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Abstract

A recent body of exciting work seeks to shed light on the behavior of acceler-
ated methods in optimization via high-resolution differential equations. These
differential equations are continuous counterparts of the discrete-time optimization
algorithms, and their convergence properties can be characterized using the power-
ful tools provided by classical Lyapunov stability analysis. An outstanding question
of pivotal importance is how to discretize these continuous flows while maintaining
their convergence rates. This paper provides a novel approach through the idea of
opportunistic state-triggered control. We take advantage of the Lyapunov functions
employed to characterize the rate of convergence of high-resolution differential
equations to design variable-stepsize forward-Euler discretizations that preserve
the Lyapunov decay of the original dynamics. The philosophy of our approach
is not limited to forward-Euler discretizations and may be combined with other
integration schemes.

1 Introduction

This paper builds on the current research activity that seeks to characterize the convergence properties
of dynamical systems that are continuous-time versions of accelerated algorithms in optimization.
This body of work sits at the intersection of various disciplines, most notably nonlinear systems and
optimization, and has brought to the understanding of acceleration properties a wealth of powerful
techniques from Lyapunov stability analysis, calculus of variations, and geometric methods. This
paper takes another step in this direction by further advancing the synergy between stability analysis
and the study of optimization algorithms. Here, we propose to employ an opportunistic state-triggered
approach to discretize continuous flows in a way that respects the Lyapunov function decay that
explains their accelerated convergence rates.

Summary of Results

The contribution of this paper is the design of a variable-stepsize forward-Euler discretization that
preserves the Lyapunov decay of high-resolution differential equations. A main novelty of our
technical approach is to employ, in the context of the discretization of state-of-the-art optimization
flows, ideas from opportunistic state-triggered control to develop real-time implementations of
closed-loop dynamical systems. We build on the Lyapunov functions employed to characterize
the rate of convergence of high-resolution differential equations to identify triggers that help us
determine the stepsize of the discretization as a function of the current iterate. By design, these
triggers ensure that the discretization retains the decay rate of the Lyapunov function. Since the
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evaluation of the Lyapunov function relies on knowledge of the problem optimizer, we rely on
well-known bounds available for strongly-convex functions to synthesize triggers that do not require
such knowledge. Various simulations show the superior performance of the proposed method in
comparison with recently proposed constant-stepsize discretizations. The flexibility of the proposed
framework provides a promising path towards the understanding of the acceleration phenomenon and
the design of new adaptive optimization algorithms.

Related Work

State-Triggered Control. The basic idea of opportunistic state-triggered control, see [13, 20] and
references therein, is to abandon the paradigm of continuous or periodic sampling/control in exchange
for deliberate, opportunistic aperiodic sampling/control to improve efficiency in the use of resources
while maintaining stability. Opportunistic state-triggered control can be roughly divided into event-
triggered and self-triggered designs. In event-triggered control, one continuously monitors certain
conditions whose violation triggers certain desirable action whereas in self-triggered control the
aim is to predict, with the information available at the last triggering time, when the next triggering
condition will take place. Beyond stability, many triggered designs also pay attention to guaranteeing
a desired performance by, for instance, making sure that the system enjoys a certain convergence rate.
This is accomplished through careful analysis of the evolution of a Lyapunov function. Works [6, 12]
based on the derivative-based approach ensure the closed-loop system’s stability by monitoring the
time derivative of the Lyapunov function. Other works [7, 26] resort to Lyapunov sampling-type
conditions, where triggers are stated in terms of the Lyapunov function by monitoring its decay.
Recent work [6, 21] combines the strengths of both types of design. Our technical treatment here
follows the derivative-based approach, albeit we believe that other types of design could also be
combined with our results here.

