History at time step t is now augmented with the new data,
i.e.,Ht = Ht−1 ∪ {{x1

t , . . . , x
k
t }, x

it
t , yt}.
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The data generation process mirrors GM3 with Ft being a sub-Gaussian process which is influenced
by Ft−1 and ξt but generated adaptively by an adversary. ξt is a sub-Gaussian random vector cho-
sen by the learner using historical data Ht−1 satisfying (SP-2). The algorithm proposed in [41, 27]
involves a parameter estimation step in each time step t using the observed contexts and the corre-
sponding rewards {xit′t′ , yt′}, 1 ≤ t′ ≤ t. With Xt the matrix which has the centered Gaussian per-
turbations ξ1, . . . , ξt−1 as rows, [41, 27] show that inf

u∈Rp
E[‖Xtu‖22] ≥ tκ‖u‖22 for some constant κ

depending on the problem parameters and require the following lower bound on the non-asymptotic
RIP condition for efficient parameter estimation:(

inf
u∈Rp

E[‖Xtu‖22]− ε
)
‖u‖22 ≤ inf

u∈Rp
‖Xtu‖22 . (18)

Since the data generation follows graphical model GM3, the following Corollary 3 is a direct con-
sequence of Theorem 1

Corollary 3 Let Xt be a design matrix generated from the process described above. Then for any
ε > 0, if we choose t = Ω(ε−2κ−2p), then with probability atleast 1−exp(−cp) for constant c > 0,
the following condition is satisfied,

inf
u∈Rp

‖Xtu‖22 ≥ tκ(1− ε)‖u‖22 . (19)

4.3 CountSketch

CountSketch or sparse JL transform is used in real world applications like data streaming and dimen-
sionality reduction [12, 49]. Every column of a (n× p) CountSketch matrix X has only d(d � n)
non-zero elements, therefore for any vector u ∈ Rp, computing Xu takes only O(dp) instead of
O(np). Each entry of a CountSketch matrix X is given by Xi,j = ηi,jδi,j/

√
d, where δi,j is an

independent Rademacher random variable, and ηi,j is a random variable sampled adaptively. The
ηi,j satisfy

∑n
i=1 ηi,j = d, ηi,j ∈ {0, 1}, that is each column has exactly d non zero elements. For

every column j of X , the ηi,j can be generated by sampling d indices from {1, 2, . . . , n} adaptively
given previous columns, then set corresponding Xi,j to be a Rademacher random variable, so that
Xi,j depends on X1,j , X2,j . . . , Xi−1,j . The data generation process of countSketch matrix follows
graphical model GM1. The variance of Xi,j is 1

n and since all the entries of X are bounded by 1, X
is a JLT over N points when the number of rows satisfies n = Ω(ε−2 logN). Unlike [14, 26], our
bound does not depend on the choice of d. Our bound also matches the state of the art [26].

5 Conclusions

Several existing results in machine learning and randomized algorithms, e.g., RIP, J-L, sketching,
etc., rely on uniform large deviation bounds of random quadratic forms based on random vectors or
matrices. Such results are uniform over suitable sets of matrices or vectors, and have found wide
ranging applications over the past few decades. Growing interest in adaptive data collection, mod-
eling, and estimation in modern machine learning is revealing a key limitation of such results: the
need for statistical independence, e.g., elementwise independence of random vectors, row-wise in-
dependence of random matrices, etc. In this paper, we have presented a generalization of such results
that allows for statistical dependence on the history. We have also given examples for certain cases
of interest, including RIP, J-L, and sketching, illustrating that in spite of allowing for dependence,
our bounds are of the same order as that for the case of independent random vectors. We anticipate
our results to simplify and help make advances in analyzing learning settings based on adaptive
data collection. Further, the added flexibility of designing random matrices sequentially may lead
to computationally and/or statistically efficient random projection based algorithms. In future work,
we plan to investigate applications of these results in adaptive data collection and modeling settings.
Acknowledgements: The research was supported by NSF grants OAC-1934634, IIS-1908104,
IIS-1563950, IIS-1447566, IIS-1447574, IIS-1422557, CCF-1451986, a Google Faculty Research
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