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Abstract

In this paper, we introduce various mechanisms to obtain accelerated first-order
stochastic optimization algorithms when the objective function is convex or strongly
convex. Specifically, we extend the Catalyst approach originally designed for
deterministic objectives to the stochastic setting. Given an optimization method
with mild convergence guarantees for strongly convex problems, the challenge is to
accelerate convergence to a noise-dominated region, and then achieve convergence
with an optimal worst-case complexity depending on the noise variance of the
gradients. A side contribution of our work is also a generic analysis that can
handle inexact proximal operators, providing new insights about the robustness of
stochastic algorithms when the proximal operator cannot be exactly computed.

1 Introduction

In this paper, we consider stochastic composite optimization problems of the form

min
x∈Rp

{F (x) := f(x) + ψ(x)} with f(x) = Eξ[f̃(x, ξ)], (1)

where the function f is convex, or µ-strongly convex, and L-smooth (meaning differentiable with
L-Lipschitz continuous gradient), and ψ is a possibly non-smooth convex lower-semicontinuous
function. For instance, ψ may be the ℓ1-norm, which is known to induce sparsity, or an indicator
function of a convex set [21]. The random variable ξ corresponds to data samples. When the amount

of training data is finite, the expectation Eξ[f̃(x, ξ)] can be replaced by a finite sum, a setting that
has attracted a lot of attention in machine learning recently, see, e.g., [13, 14, 19, 25, 35, 42, 53] for
incremental algorithms and [1, 26, 30, 33, 47, 55, 56] for accelerated variants.

Yet, as noted in [8], one is typically not interested in the minimization of the empirical risk—that is,
a finite sum of functions—with high precision, but instead, one should focus on the expected risk
involving the true (unknown) data distribution. When one can draw an infinite number of samples
from this distribution, the true risk (1) may be minimized by using appropriate stochastic optimization
techniques. Unfortunately, fast methods designed for deterministic objectives would not apply to
this setting; methods based on stochastic approximations admit indeed optimal “slow” rates that are

typically O(1/
√
k) for convex functions and O(1/k) for strongly convex ones, depending on the

exact assumptions made on the problem, where k is the number of noisy gradient evaluations [38].

Better understanding the gap between deterministic and stochastic optimization is one goal of this
paper. Specifically, we are interested in Nesterov’s acceleration of gradient-based approaches [39, 40].
In a nutshell, gradient descent or its proximal variant applied to a µ-strongly convex L-smooth
function achieves an exponential convergence rate O((1 − µ/L)k) in the worst case in function
values, and a sublinear rate O(L/k) if the function is simply convex (µ = 0). By interleaving the
algorithm with clever extrapolation steps, Nesterov showed that faster convergence could be achieved,

and the previous convergence rates become O((1−
√

µ/L)k) and O(L/k2), respectively. Whereas
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no clear geometrical intuition seems to appear in the literature to explain why acceleration occurs,
proof techniques to show accelerated convergence [5, 40, 50] and extensions to a large class of other
gradient-based algorithms are now well established [1, 10, 33, 41, 47].

Yet, the effect of Nesterov’s acceleration to stochastic objectives remains poorly understood since
existing unaccelerated algorithms such as stochastic mirror descent [38] and their variants already
achieve the optimal asymptotic rate. Besides, negative results also exist, showing that Nesterov’s
method may be unstable when the gradients are computed approximately [12, 16]. Nevertheless,
several approaches such as [4, 11, 15, 17, 18, 23, 28, 29, 52] have managed to show that acceleration
may be useful to forget faster the algorithm’s initialization and reach a region dominated by the
noise of stochastic gradients; then, “good” methods are expected to asymptotically converge with
a rate exhibiting an optimal dependency in the noise variance [38], but with no dependency on the
initialization. A major challenge is then to achieve the optimal rate for these two regimes.

In this paper, we consider an optimization method M with the following property: given an auxiliary
strongly convex objective function h, we assume that M is able to produce iterates (zt)t≥0 with
expected linear convergence to a noise-dominated region—that is, such that

E[h(zt)− h⋆] ≤ C(1− τ)t(h(z0)− h⋆) +Bσ2, (2)

where C, τ,B > 0, h⋆ is the minimum function value, and σ2 is an upper bound on the variance of
stochastic gradients accessed by M, which we assume to be uniformly bounded. Whereas such an
assumption has limitations, it remains the most standard one for stochastic optimization (see [9, 43]
for more realistic settings in the smooth case). The class of methods satisfying (2) is relatively large.
For instance, when h is L-smooth, the stochastic gradient descent method (SGD) with constant step
size 1/L and iterate averaging satisfies (2) with τ = µ/L, B = 1/L, and C = 1, see [28].