Accelerated Methods in Optimization. Steepest gradient descent is a keystone in first-order opti-
mization methods, but can be very slow. The work [22] introduced the so called heavy-ball method,
which aims to speed up the convergence of the gradient descent algorithm by including a momentum
term. Later on, [18] designed an algorithm similar in form, the so-called Nesterov’s accelerated
gradient, and using the technique known as estimating sequences, showed that the method achieves
black-box oracle bounds, i.e., it is optimal on the class of smooth convex or strongly convex func-
tions. Ever since its appearance, acceleration has remained mysterious, to a great extent due to the
elegant but unintuitive algebraic arguments used by Nesterov in his derivations. To clarify the ideas
underlying acceleration methods, the literature has explored different viewpoints. Some work [1]
relies on coupling different dynamics, where at any step mirror descent and gradient descent are
interpolated. Other approaches are based on dissipativity theory, [14], integral quadratic constraints,
[16], and even geometric arguments [5]. The most relevant line of research for our purposes is the
one initiated in [25], which introduces a second-order differential equation which is the continuous
limit of Nesterov’s accelerated gradient method. This ODE exhibits approximate equivalence to
Nesterov’s scheme and thus can serve as a tool for its analysis. Especially salient is the fact that
the analysis (both stability and rate of convergence) of the mentioned ODE is carried out using a
Lyapunov function. This work has spurred a lot of activity aimed at uncovering the rationale behind
the phenomenon of acceleration resorting to continuous dynamics, including the variational viewpoint
introduced in [27], the connections between Lyapunov theory and estimating sequences in [28] and
the Hamiltonian perspective exploited in [8, 17]. The work [15] employs a hybrid systems approach
to design a continuous-time dynamics with a feedback regulator of the viscosity of the heavy-ball
ODE, guaranteeing arbitrarily fast exponential convergence. Recently, high-resolution ODEs were
introduced in [23] as more accurate surrogates for the heavy-ball and Nesterov’s algorithms. The
work [3] introduces similar dynamics under the name inertial systems with Hessian-driven damping.
A number of works have also explored the discretization of accelerated continuous models and their
stability. The work [27] shows that the forward Euler method can be inefficient and even become
unstable after a few iterations. Some experimentation using symplectic integrators, without theoretical
guarantees, is given in [4]. The work [29] shows that high-order Runge-Kutta integrators can also be
used to retain acceleration when discretizing Nesterov’s methods for convex functions. The work [24]
analyzes in detail the properties of explicit, implicit, and symplectic integrators when applied to the
high-resolution dynamics corresponding to the heavy-ball and Nesterov’s schemes. The methods
proposed in this paper can be understood as variable-stepsize discretizations, which are a popular
class of methods in numerical analysis. Some examples of their success include line-search methods
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in optimization [19], the Runge–Kutta–Fehlberg algorithm [11], and adaptive-structure-preserving
integrators [10].

2 Preliminaries

2.1 Notation and Assumptions

We denote by R, R>0, and N the sets of real, positive real, and natural numbers, resp. All vectors
are considered column vectors and we denote their scalar product by 〈·, ·〉. We use ‖·‖ to denote the
2-norm in Euclidean space. Given µ ∈ R>0, a function f : Rn → R is convex if f(kx+(1−k)y) ≤
kf(x) + (1 − k)f(y) for x, y ∈ Rn and k ∈ [0, 1]. A continuously differentiable function f is
µ-strongly convex if f(y)− f(x) ≥ 〈∇f(x), y − x〉+ µ

2 ‖x− y‖
2 for x, y ∈ Rn. Given L ∈ R>0

and a function f : X → Y between two normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ), f is L-Lipschitz
if ‖f(x)− f(x′)‖Y ≤ L ‖x− x′‖X for x, x′ ∈ X . We endow the space of Rn×m matrices with
the induced matrix norm, namely ‖A‖ = max‖x‖=1 ‖Ax‖. We denote by S1µ,L(Rn) the set of
continuously differentiable functions on Rn, µ-strongly convex that have L-Lipschitz continuous
gradient. The function class S2µ,L(Rn) is the subclass of S1µ,L(Rn) of twice differentiable functions
with Lipschitz Hessian. A function f : Rn → R is positive definite relative to x∗ if f(x∗) = 0 and
f(x) > 0 for x ∈ Rn \ {x∗}.

