
We would like to thank the reviewers for their comments and for their positive feedback on our contributions. Although1

the reviewers expressed their concern regarding the lack of experiments, we would like to stress that it is a theoretical2

paper, providing an algorithm that has a polynomial sample complexity guarantee for general environments - with3

a possibly infinite state space and stochastic transitions - for which there was no known polynomial bound. It also4

highlights a theoretical benefit of regularization in MDPs, which has been empirically studied in several recent works on5

reinforcement learning. The work of Kearns et al. (1999), which is very related to our setting, is also purely theoretical.6

Their work later inspired other algorithms that can be used in practice, such as UCT (Kocsis and Szepesvári, 2006).7

Nonetheless, to see the tightness of our guarantees, we had done the experiments described below. We omitted them8

from the submission but we can include them in the appendix if the reviewers find them useful:9

• Using our MCTS analogy in Section 3.3, the two most computationally costly operations of SmoothCruiser are the10

selectAction and the evaluateLeaf functions. They both rely on estimates of the Q function with some required11

accuracy. Hence, for a sanity-check, we replaced estimateQ(s, accuracy) by the true Q function at state s plus some12

accuracy-dependent noise. This allowed us to verify that our bounds for the bias of the sampleV outputs are correct13

(Lemma 2). For instance, in a 3x3 GridWorld with γ = 0.5 and λ = 0.1, averaging 103 calls to sampleV gives an14

error of about (0.98± 4.53)× 10−4, while our bounds predict a mean error of at most 7× 10−4.15

• Using small model parameters (γ = 0.2, δ = 0.9, K = 2, λ = 0.01), we checked that our sample complexity bound16

is tight, by simulating the recurrence relation that led to our bound. This is illustrated on the leftmost figure below.17

We now respond to specific points raised by the reviewers:18

• [R3] I also found a bit stretched the mapping of SmoothCruiser to a generic MCTS algorithm. In MCTS,19

selecting an action does not involve any sampling. We make connection with MCTS because SmoothCruiser can20

be seen as form of MCTS with sampling (such as AlphaGo, which is also a sampling-based MCTS algorithm). In21

addition, the analogy to MCTS could be useful to inspire more practical versions of SmoothCruiser—this is the22

purpose of Section 3.3.23

• [R2 and R3] [R3] In most of the problems, [...] the algorithm will roll-back to Kearns et al. (1999) sparse sam-24

pling most of the times. [R2] Comparison to other algorithms. Indeed, the interesting regime of SmoothCruiser25

is when the required precision ε is smaller than κ, which is proportional to the regularization strength ( λ = 1/L)26

and inversely proportional to the number of actions. Hence, in weakly regularized problems with a lot of actions,27

SmoothCruiser will only be beneficial if ε is very small (as we can see in the leftmost figure below, the sample28

complexity for 1/ε > 1/κ increases much more slowly than when 1/ε ≤ 1/κ). However, we can choose the29

regularization constant to make κ big, which would reduce the sample complexity of the algorithm. This tradeoff30

between sample complexity and regularization is another interesting observation in our work. We propose to include31

in the paper the middle and the rightmost figures below that illustrate this idea. For each λ (x axis) we plot in the32

middle figure how many samples SmoothCruiser requires to achieve a relative error of 0.01 (normalized by the value33

function upper bound). We see that fewer samples are required as the regularization increases. The rightmost figure34

shows the same thing, but normalized by the number of samples required by the sparse sampling strategy: we see35

that, for small λ, there is no advantage with respect to sparse sampling, but SmoothCruiser has a very large advantage36

when λ grows.37

• [R3] I found the title a bit misleading [...]a weak connection with MCTS, I would not use planning in the title.38

The word ‘planning’ in the title agrees with a what we think is a commonly used definition: a procedure that takes a39

model as input and returns the value function as output [e.g., Sutton and Barto, 2nd edition, Section 8.1]. ‘Planning’40

is also used in the title of Kearns at al. (1999), which has the same setting as us. We welcome a suggestion though.41

• [R3] I would like to hear whether these complexity results can be improved for restricted class of problems,42

for example, in the case of MDPs or games with deterministic dynamics. Our algorithm focuses on very43

general environments for which there were no previously known polynomial bounds. For some restricted classes of44

problems, algorithms with polynomial guarantees already exist, for instance, by Hren and Munos, 2008 (deterministic45

environments) and Bubeck and Munos, 2010 (deterministic transitions). In our case, deterministic rewards and46

transitions could only reduce the value of c1 in Theorem 1, by setting N(ε) = 1 in algorithm 2 if ε ≥ κ.47
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