Main contribution. In this paper, we extend the Catalyst approach [33] to general stochastic
problems.1 Under mild conditions, our approach is able to turn M into a converging algorithm with a
worst-case expected complexity that decomposes into two parts: the first one exhibits an accelerated
convergence rate in the sense of Nesterov and shows how fast one forgets the initial point; the second
one corresponds to the stochastic regime and typically depends (optimally in many cases) on σ2.
Note that even though we only make assumptions about the behavior of M on strongly convex
sub-problems (2), we also treat the case where the objective (1) is convex, but not strongly convex.

To illustrate the versatility of our approach, we consider the stochastic finite-sum problem [7, 22, 31,

54], where the objective (1) decomposes into n components f̃(x, ξ) = 1
n

∑n
i=1 f̃i(x, ξ) and ξ is a

stochastic perturbation, coming, e.g., from data augmentation or noise injected during training to
improve generalization or privacy (see [28, 35]). The underlying finite-sum structure may also result
from clustering assumptions on the data [22], or from distributed computing [31], a setting beyond
the scope of our paper. Whereas it was shown in [28] that classical variance-reduced stochastic
optimization methods such as SVRG [53], SDCA [47], SAGA [13], or MISO [35], can be made robust
to noise, the analysis of [28] is only able to accelerate the SVRG approach. With our acceleration
technique, all of the aforementioned methods can be modified such that they find a point x̂ satisfying
E[F (x̂)− F ⋆] ≤ ε with global iteration complexity, for the µ-strongly convex case,

Õ

((

n+

√

n
L

µ

)

log

(

F (x0)− F ⋆

ε

)

+
σ2

µε

)

. (3)

The term on the left is the optimal complexity for finite-sum optimization [1, 2], up to logarithmic

terms in L, µ hidden in the Õ(.) notation, and the term on the right is the optimal complexity for
µ-strongly convex stochastic objectives [17] where σ2 is due to the perturbations ξ. As Catalyst [33],
the price to pay compared to non-generic direct acceleration techniques [1, 28] is a logarithmic factor.

Other contributions. In this paper, we generalize the analysis of Catalyst [33, 44] to handle
various new cases. Beyond the ability to deal with stochastic optimization problems, our approach (i)
improves Catalyst by allowing sub-problems of the form (2) to be solved approximately in expectation,
which is more realistic than the deterministic requirement made in [33] and which is also critical

1All objectives addressed by the original Catalyst approach are deterministic, even though they may be large
finite sums. Here, we consider general expectations as defined in (1).
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for stochastic optimization, (ii) leads to a new accelerated stochastic gradient descent algorithms
for composite optimization with similar guarantees as [17, 18, 28], (iii) handles the analysis of
accelerated proximal gradient descent methods with inexact computation of proximal operators,
improving the results of [45] while also treating the stochastic setting.

Finally, we note that the extension of Catalyst we propose is easy to implement. The original Catalyst
method introduced in [32] indeed required solving a sequence of sub-problems while controlling
carefully the convergence, e.g., with duality gaps. For this reason, Catalyst has sometimes been seen as
theoretically appealing but not practical enough [46]. Here, we focus on a simpler and more practical
variant presented later in [33], which consists of solving sub-problems with a fixed computational
budget, thus removing the need to define stopping criterions for sub-problems. The code used for our
experiments is available here: ❤tt♣✿✴✴❣✐t❤✉❜✳❝♦♠✴❑✉❧✉❆♥❞r❡❥✴◆■P❙✲✷✵✶✾✲❝♦❞❡.

2 Related Work on Inexact and Stochastic Proximal Point Methods.

Catalyst is based on the inexact accelerated proximal point algorithm [20], which consists in solving
approximately a sequence of sub-problems and updating two sequences (xk)k≥0 and (yk)k≥0 by

xk ≈ argmin
x∈Rp

{

hk(x) := F (x) +
κ

2
‖x− yk–1‖2

}

and yk = xk + βk(xk − xk–1), (4)

where βk in (0, 1) is obtained from Nesterov’s acceleration principles [40], κ is a well chosen
regularization parameter, and ‖ · ‖2 is the Euclidean norm. The method M is used to obtain an
approximate minimizer of hk; when M converges linearly, it may be shown that the resulting
algorithm (4) enjoys a better worst-case complexity than if M was used directly on f , see [33].

Since asymptotic linear convergence is out of reach when f is a stochastic objective, a classical
strategy consists in replacing F (x) in (4) by a finite-sum approximation obtained by random sampling,
leading to deterministic sub-problems. Typically without Nesterov’s acceleration (with yk = xk),
this strategy is often called the stochastic proximal point method [3, 6, 27, 48, 49]. The point of view
we adopt in this paper is different and is based on the minimization of surrogate functions hk related
to (4), but which are more general and may take other forms than F (x) + κ

2 ‖x− yk–1‖2.