2.2 Opportunistic State-Triggered Control

Here we provide a basic account of how real-time implementations of continuous-time controlled
dynamical systems can be developed using opportunistic state-triggered control. We refer to [6, 13] for
more complete expositions. We build on these ideas later to develop discretizations of high-resolution
differential equations. Consider the controlled dynamical system on Rn

ṗ = X(p, u), (1)

where X : Rn × Rm → Rn and X(p∗, 0) = 0. Assume we are given a stabilizing feedback law
u = k(p) along with a Lyapunov function V : Rn → R that serves as a certificate of the asymptotic
stability of the equilibrium p∗ ∈ Rn under the closed-loop system. Formally,

V̇ = 〈∇V (p), X(p, k(p))〉 ≤ −F (p), (2)

with F a positive definite function relative to p∗. For simplicity, we restrict ourselves to the case
F (p) = αV (p), with α ∈ R>0 (in this case, the convergence of V is exponential). The controller
u = k(p) cannot be implemented in real time, because it requires both continuous sampling and
actuation. The real-time implementation of the closed-loop system can be tackled by considering a
sample-and-hold implementation of (1) of the form

ṗ = X(p, k(p̂)), (3)

with p(0) = p̂, where p̂ is a sampled version of the state p. The most common approach consists
of periodically sampling the state, selecting a stepsize small enough to ensure that the function V
remains monotonically decreasing for the resulting system. However, constant stepsizes are generally
conservative, as they need to deal with worst-case scenarios. Instead, opportunistic state-triggered
control seeks to adjust the stepsize as determined by the current system state. Formally, let {t1, t2, . . .}
be a sequence of triggering times and denote pi = p(ti), for i ∈ N. Consider

ṗ = X(p, k(pi)), for t ∈ [ti, ti+1] and i ∈ N. (4)

The objective is then to identify a criterion to select the sequence of triggering times in a way that
ensures that (i) the triggered dynamics (4) retains the guarantees on the evolution of the Lyapunov
function and (ii) the inter-sampling times are lower bounded. Condition (ii) ensures feasibility and
rules out the possibility of Zeno behavior, cf. [9], whereas condition (i) ensures that the triggered
dynamics has the same convergence properties as the original dynamics.

Interestingly, both conditions can be met with designs that involve the Lyapunov function V itself.
Event-triggered designs compute the sequence of triggering times by monitoring the evolution of
certain function until a condition is violated. More precisely, assume that we have access to a
continuous function g : Rn × R→ R that satisfies g(p, 0) < 0 for all p ∈ Rn \ {p∗} and

V̇ (p(t)) + αV (p(t)) ≤ g(p̂, t),
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holds along the solutions of (3). Then, for each i ∈ N, the next triggering time can be determined by

ti+1 = min{t | t > ti such that g(pi, t) = 0}.

Note that, by design, this choice ensures that V̇ (p(t)) ≤ −αV (p(t)) along the dynamics (4). If g is
such that ti+1, as defined above, can be determined explicitly only with knowledge of pi, one refers
to this design as self-triggered (because it does not require the continuous monitoring of the evolution
of the state under (3) in order to identify it).

2.3 Adaptive-Stepsize Forward-Euler Discretization of Continuous-Time Dynamics via
Opportunistic State Triggering

The ideas described in Section 2.2 can also be applied in the context of discretization of asymptotically
stable continuous-time dynamical systems, as we explain next. Consider a dynamical system on Rn,

ṗ = Y (p) (5)

where Y : Rn → Rn. Assume p∗ is a globally asymptotically stable equilibrium point under this
dynamics, and a certificate, in the form of a Lyapunov function V : Rn → R, is available, meaning
that V̇ = 〈∇V (p), Y (p)〉 ≤ −αV (p) for all p ∈ Rn. Following the state-triggered approach
described above, consider the sampled implementation of the dynamics described by

