
We thank all the reviewers for their thorough reviews and insightful comments. Reviewers’ comments are in blue.1

Reviewer 1: The authors should explain more how this is actually done, and why it doesn’t represent a computational2

bottleneck for the proposal. The detailed algorithms for finding robust error regions under `∞ and `2 perturbations3

are provided in Section C in our supplementary materials. For `∞, we construct the systems of hyperrectangles by4

first precomputing an approximate k-NN distance estimate using Ball Trees for each data point, and then clustering5

the top-q densest data points into T partitions using the k-means algorithm, where we binary search for the optimal6

parameter q. The time complexity of precomputing and sorting the nearest neighbor distance estimates is approximately7

O(nd log(n)), where n is the total number of data points in Rd. In addition, the time complexity of k-means algorithm8

is O(ndTI), where I is the averaged number of iterations for k-means algorithm to converge. Therefore, the total9

computational complexity of our algorithm for `∞ is O(nd log(n)+ndTI log(1/δ)), where δ is the stopping threshold10

for binary search. In our experiments, we applied our algorithms to medium-sized datasets including CIFAR-10 and11

SVHN, and they finished reasonably quickly. We will include a runtime analysis of algorithms in the final version.12

Reviewer 2: It is worth including a discussion on https://arxiv.org/abs/1805.12152, which many researchers point to13

as refuting the concentration of measure hypothesis. We will include the discussions. In a nutshell, that work uses a14

definition that coincides with the definition of adversarial examples that we use for the interesting range of tampering15

parameters (in which the ground truth is robust). But, if the tampering goes up and can change the ground truth, even16

learning a concept exactly might leave room for adversarial examples under the definition used in that work (but not17

under ours). I would also be a bit more specific in the introduction that lp perturbations are a toy threat model that is18

not intended to model how actual adversaries choose to break systems. We will make sure to add comments about19

shortcomings of lp norm in capturing the whole picture. Any reason the authors defined an adversarial example as the20

nearest input which is classified differently, and not the nearest error? We agree with you that nearest error point is a21

natural definition of adversarial examples and we indeed use this definition in the paper. Specifically, in Definition 2.1,22

we compare the true label of x′ with the predicted label of x′, which means x′ should be an error point to be counted as23

an adversarial example. We will make this point more clear in the statement of our definition. It’s worth noting that24

MNIST may be a degenerate case with respect to the l∞ metric. In particular, a trivial defense is to first threshold the25

inputs about .5 and classify the resulting binary image. Because of this, I would not expect any meaningful bounds26

to hold for this dataset and metric. We agree with the reviewer that thresholding MNIST (and any other dataset) will27

make the transformed distribution not concentrated under l∞. However, the original distribution (before transformation)28

might still be concentrated. In particular, one might be able to add a small perturbation to the image before thresholding29

the features and make the binary transformation of the perturbed image different from that of the original image. For30

the case of MNIST, it seems that binarizing images should not change the distribution much, as the original images31

have close to binary form. Our experiments support this intuition and show that regions in MNIST dataset could have a32

very small expansion (it only grows from ∼ 1% to ∼ 10% when allowing ε = 0.4 perturbations). It would be very33

interesting if the authors could strengthen their bounds by making additional assumptions on the shape of the error set.34

Additionally, one could strengthen the bounds by approximating the content-preserving threat model. Thank you for35

pointing out these interesting future directions, particularly for the content-preserving mode. Interestingly, part of our36

theoretical results do already prove such results for restricted forms of error sets, and this does set the stage on how we37

choose the sets for our experiments. The proof of Theorem 3.5 first proves such result for limited shapes. In particular,38

we obtain such result when VC dimension of the sets and their expansion are bounded (e.g., union of hyperrectangles).39

Reviewer 3: Q1- the theoretical innovations in this paper are not practically relevant to the study of adversarial40

vulnerability. Q2- to disprove the "adversarial examples are inevitable" theory, you only need to show an *upper bound*41

on the concentration function, i.e. a finding that there exists some set with measure alpha whose epsilon-expansion42

has measure at most Y. Given a sample from the data distribution, here is a simple way to do that: split the sample43

into a "training set" and a "test set". The two questions/comments are relevant. We start with Q2, then will address44

Q1 as well. Yes, indeed to show that a distribution does not concentrate beyond a parameter, one can aim to show the45

existence of some set (found based on “training set”) and test its expansion using the “test set”. However, the question46

is how to design algorithms that come up with such sets. Our theory tells us that by looking at specific types of sets47

(e.g., collection of hyperrectangles), we can get “generalization” bounds for estimating expansion. Note that we tried48

different collections of subsets (e.g., subsets decided by neural networks) that were not supported by our theory and we49

observed huge generalization error that made the experiment meaningless. Therefore, in our experiments we use exactly50

the subset collections that theory suggests and the results of experiments verify our theory. Our theory is also important51

for future work. If one wants to find the concentration of measure under another metric probability space, they can52

use our theory to come up with suitable subset collections with generalization guarantees. As a sidenote, while the53

authors interpret this to mean that there is room to develop better robust classifiers, it could also mean that robustness54

is impossible for reasons other than concentration of measure. Thank you for pointing this out. We tried to be cautious55

in interpreting our results and consider the "robust classification is impossible for other reasons" hypothesis. However,56

after reading through the paper we found an occasion in our discussions (line 284-285) that we did not consider this57

hypothesis. We will make sure to clarify this in the next version of our paper.58