3 Preliminaries: Basic Multi-Stage Schemes

In this section, we present two simple multi-stage mechanisms to improve the worst-case complexities
of stochastic optimization methods, before introducing acceleration principles.

Basic restart with mini-batching or decaying step sizes. Consider an optimization method M
with convergence rate (2) and assume that there exists a hyper-parameter to control a trade-off
between the bias Bσ2 and the computational complexity. Specifically, we assume that the bias can be
reduced by an arbitrary factor η < 1, while paying a factor 1/η in terms of complexity per iteration
(or τ may be reduced by a factor η, thus slowing down convergence). This may occur in two cases:

• by using a mini-batch of size 1/η to sample gradients, which replaces σ2 by ησ2;
• or the method uses a step size proportional to η that can be chosen arbitrarily small.

For instance, stochastic gradient descent with constant step size and iterate averaging is compatible
with both scenarios [28]. Then, consider a target accuracy ε and define the sequences ηk = 1/2k

and εk = 2Bσ2ηk for k ≥ 0. We may now solve successively the problem up to accuracy εk—e.g.,
with a constant number O(1/τ) steps of M when using mini-batches of size 1/ηk = 2k to reduce
the bias—and by using the solution of iteration k–1 as a warm restart. As shown in Appendix B, the
scheme converges and the worst-case complexity to achieve the accuracy ε in expectation is

O

(

1

τ
log

(

C(F (x0)− F ⋆)

ε

)

+
Bσ2 log(2C)

τε

)

. (5)

For instance, one may run SGD with constant step size ηk/L at stage k with iterate averaging as
in [28], which yields B = 1/L, C = 1, and τ = µ/L. Then, the left term is the classical complexity
O((L/µ) log(1/ε)) of the (unaccelerated) gradient descent algorithm for deterministic objectives,
whereas the right term is the optimal complexity for stochastic optimization in O(σ2/µε). Similar
restart principles appear for instance in [4] in the design of a multistage accelerated SGD algorithm.
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Restart: from sub-linear to linear rate with strong convexity. A natural question is whether
asking for a linear rate in (2) for strongly convex problems is a strong requirement. Here, we show
that a sublinear rate is in fact sufficient for our needs by generalizing a restart technique introduced
in [18] for stochastic optimization, which was previously used for deterministic objectives in [24].

Specifically, consider an optimization method M such that the convergence rate (2) is replaced by

E[h(zt)− h⋆] ≤ D‖z0 − z⋆‖2
2td

+
Bσ2

2
, (6)

where D, d > 0 and z⋆ is a minimizer of h. Assume now that h is µ-strongly convex with D ≥ µ
and consider restarting s times the method M, each time running M for constant t′ = ⌈(2D/µ)1/d⌉
iterations. Then, it may be shown (see Appendix B) that the relation (2) holds with constant t = st′,
τ = 1

2t′ , and C = 1. If a mini-batch or step size mechanism is available, we may then proceed
as before and obtain a converging scheme with complexity (5), e.g., by using mini-batches of
exponentially increasing sizes once the method reaches a noise-dominated region, and by using a
restart frequency of order O(1/τ).

4 Generic Multi-Stage Approaches with Acceleration

We are now in shape to introduce a generic acceleration framework that generalizes (4). Specifically,
given some point yk–1 at iteration k, we consider a surrogate function hk related to a parameter κ > 0,
an approximation error δk ≥ 0, and an optimization method M that satisfy the following properties:

(H1) hk is (κ+ µ)-strongly convex, where µ is the strong convexity parameter of f ;

(H2) E[hk(x)|Fk–1] ≤ F (x) + κ
2 ‖x − yk–1‖2 for x = αk–1x

⋆ + (1 − αk–1)xk–1, which is
deteministic given the past information Fk–1 up to iteration k–1 and αk–1 is given in Alg. 1;

(H3) M can provide the exact minimizer x⋆k of hk and a point xk (possibly equal to x⋆k) such that
E[F (xk)] ≤ E[h⋆k] + δk where h⋆k = minx hk(x).

The generic acceleration framework is presented in Algorithm 1. Note that the conditions on hk
bear similarities with estimate sequences introduced by Nesterov [40]; indeed, (H3) is a direct
generalization of (2.2.2) from [40] and (H2) resembles (2.2.1). However, the choices of hk and the
proof technique are significantly different, as we will see with various examples below. We also
assume at the moment that the exact minimizer x⋆k of hk is available, which differs from the Catalyst
framework [33]; the case with approximate minimization will be presented in Section 4.1.