ṗ = Y (p̂), (6)

with p(0) = p̂. Note that, the righthand side being constant, this is equivalent to writing

p(t) = p̂+ tY (p̂), (7)

which exactly corresponds to a forward-Euler discretization of stepsize t. Therefore, a successful
opportunistic state-triggered design would ensure that the monotonic behavior of the Lyapunov
function is respected, in turn guaranteeing convergence to the equilibrium at the same rate as
the original dynamics (5). Given the connection noted above with the Euler discretization, such
state-triggered implementation admits an interesting interpretation from a numerical viewpoint, cf.
Figure 1. In fact, the state-triggered implementation exactly corresponds to a variable stepsize Euler
discretization where, at each iterate, the trigger criteria helps us determine the stepsize according
to the decay criteria specified by the Lyapunov function. Before this decay condition is violated,
the state is re-sampled, and the process is repeated. By design, the resulting variable-stepsize Euler
discretization retains the convergence rate of the original dynamics.

Trigger-New iteration

Lyapunov

Level set

Sample-and-hold 

 implementation

Figure 1: Equivalence between opportunistic state-triggered implementation and variable-stepsize forward-Euler
discretization. The black lines correspond to the trajectories of the original dynamics (5). The red lines are
trajectories of the family of sampled dynamical systems (6), which are the same as the iterates of forward Euler
methods with different stepsizes.

We finish this section by pointing out that continuous models of accelerated optimization algorithms,
particularly high-resolution ODEs, fit the profile described above (i.e., they are globally asymptotically
stable and their convergence can be characterized via suitable Lyapunov functions). Furthermore, their
acceleration properties are explained as a consequence of the decay rate of the Lyapunov function.
This matches perfectly with our state-triggered approach, which seeks to conserve the decay rate of the
Lyapunov function, consequently ensuring the acceleration properties in the resulting discrete-time
algorithm. An interesting challenge arises because of the fact that the Lyapunov function typically
relies on knowledge of the optimizer, thereby complicating the evaluation of trigger designs based on
them. The rest of this paper shows how we tackle this problem to synthesize trigger designs that do
not rely on such knowledge and still guarantee the desired decay rate of the Lyapunov function.
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3 Triggered Discretization of Heavy Ball and Nesterov’s Continuous Models

Here we present discretizations, using the methodology described in Section 2.3, of the high-resolution
ordinary differential equations (heavy-ball and Nesterov for strongly convex functions) proposed
in [23] for optimization. Due to space constraints, we discuss in detail the heavy-ball case and refer
the reader to the supplementary material for an analogous discretization of the Nesterov’s accelerated
gradient for strongly convex functions.

Let f belong to S1µ,L(Rn) and let x∗ be its unique minimizer. Given s ∈ R>0, consider the following
s-dependent family of second-order differential equations,[

ẋ
v̇

]
=

[
v

−2√µv − (1 +
√
µs)∇f(x))

]
, (8)

with initial conditions x(0) = x0, v(0) = − 2
√
s∇f(x0)
1+
√
µs . When convenient, we refer to this dynamics

as Xhb. The following result characterizes the convergence properties of this dynamics.

Theorem 3.1 ([23]). Let V : Rn × Rn → R be the positive definite function relative to [x∗, 0]
T ,

V (x, v) = (1 +
√
µs)(f(x)− f(x∗)) +

1

4
‖v‖2 + 1

4
‖v + 2

√
µ(x− x∗)‖2 .

Then V̇ ≤ −
√
µ

4 V along the dynamics (8) and, as a consequence, [x∗, 0]T is globally asymptotically
stable. Moreover, for s ≤ 1/L, the decay rate of the Lyapunov function V implies

f(x(t))− f(x∗) ≤
7 ‖x(0)− x∗‖2

2s
e−
√
µ

4 t. (9)

Given our discussion in Section 2.2, Theorem 3.1 provides all the necessary ingredients to develop a
discretization that respects the convergence rate, and hence inherits the guarantee (9). For simplicity,
we use the shorthand notation p = [x, v]T . Observe that the Lyapunov function V depends on the
minimizer, x∗, which is unknown. To circumvent this issue, we resort to tight estimates provided by
the convexity properties of the function f .