Algorithm 1 Generic Acceleration Framework with Exact Minimization of hk
1: Input: x0 (initial estimate); M (optimization method); µ (strong convexity constant); κ (param-

eter for hk); K (number of iterations); (δk)k≥0 (approximation errors);
2: Initialization: y0 = x0; q = µ

µ+κ ; α0 = 1 if µ = 0 or α0 =
√
q if µ 6= 0;

3: for k = 1, . . . ,K do
4: Consider a surrogate hk satisfying (H1), (H2) and obtain xk, x

⋆
k using M satisfying (H3);

5: Compute αk in (0, 1) by solving the equation α2
k = (1− αk)α

2
k–1 + qαk.

6: Update the extrapolated sequence

yk = x⋆k + βk(x
⋆
k −xk–1)+

(κ+ µ)(1− αk)

κ
(xk −x⋆k) with βk =

αk–1(1− αk–1)

α2
k–1 + αk

. (7)

7: end for
8: Output: xk (final estimate).

Proposition 1 (Convergence analysis for Algorithm 1). Consider Algorithm 1. Then,

E[F (xk)− F ⋆] ≤







(1−√
q)k
(

2(F (x0)− F ⋆) +
∑k
j=1(1−

√
q)−jδj

)

if µ 6= 0

2
(k+1)2

(

κ‖x0 − x⋆‖2 +
∑k
j=1 δj(j + 1)2

)

otherwise
. (8)

The proof of the proposition is given in Appendix C and is based on an extension of the analysis of
Catalyst [33]. Next, we present various application cases leading to algorithms with acceleration.
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Accelerated proximal gradient method. When f is deterministic and the proximal operator of ψ
(see Appendix A for the definition) can be computed in closed form, choose κ = L− µ and define

hk(x) := f(yk–1) +∇f(yk–1)
⊤(x− yk–1) +

L

2
‖x− yk–1‖2 + ψ(x). (9)

Consider M that minimizes hk in closed form: xk = x⋆k = Proxψ/L
[

yk–1 − 1
L∇f(yk–1)

]

. Then,
(H1) is obvious; (H2) holds from the convexity of f , and (H3) with δk = 0 follows from classical
inequalities for L-smooth functions [40]. Finally, we recover accelerated convergence rates [5, 40].

Accelerated proximal point algorithm. We consider hk given in (4) with exact minimization (thus
an unrealistic setting, but conceptually interesting) with κ = L − µ. Then, the assumptions (H1),
(H2), and (H3) are satisfied with δk = 0 and we recover the accelerated rates of [20].

Accelerated stochastic gradient descent with prox. A more interesting choice of surrogate is

hk(x) := f(yk–1) + g⊤k (x− yk–1) +
κ+ µ

2
‖x− yk–1‖2 + ψ(x), (10)

where κ ≥ L− µ and gk is an unbiased estimate of ∇f(yk–1)—that is, E[gk|Fk–1] = ∇f(yk–1)—
with variance bounded by σ2, following classical assumptions from the stochastic optimization
literature [17, 18, 23]. Then, (H1) and (H2) are satisfied given that f is convex. To characterize (H3),
consider M that minimizes hk in closed form: xk=x

⋆
k=Proxψ/(κ+µ)[yk–1 − 1

κ+µgk], and define

uk–1 := Proxψ/(κ+µ)[yk–1 − 1
κ+µ∇f(yk–1)], which is deterministic given Fk–1. Then, from (10),

F (xk) ≤ hk(xk) + (∇f(yk–1)− gk)
⊤(xk − yk–1) (from L-smoothness of f )

= h⋆k + (∇f(yk–1)− gk)
⊤(xk − uk–1) + (∇f(yk–1)− gk)

⊤(uk–1 − yk–1).

When taking expectations, the last term on the right disappears since E[gk|Fk–1] = ∇f(yk–1):

E[F (xk)] ≤ E[h⋆k] + E[‖gk −∇f(yk–1)‖‖xk − uk–1‖]

≤ E[h⋆k] +
1

κ+ µ
E
[

‖gk −∇f(yk–1)‖2
]

≤ E[h⋆k] +
σ2

κ+ µ
,

(11)

where we used the non-expansiveness of the proximal operator [37]. Therefore, (H3) holds with
δk = σ2/(κ + µ). The resulting algorithm is similar to [28] and offers the same guarantees. The
novelty of our approach is then a unified convergence proof for the deterministic and stochastic cases.

Corollary 2 (Complexity of proximal stochastic gradient algorithm, µ > 0). Consider Algorithm 1
with hk defined in (10). When f is µ-strongly convex, choose κ = L− µ. Then,

E[F (xk)− F ⋆] ≤
(

1−
√

µ

L

)k

(F (x0)− F ⋆) +
σ2

√
µL

,

which is of the form (2) with τ =
√

µ/L and B = σ2/(
√
µL). Interestingly, the optimal complex-

ity O
(

√

L/µ log((F (x0)− F ⋆)/ε) + σ2/µε
)

can be obtained by using the first restart strategy

presented in Section 3, see Eq. (5), either by using increasing mini-batches or decreasing step sizes.