Consider the sampled-and-hold implementation of (8) given by ṗ = Xhb(p̂), p(0) = p̂ or, equiva-
lently, p(t) = p̂+ tXhb(p̂). Our goal is to determine a stepsize t, as large as possible, that guarantees
d
dtV (p(t)) +

√
µ

4 V (p(t) ≤ 0 along the sampled dynamics. The following result provides us with a
particularly useful upper bound to ensure this. The proof is provided in the supplementary material.

Proposition 3.2. For the sample-and-hold dynamics ṗ = Xhb(p̂), p(0) = p̂, 0 ≤ s and 0 ≤ α ≤√
µ/4. Let

d

dt
V (p(t)) + αV (p(t)) = 〈∇V (p̂+ tXhb(p̂)), Xhb(p̂)〉+ αV (p̂+ tXhb(p̂))

= 〈∇V (p̂+ tXhb(p̂))−∇V (p̂), Xhb(p̂)〉︸ ︷︷ ︸
I

+α(V (p̂+ tXhb(p̂))− V (p̂))︸ ︷︷ ︸
II

+ 〈∇V (p̂), Xhb(p̂)〉+ αV (p̂)︸ ︷︷ ︸
III

.

Then, the following bounds hold:

1. Term I ≤ AET(p̂, t) ≤ AST(p̂)t;

2. Term II ≤ BCET(p̂, t) ≤ BST(p̂)t+ CST(p̂)t
2;

3. Term III ≤ DET(p̂, t) = DST(p̂),
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where

AET(p̂, t) = (1 +
√
µs)〈∇f(x̂+ tv̂)−∇f(x̂), v̂〉+ t2

√
µ(1 +

√
µs)〈∇f(x̂), v̂〉+ t2µ ‖v̂‖2

+ t(1 +
√
µs)2 ‖∇f(x̂)‖2 ,

BCET(p̂, t) = α
(
(1 +

√
µs)(f(x̂+ tv̂)− f(x̂)) + t2

1

4
‖−2√µv̂ − (1 +

√
µs)∇f(x̂)‖2

− t(1 +√µs)〈v̂,∇f(x̂)〉 − t√µ ‖v̂‖2 + t2
1

4
‖(1 +√µs)∇f(x̂)‖2

− t√µ(1 +√µ) ‖∇f(x̂)‖2 /L
)
,

DET(p̂, t) = (α
3

4
−√µ) ‖v̂‖2 +

(
(1 +

√
µs)

α−√µ
2L

+ (α2µ−
√
µ(1 +

√
µs)µ)

2
)
1

L2

)
‖∇f(x̂)‖2 ,

AST(p̂) = (1 +
√
µs)L ‖v̂‖2 + 2

√
µ(1 +

√
µs)〈∇f(x̂), v̂〉+ 2µ ‖v̂‖2 + (1 +

√
µs)2 ‖∇f(x̂)‖2 ,

BST(p̂) = α
(
−√µ ‖v̂‖2 −√µ(1 +√µs) 1

L
‖∇f(x̂)‖2

)
,

CST(p̂) = α
(
(1 +

√
µs)

L

2
‖v̂‖2 + 1

4
‖−2√µv̂ − (1 +

√
µs)∇f(x̂)‖2 + 1

4
‖−(1 +√µs)∇f(x̂)‖2

)
.