When the objective is convex, but not strongly convex, Proposition 1 gives a bias term O(σ2k/κ)
that increases linearly with k. Yet, the following corollary exhibits an optimal rate with finite horizon,
when both σ2 and an upper-bound on ‖x0 − x⋆‖2 are available. Even though non-practical, the result
shows that our analysis recovers the optimal dependency in the noise level, as [18, 28] and others.

Corollary 3 (Complexity of proximal stochastic gradient algorithm, µ = 0). Consider a fixed budget

K of iterations of Algorithm 1 with hk defined in (10). When κ = max(L, σ(K +1)3/2/‖x0 − x⋆‖),

E[F (xK)− F ⋆] ≤ 2L‖x0 − x⋆‖2
(K + 1)2

+
3σ‖x0 − x⋆‖√

K + 1
.

While all the previous examples use the choice xk = x⋆k, we will see in Section 4.2 cases where we
may choose xk 6= x⋆k. Before that, we introduce a variant when x⋆k is not available.

In principle, it is possible to design other surrogates, which would lead to new algorithms coming
with convergence guarantees given by Propositions 1 and 4, but the given examples (4), (10), and
(10) already cover all important cases considered in the paper for functions of the form (1).
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4.1 Variant with Inexact Minimization

In this variant, presented in Algorithm 2, x⋆k is not available and we assume that M also satisfies:

(H4) given εk ≥ 0, M can provide a point xk such that E[hk(xk)− h⋆k] ≤ εk.

Algorithm 2 Generic Acceleration Framework with Inexact Minimization of hk
1: Input: same as Algorithm 2;
2: Initialization: y0 = x0; q = µ

µ+κ ; α0 = 1 if µ = 0 or α0 =
√
q if µ 6= 0;

3: for k = 1, . . . ,K do
4: Consider a surrogate hk satisfying (H1), (H2) and obtain xk satisfying (H4);
5: Compute αk in (0, 1) by solving the equation α2

k = (1− αk)α
2
k–1 + qαk.

6: Update the extrapolated sequence yk = xk + βk(xk − xk–1) with βk defined in (7);
7: end for
8: Output: xk (final estimate).

The next proposition, proven in Appendix C, gives us some insight on how to achieve acceleration.

Proposition 4 (Convergence analysis for Algorithm 2). Consider Alg. 2. Then, for any γ ∈ (0, 1],

E[F (xk)−F ⋆] ≤











(

1−
√
q

2

)k
(

2(F (x0)− F ⋆) + 4
∑k
j=1

(

1−
√
q

2

)−j(
δj +

εj√
q

)

)

if µ 6= 0

2e1+γ

(k+1)2

(

κ‖x0 − x⋆‖2 +∑k
j=1(j + 1)2δj +

(j+1)3+γεj
γ

)

if µ = 0.

To maintain the accelerated rate, the sequence (δk)k≥0 needs to converge at a similar speed as in
Proposition 1, but the dependency in εk is slightly worse. Specifically, when µ is positive, we may
have both (εk)k≥0 and (δk)k≥0 decreasing at a rate O((1 − ρ)k) with ρ <

√
q/2, but we pay a

factor (1/
√
q) compared to (8). When µ = 0, the accelerated O(1/k2) rate is preserved whenever

εk = O(1/k4+2γ) and δk = O(1/k3+γ), but we pay a factor O(1/γ) compared to (8).

Catalyst [33]. When using hk defined in (4), we recover the convergence rates of [33]. In such
a case δk = εk since E[F (xk)] ≤ E[hk(xk)] ≤ E[h⋆k] + δk. In order to analyze the complexity of
minimizing each hk with M and derive the global complexity of the multi-stage algorithm, the next
proposition, proven in Appendix C, characterizes the quality of the initialization xk–1.

Proposition 5 (Warm restart for Catalyst). Consider Alg. 2 with hk defined in (4). Then, for k ≥ 2,

E[hk(xk–1)− h⋆k] ≤
3εk–1

2
+ 54κmax

(

‖xk–1 − x⋆‖2, ‖xk–2 − x⋆‖2, ‖xk–3 − x⋆‖2
)

, (12)

where x–1=x0. Following [33], we may now analyze the global complexity. For instance, when f
is µ-strongly convex, we may choose εk = O((1 − ρ)k(F (x0) − F ⋆)) with ρ =

√
q/3. Then, it

is possible to show that Proposition (4) yields E[F (xk)− F ⋆] = O(εk/q) and from the inequality
µ
2 ‖xk − x⋆‖2 ≤ F (xk) − F ⋆ and (12), we have E[hk(xk–1) − h⋆k] = O( κµq εk–1) = O(εk–1/q

2).

Consider now a method M that behaves as (2). When σ = 0, xk can be obtained inO(log(1/q)/τ) =

Õ(1/τ) iterations of M after initializing with xk–1. This allows us to obtain the global complexity

Õ((1/τ
√
q) log(1/ε)). For example, when M is the proximal gradient descent method, κ = L and

τ = (µ+ κ)/(L+ κ) yield the global complexity Õ(
√

L/µ log(1/ε)) of an accelerated method.

Our results improve upon Catalyst [33] in two aspects that are crucial for stochastic optimization:
(i) we allow the sub-problems to be solved in expectation, whereas Catalyst requires the stronger
condition hk(xk) − h⋆k ≤ εk; (ii) Proposition 5 removes the requirement of [33] to perform a full
gradient step for initializing the method M in the composite case (see Prop. 12 in [33]).

Proximal gradient descent with inexact prox [45]. The surrogate (10) with inexact minimization
can be treated in the same way as Catalyst, which provides a unified proof for both problems. Then,
we recover the results of [45], while allowing inexact minimization to be performed in expectation.

Stochastic Catalyst. With Proposition 5, we are in shape to consider stochastic problems when
using a method M that converges linearly as (2) with σ2 6= 0 for minimizing hk. As in Section 3,
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we also assume that there exists a mini-batch/step-size parameter η that can reduce the bias by a
factor η < 1 while paying a factor 1/η in terms of inner-loop complexity. As above, we discuss the
strongly-convex case and choose the same sequence (εk)k≥0. In order to minimize hk up to accuracy
εk, we set ηk = min(1, εk/(2Bσ

2)) such that ηkBσ
2 ≤ εk/2. Then, the complexity to minimize hk

with M when using the initialization xk–1 becomes Õ(1/τηk), leading to the global complexity

Õ

(

1

τ
√
q
log

(

F (x0)− F ⋆

ε

)

+
Bσ2

q3/2τε

)

. (13)

Details about the derivation are given in Appendix B. The left term corresponds to the Catalyst
accelerated rate, but it may be shown that the term on the right is sub-optimal. Indeed, consider M to

be ISTA with κ = L−µ. Then,B = 1/L, τ = O(1), and the right term becomes Õ((
√

L/µ)σ2/µε),

which is sub-optimal by a factor
√

L/µ. Whereas this result is a negative one, suggesting that Catalyst
is not robust to noise, we show in Section 4.2 how to circumvent this for a large class of algorithms.

Accelerated stochastic proximal gradient descent with inexact prox. Finally, consider hk de-
fined in (10) but the proximal operator is computed approximately, which, to our knowledge, has never
been analyzed in the stochastic context. Then, it may be shown (see Appendix B for details) that, even
though x⋆k is not available, Proposition 4 holds nonetheless with δk = 2εk+3σ2/(2(κ+ µ)). Then, an

interesting question is how small should εk be to guarantee the optimal dependency with respect to σ2

as in Corollary 2. In the strongly-convex case, Proposition 4 simply gives εk = O(
√
qσ2/(κ+ µ))

such that δk ≈ εk/
√
q.

4.2 Exploiting methods M providing strongly convex surrogates

Among various application cases, we have seen an extension of Catalyst to stochastic problems. To
achieve convergence, the strategy requires a mechanism to reduce the bias Bσ2 in (2), e.g., by using
mini-batches or decreasing step sizes. Yet, the approach suffers from two issues: (i) some of the
parameters are based on unknown quantities such as σ2; (ii) the worst-case complexity exhibits a
sub-optimal dependency in σ2, typically of order 1/

√
q when µ > 0. Whereas practical workarounds

for the first point are discussed in Section 5, we now show how to solve the second one in some
cases, by using Algorithm 1 with an optimization method M, which is able not only to minimize an
auxiliary objective Hk, but also at the same time is able to provide a model hk, typically a quadratic
function, which is easy to minimize. Consider then a method M satisfying (2) and which produces,
after T steps, a point xk and a surrogate hk such that

E[Hk(xk)−h⋆k] ≤ C(1−τ)T (Hk(xk–1)−H⋆
k+ξk–1)+Bσ

2 with Hk(x) = F (x)+
κ

2
‖x−yk–1‖2,

(14)
where Hk is approximately minimized by M, hk is a model of Hk that satisfies (H1), (H2) and that
can be minimized in closed form, and ξk–1 = O(E[F (xk–1)− F ⋆]); it is easy to show that (H3) is
also satisfied with the choice δk = C(1 − τ)T (Hk(xk–1) −H⋆

k + ξk–1) + Bσ2 since E[F (xk)] ≤
E[Hk(xk)] ≤ E[h⋆k] + δk. In other words, M is used to perform approximate minimization of Hk,
but we consider cases where M also provides another surrogate hk with closed-form minimizer that
satisfies the conditions required to use Algorithm 1, which has better convergence guarantees than
Algorithm 2 (same convergence rate up to a better factor).