We define, with a slight abuse of notation,

gET(p̂, t) = AET(p̂, t) +BCET(p̂, t) +DET(p̂, t),

gST(p̂, t) = CST(p̂)t
2 + (AST(p̂) +BST(p̂))t+DST(p̂),

(the reason for the subindexes ET, for event-triggered, and ST, for self-triggered, becomes clear
below). With these functions in place, it follows from Proposition 3.2 that

d

dt
V (p(t)) + αV (p(t)) ≤ gET(p̂, t) ≤ gST(p̂, t). (10)

This is all we need to determine the stepsize starting from p̂. Formally, we set

step#(p̂) = min
t
{t > 0 such that g#(p̂, t) = 0}, (11)

where # ∈ {ET,ST}. Note that, when # = ET, then gET(p̂, t) = 0 is an implicit equation on t.
Instead, when # = ST, then the solution to the quadratic equation gST(p̂, t) = 0 can be obtained
explicitly (i.e., determined only with the information about the current state p̂) since CST(p̂) > 0 and
DST(p̂) < 0 when α ≤ √µ/4. In fact, we have

stepST(p̂) =
−(AST(p̂) +BST(p̂)) +

√
(AST(p̂) +BST(p̂))2 − 4CST(p̂)DST(p̂)

2CST(p̂)
.

Algorithm 1 describes in pseudocode the resulting variable-stepsize integrator.

Algorithm 1: Triggered Forward-Euler algorithm
Initialization: Initial point (p0), convergence rate (α), objective function (f ), tolerance (ε);
Set: k = 0;
while ‖∇f(x)‖ ≥ ε do

Compute stepsize tk at current point according to (11);
Compute next iterate pk+1 = pk + tkXhb(pk);
Set k = k + 1

end

Theorem 3.3. For 0 < α ≤ √µ/4 and # ∈ {ET,ST}, Algorithm 1 is a variable-stepsize integrator
with the following properties

(i) the stepsize is uniformly lower bounded by a positive constant. Namely

−c2 +
√
c22 + c1 ≤ stepST (p)
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where

c1 = min{
2
(√
µ− 3α

4

)
α
(
4µ+ L

√
µs+ L

) , 2 (−4αµ+ L
(√
µ− α

) (√
µs+ 1

)
+ µ3/2

(√
µs+ 1

))
3αL2

(√
µs+ 1

)2 }

c2 = max{
(
2µ+

√
µ+ L

) (√
µs+ 1

)
α
(
4µ+ L

√
µs+ L

) ,
2
(√
µ+
√
µs+ 1

)
3α
(√
µs+ 1

) }.

(ii) d
dtV (pk + tXhb(pk)) ≤ −αV (pk + tXhb(pk)) for all t ∈ [0, tk] and all k ∈ {0} ∪ N.

As a consequence, it follows that f(xk+1)− f(x∗) ≤ 7‖x(0)−x∗‖2
2s e−α

∑k
i=0 ti for all k ∈ {0} ∪ N.

Proof. Since gET(p, t) ≤ gST(p, t) we have stepST(p) ≤ stepET(p) and therefore it is enough to
prove the first claim for the ST-case. We rewrite,

stepST(p) =
−(AST(p) +BST(p))

2CST(p)
+

√(
AST(p) +BST(p)

2CST(p)

)2

− DST(p)

CST(p)
.

We bound, using ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2,

CST(p) ≤ α
(
((1 +

√
µs)

L

2
+ 2µ) ‖v‖2 + 3

4
(1 +

√
µs)2 ‖∇f(x)‖2

)
and therefore

−DST(p)

CST(p)
≥
−(α 3

4 −
√
µ) ‖v‖2 −

(
(1 +

√
µs)

α−√µ
2L + (α2µ−

√
µ(1+

√
µs)µ)

2 ) 1
L2

)
‖∇f(x)‖2

α
(
((1 +

√
µs)L2 + 2µ) ‖v‖2 + 3

4 (1 +
√
µs)2 ‖∇f(x)‖2

) .

We observe that if we rename ‖∇f(x)‖ = z1 and ‖v‖ = z2 then the last expression has the form

β1z
2
1 + β2z

2
2

β3z21 + β4z22
. (12)

We show in the supplementary material that such expression is upper and lower bounded by positive
constants, i.e., there exist (explicit) c1 and c2 ∈ R>0 such that

0 < c1 ≤
β1z

2
1 + β2z

2
2

β3z21 + β4z22
≤ c2 for all z1, z2 ∈ R\{0}.