As shown in Appendix D, even though (14) looks technical, a large class of optimization techniques
are able to provide the condition (14), including many variants of proximal stochastic gradient descent
methods with variance reduction such as SAGA [13], MISO [35], SDCA [47], or SVRG [53].

Whereas (14) seems to be a minor modification of (2), an important consequence is that it will allow us
to gain a factor 1/

√
q in complexity when µ > 0, corresponding precisely to the sub-optimality factor.

Therefore, even though the surrogate Hk needs only be minimized approximately, the condition (14)
allows us to use Algorithm 1 instead of Algorithm 2. The dependency with respect to δk being better
than εk (by 1/

√
q), we have then the following result:

Proposition 6 (Stochastic Catalyst with Optimality Gaps, µ > 0). Consider Algorithm 1 with a
method M and surrogate hk satisfying (14) when M is used to minimize Hk by using xk–1 as a
warm restart. Assume that f is µ-strongly convex and that there exists a parameter η that can reduce
the bias Bσ2 by a factor η < 1 while paying a factor 1/η in terms of inner-loop complexity.
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Choose δk = O((1−√
q/2)k(F (x0)−F ⋆)) and ηk = min(1, δk/(2Bσ

2)). Then, the complexity to

solve (14) and compute xk is Õ(1/τηk), and the global complexity to obtain E[F (xk)− F ⋆] ≤ ε is

Õ

(

1

τ
√
q
log

(

F (x0)− F ⋆

ε

)

+
Bσ2

qτε

)

.

The term on the left is the accelerated rate of Catalyst for deterministic problems, whereas the
term on the right is potentially optimal for strongly convex problems, as illustrated in the next
table. We provide indeed practical choices for the parameters κ, leading to various values of B, τ, q,
for the proximal stochastic gradient descent method with iterate averaging as well as variants of
SAGA,MISO,SVRG that can cope with stochastic perturbations, which are discussed in Appendix D.
All the values below are given up to universal constants to simplify the presentation.

Method M hk κ τ B q Complexity after Catalyst

prox-SGD (10) L− µ 1
2

1
L

µ
L Õ

(√

L
µ log

(

F0

ε

)

+ σ2

µε

)

SAGA/MISO/SVRG with L
n ≥ µ (14) L

n − µ 1
n

1
L

µn
L Õ

(√

nLµ log
(

F0

ε

)

+ σ2

µε

)

In this table, F0 := F (x0)−F ⋆ and the methods SAGA/MISO/SVRG are applied to the stochastic
finite-sum problem discussed in Section 1 with n L-smooth functions. As in the deterministic case,
we note that when L/n ≤ µ, there is no acceleration for SAGA/MISO/SVRG since the complexity

of the unaccelerated method M is Õ
(

n log (F0/ε) + σ2/µε
)

, which is independent of the condition
number and already optimal [28]. In comparison, the logarithmic terms in L, µ that are hidden in the

notation Õ do not appear for a variant of the SVRG method with direct acceleration introduced in [28].
Here, our approach is more generic. Note also that σ2 for prox-SGD and SAGA/MISO/SVRG cannot
be compared to each other since the source of randomness is larger for prox-SGD, see [7, 28].

5 Experiments

In this section, we perform numerical evaluations by following [28], which was notably able to make
SVRG and SAGA robust to stochastic noise, and accelerate SVRG. Code to reproduce the experiments
is provided with the submission and more details and experiments are given in Appendix E.

Formulations. Given training data (ai, bi)i=1,...,n, with ai in R
p and bi in {−1,+1}, we consider

the optimization problem

min
x∈Rp

1

n

n
∑

i=1

φ(bia
⊤
i x) +

µ

2
‖x‖2,

where φ is either the logistic loss φ(u) = log(1+e−u), or the squared hinge loss φ(u) = 1
2 max(0, 1−

u)2, which are both L-smooth, with L = 0.25 for logistic and L = 1 for the squared hinge loss.
Studying the squared hinge loss is interesting since its gradients are unbounded on the optimization
domain, which may break the bounded noise assumption. The regularization parameter µ acts as the
strong convexity constant for the problem and is chosen among the smallest values one would try
when performing parameter search, e.g., by cross validation. Specifically, we consider µ = 1/10n
and µ = 1/100n, where n is the number of training points; we also try µ = 1/1000n to evaluate the
numerical stability of methods in very ill-conditioned problems. Following [7, 28, 54], we consider
DropOut perturbations [51]—that is, setting each component (∇f(x))i to 0 with a probability δ and
to (∇f(x))i/(1− δ) otherwise. This procedure is motivated by the need of a simple optimization
benchmark illustrating stochastic finite-sum problems, where the amount of perturbation is easy to
control. The settings used in our experiments are δ = 0 (no noise) and δ ∈ {0.01, 0.1}.