Using this observation, we have

−(AST(p) +BST(p))

2CST(p)
+

√(
AST(p) +BST(p)

2CST(p)

)2

+ c1

≤ −(AST(p) +BST(p))

2CST(p)
+

√(
AST(p) +BST(p)

2CST(p)

)2

− DST(p)

CST(p)
.

It is easy to see that the function f(z) = −z +
√
z2 + c1 is monotonically decreasing and positive

everywhere. So, if z is upper bounded, then f(z) is lower bounded by a positive constant. With this
observation, and the form of the last expression, it is clear that if we upper bound z = AST(p)+BST(p)

2CST(p)

we are done. To achieve this goal let us use

CST(p) ≥ α
(
(1 +

√
µs)

L

2
‖v‖2 + 1

4
(1 +

√
µs)2 ‖∇f(x)‖2

)
.

and
AST(p) +BST(p) ≤ AST(p) ≤ (1 +

√
µs)L ‖v‖2 +√µ(1 +√µs) ‖∇f(x)‖2

+
√
µ(1 +

√
µs) ‖v‖2 + 2µ ‖v‖2 + (1 +

√
µs)2 ‖∇f(x)‖2

where we have used Cauchy-Schwartz and Young’s inequality in the last estimate. Now, the
fraction AST(p)+BST(p)

2CST(p) has the form (12), and so we can conclude the existence of c2 such that
AST(p)+BST(p)

2CST(p) ≤ c2. To finish now the proof of the first part of Theorem 3.3 it is only necessary to
use the explicit expressions of c1 and c2 provided in the supplementary material. The second part
follows from Proposition 3.2 and the algorithm design. �
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We compare the performance of Algorithm 1 for the event-triggered (ET) and self-triggered (ST)
cases with the explicit and symplectic integrators proposed in [24] in a logistic regression example.
Figure 2 illustrates the evolution of the stepsize, objective and Lyapunov functions. We set α =

√
µ/4

and s = µ/(36L2) following the values in [24]. The objective function corresponds to the regularized
logistic regression cost function, namely

∑10
i=1 log(1 + e−yi〈vi,x〉) + 1/2 ‖x‖2, where x ∈ R4 and

we have generated the sampled points (vi, yi) randomly. This function is 1-strongly convex. The
value of L = 177.49 can be estimated by straightforward computations. In the plots, we display the
optimal stepsize only for comparison purposes, as the minimizer is in practice unknown. Knowledge
of the minimizer x∗ would enable the explicit computation of the Lyapunov function, cf. Theorem 3.1,
which in turn would allow to solve V̇ + αV by any standard numerical method at any iteration. This
is what we refer to as optimal stepsize.
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Figure 2: (Top, left) Comparison of stepsizes along the various discrete-time dynamics. The ET and ST
integrators keep a larger stepsize for the first 2000 iterations, approaching the optimizer much faster. (Top,
right) Comparison of the evolution of the ET stepsize and optimal stepsize along the ET dynamics. We observe
how the stepsize computed by the ET integrator chases the optimal stepsize as the state evolves. (Bottom, left)
Comparison of the evolution of the objective function along the different dynamics. (Bottom, right) Comparison
of the evolution of the Lyapunov function along the different dynamics.

Figure 3 provides another comparison for a quadratic objective function over R50 defined by an
(ill-conditioned) positive definite 50 × 50 matrix, where µ = 3.5 and L = 7006.6. We plot the
evolution of the objective and the logarithm of the Lyapunov functions, comparing the proposed
algorithms with forward and symplectic Euler. The supplementary material contains additional
comparisons for various 2-dimensional quadratic cases.

4 Conclusions and Future Work

We have introduced a novel opportunistic state-triggered approach to the discretization of optimization
flows. Our approach relies on the key observation that resource-aware control provides a principled
way of going from continuous-time control design to real-time implementation with stability and
performance guarantees. This is done by opportunistically prescribing when certain action should
occur. In this case, the action amounts to a certain decay of the Lyapunov function. The presented
framework provides a promising path towards the design of adaptive optimization algorithms. We
have provided theoretical guarantees that ensure the implementability of the method and numerical
comparisons with recent discretizations of the heavy-ball dynamics. The supplemental material
contains analogous results for the Nesterov’s accelerated gradient for strongly convex functions.