Datasets. We consider three datasets with various number of points n and dimension p. All the
data points are normalized to have unit ℓ2-norm. The description comes from [28]:

• alpha is from the Pascal Large Scale Learning Challenge website2 and contains n = 250 000 points
in dimension p = 500.

2❤tt♣✿✴✴❧❛r❣❡s❝❛❧❡✳♠❧✳t✉✲❜❡r❧✐♥✳❞❡✴
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• gene consists of gene expression data and the binary labels bi characterize two different types of
breast cancer. This is a small dataset with n = 295 and p = 8141.

• ckn-cifar is an image classification task where each image from the CIFAR-10 dataset3 is repre-
sented by using a two-layer unsupervised convolutional neural network [36]. We consider here
the binary classification task consisting of predicting the class 1 vs. other classes, and use our
algorithms for the classification layer of the network, which is convex. The dataset contains
n = 50 000 images and the dimension of the representation is p = 9216.

Methods. We consider the variants of SVRG and SAGA of [28], which use decreasing step sizes
when δ > 0 (otherwise, they do not converge). We use the suffix “-d” each time decreasing step sizes
are used. We also consider Katyuasha [1] when δ = 0, and the accelerated SVRG method of [28],
denoted by acc-SVRG. Then, SVRG-d, SAGA-d, acc-SVRG-d are used with the step size strategies
described in [28], by using the code provided to us by the authors.

Practical questions and implementation. In all setups, we choose the parameter κ according to
theory, which are described in the previous section, following Catalyst [33]. For composite problems,
Proposition 5 suggests to use xk–1 as a warm start for inner-loop problems. For smooth ones, [33]
shows that in fact, other choices such as yk–1 are appropriate and lead to similar complexity results.
In our experiments with smooth losses, we use yk–1, which has shown to perform consistently better.

The strategy for ηk discussed in Proposition 6 suggests to use constant step-sizes for a while in the
inner-loop, typically of order 1/(κ+ L) for the methods we consider, before using an exponentially

decreasing schedule. Unfortunately, even though theory suggests a rate of decay in (1 −√
q/2)k,

it does not provide useful insight on when decaying should start since the theoretical time requires
knowing σ2. A similar issue arise in stochastic optimization techniques involving iterate averaging
[9]. We adopt a similar heuristic as in this literature and start decaying after k0 epochs, with k0 = 30.
Finally, we discuss the number of iterations of M to perform in the inner-loop. When ηk = 1, the

theoretical value is of order Õ(1/τ) = Õ(n), and we choose exactly n iterations (one epoch), as in
Catalyst [33]. After starting decaying the step-sizes (ηk < 1), we use ⌈n/ηk⌉, according to theory.

Experiments and conclusions. We run each experiment five time with a different random seed and
average the results. All curves also display one standard deviation. Appendix E contains numerous
experiments, where we vary the amount of noise, the type of approach (SVRG vs. SAGA), the amount
of regularization µ, and choice of loss function. In Figure 1, we show a subset of these curves. Most
of them show that acceleration may be useful even in the stochastic optimization regime, consistently
with [28]. At the same time, all acceleration methods may not perform well for very ill-conditioned
problems with µ = 1/1000n, where the sublinear convergence rates for convex optimization (µ = 0)
are typically better than the linear rates for strongly convex optimization (µ > 0). However, these
ill-conditioned cases are often unrealistic in the context of empirical risk minimization.

10−3

10−2

10−1

ckn-cifar
cat-svrg-d
svrg-d
acc-svrg-d

gene alpha

0 20 40 60 80 100 120 140 160
10−3

10−2

10−1
cat-svrg-d
svrg-d
cat-saga-d
saga-d

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

Figure 1: Accelerating SVRG-like (top) and SAGA (bottom) methods for ℓ2-logistic regression with
µ = 1/(100n) (bottom) for δ = 0.1. All plots are on a logarithmic scale for the objective function
value, and the x-axis denotes the number of epochs. The colored tubes around each curve denote a
standard deviations across 5 runs. They do not look symmetric because of the logarithmic scale.

3❤tt♣s✿✴✴✇✇✇✳❝s✳t♦r♦♥t♦✳❡❞✉✴⑦❦r✐③✴❝✐❢❛r✳❤t♠❧
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