8



0 2000 4000 6000 8000 10000

0

5.0×107

1.0×108

1.5×108

Iterations

O
b
je
c
ti
v
e
F
u
n
c
ti
o
n

ET Integrator

ST Integrator

Forward Euler
Symplectic Euler

0 2000 4000 6000 8000 10000

14

15

16

17

18

19

Iterations

L
o
g
L
y
a
p
u
n
o
v
F
u
n
c
ti
o
n

Figure 3: (Left) Comparison of the evolution of the objective function along the different dynamics. (Right)
Comparison of the evolution of the logarithm of the Lyapunov function along the different dynamics.

We have employed a derivative-based approach to trigger design combined with the forward Euler
method for its simplicity, but believe that other powerful schemes can be synthesized in the future by
resorting to the following ideas.

Use of more complex integrators. The setting presented here is general enough to incorporate other
integrators beyond the forward Euler method that may yield better performance. Additionally, the
sampled information employed in our approach is a zero-order-hold, and possibilities exist within
the theory of resource-aware control to employ higher-order holds that more accurately approximate
the evolution of the continuous-time dynamics. The direct application of the forward Euler method
to Nesterov’s continuous model gives a dynamics that includes the second-order term ∇2f(x)v.
This is a drawback, as precisely the success of Nesterov’s method is the requirement of only first-
order information. Two promising approaches to circumvent this issue are to approximate the term√
s∇2f(x)v by ∇f(xk+1)−∇f(xk), cf. [19, 24], and to recast the second-order Nesterov’s ODE

as a first-order one, cf. [2, 3] and develop analogous schemes for the resulting dynamics.

Convergence rate as a result of Lyapunov decay and uniform lower bound on stepsize. The result in
Theorem 3.3 links the convergence rate of the discrete-time algorithm to the Lyapunov decay and
the stepsize of the state-triggered implementation of the continuous-time dynamics. More explicitly,
if we bound the stepsize by t̂ then f(xk+1) − f(x∗) ∈ O(exp(−

√
µ

4 t̂)
k). Therefore acceleration

can be understood as a consequence of the ability of the state-triggered implementation to maintain
certain Lyapunov decay for a long enough time (i.e., large stepsize). Although we do not observe
acceleration in the numerical studies presented here, i.e., exp(−

√
µ

4 t̂) ≥ 1−
√

µ
L , this is probably due

to the simplicity of the used forward-Euler integrator employed. Nonetheless, the introduced variable
stepsize integrators clearly outperform their equivalent fixed-stepsize counterparts, reinforcing the
importance of extending our design to more complex integrators with which to achieve the desired
convergence rates.

Use of other triggering conditions. Other approaches to trigger design, beyond derivative-based ones,
are promising. For instance, [26] introduces a Lyapunov sampling event-triggered approach whose
main idea is to continuously sample the Lyapunov function until certain decay has been reached.
The trigger takes the form tk+1 = min{t > ti such that V (x(t))− ηV (xi) = 0}, where η ∈ [0, 1]
is a design parameter. The expression is similar to the difference V (xi+1)− V (xi), which is upper
bounded in [24] for the iterations of explicit and implicit symplectic integrators, and plays a key role
in the convergence analysis. This suggests the use of similar bounds to develop variable-stepsize
integrators. Along the same lines, the use of dynamic triggers [6] to keep track of how much the
Lyapunov function decreases along the evolution is also appealing.

Extensions to convex functions. The work [23] presents another high-resolution ODE for the case of
Nesterov’s method applied to convex functions. The sharp bounds on the evolution of the Lyapunov
function provided by strong convexity that we employ in the trigger design do not hold anymore. It is
therefore challenging and extremely interesting to develop new ideas to tackle this problem.
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