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Abstract

While Nash equilibrium in extensive-form games is well understood, very little
is known about the properties of extensive-form correlated equilibrium (EFCE),
both from a behavioral and from a computational point of view. In this setting, the
strategic behavior of players is complemented by an external device that privately
recommends moves to agents as the game progresses; players are free to deviate
at any time, but will then not receive future recommendations. Our contributions
are threefold. First, we show that an EFCE can be formulated as the solution to a
bilinear saddle-point problem. To showcase how this novel formulation can inspire
new algorithms to compute EFCEs, we propose a simple subgradient descent
method which exploits this formulation and structural properties of EFCEs. Our
method has better scalability than the prior approach based on linear programming.
Second, we propose two benchmark games, which we hope will serve as the basis
for future evaluation of EFCE solvers. These games were chosen so as to cover
two natural application domains for EFCE: conflict resolution via a mediator, and
bargaining and negotiation. Third, we document the qualitative behavior of EFCE
in our proposed games. We show that the social-welfare-maximizing equilibria
in these games are highly nontrivial and exhibit surprisingly subtle sequential
behavior that so far has not received attention in the literature.

1 Introduction

Nash equilibrium (NE) [Nash, 1950], the most seminal concept in non-cooperative game theory,
captures a multi-agent setting where each agent is selfishly motivated to maximize their own payoff.
The assumption underpinning NE is that the interaction is completely decentralized: the behavior of
each agent is not regulated by any external orchestrator. Contrasted with the other—often utopian—
extreme of a fully managed interaction, where an external dictator controls the behavior of each agent
so that the whole system moves to a desired state, the social welfare that can be achieved by NE is
generally lower, sometimes dramatically so [Koutsoupias and Papadimitriou, 1999; Roughgarden and
Tardos, 2002]. Yet, in many realistic interactions, some intermediate form of centralized control can
be achieved. In particular, in his landmark paper, Aumann [1974] proposed the concept of correlated
∗The full version of this paper is available on arXiv.
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equilibrium (CE), where a mediator (the correlation device) can recommend behavior, but not enforce
it. In a CE, the correlation device is constructed so that the agents—which are still modeled as fully
rational and selfish just like in an NE—have no incentive to deviate from the private recommendation.
Allowing correlation of actions while ensuring selfishness makes CE a good candidate solution
concept in multi-agent and semi-competitive settings such as traffic control, load balancing [Ashlagi
et al., 2008], and carbon abatement [Ray and Gupta, 2009], and it can lead to win-win outcomes.

In this paper, we study the natural extension of correlated equilibrium in extensive-form (i.e., sequen-
tial) games, known as extensive-form correlated equilibrium (EFCE) [von Stengel and Forges, 2008].
Like CE, EFCE assumes that the strategic interaction is complemented by an external mediator;
however, in an EFCE the mediator only privately reveals the recommended next move to each acting
player, instead of revealing the whole plan of action throughout the game (i.e., recommended move
at all decision points) for each player at the beginning of the game. Furthermore, while each agent is
free to defect from the recommendation at any time, this comes at the cost of future recommendations.

While the properties of correlation in normal-form games are well-studied, they do not automatically
transfer to the richer world of sequential interactions. It is known in the study of NE that sequential
interactions can pose different challenges, especially in settings where the agents retain private
information. Conceptually, the players can strategically adjust to dynamic observations about the
environment and their opponents as the game progresses. Despite tremendous interest and progress
in recent years for computing NE in sequential interactions with private information, with significant
milestones achieved in poker games [Bowling et al., 2015; Brown and Sandholm, 2017; Moravčík
et al., 2017; Brown and Sandholm, 2019b] and other large, real-world domains, not much has been
done to increase our understanding of (extensive-form) correlated equilibria in these settings.

Contributions Our primary objective with this paper is to spark more interest in the community
towards a deeper understanding of the behavioral and computational aspects of EFCE.

• In Section 3 we show that an EFCE in a two-player general-sum game is the solution to a bilinear
saddle-point problem (BSPP). This conceptual reformulation complements the EFCE construction
by von Stengel and Forges [2008], and allows for the development of new and efficient algorithms.
As a proof of concept, by using our reformulation we devise a variant of projected subgradient
descent which outperforms linear-programming(LP)-based algorithms proposed by von Stengel
and Forges [2008] in large game instances.

• In Section 5 we propose two benchmark games; each game is parametric, so that these games can
scale in size as desired. The first game is a general-sum variant of the classic war game Battleship.
The second game is a simplified version of the Sheriff of Nottingham board game. These games
were chosen so as to cover two natural application domains for EFCE: conflict resolution via a
mediator, and bargaining and negotiation.

• By analyzing EFCE in our proposed benchmark games, we show that even if the mediator cannot
enforce behavior, it can induce significantly higher social welfare than NE and successfully deter
players from deviating in at least two (often connected) ways: (1) using certain sequences of actions
as ‘passcodes’ to verify that a player has not deviated: defecting leads to incomplete or wrong
passcodes which indicate deviation, and (2) inducing opponents to play punitive actions against
players that have deviated from the recommendation, if such a deviation is detected. Crucially,
both deterrents are unique to sequential interactions and do not apply to non-sequential games.
This corroborates the idea that the mediation of sequential interactions is a qualitatively different
problem than that of non-sequential games and further justifies the study of EFCE as an interesting
direction for the community. To our knowledge, these are the first experimental results and
observations on EFCE in the literature.

The source code for our game generators and subgradient method is published online2.

2 Preliminaries

Extensive-form games (EFGs) are sequential games that are played over a rooted game tree. Each
node in the tree belongs to a player and corresponds to a decision point for that player. Outgoing
edges from a node v correspond to actions that can be taken by the player to which v belongs. Each
terminal node in the game tree is associated with a tuple of payoffs that the players receive should

2https://github.com/Sandholm-Lab/game-generators https://github.com/Sandholm-Lab/efce-subgradient
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the game end in that state. To capture imperfect information, the set of vertices of each player is
partitioned into information sets. The vertices in a same information set are indistinguishable to
the player that owns those vertices. For example, in a game of Poker, a player cannot distinguish
between certain states that only differ in opponent’s private hand. As a result, the strategy of the
player (specifying which action to take) is defined on the information sets instead of the vertices. For
the purpose of this paper, we only consider perfect-recall EFGs. This property means that each player
does not forget any of their previous action, nor any private or public observation that the player has
made. The perfect-recall property can be formalized by requiring that for any two vertices in a same
information set, the paths from those vertices to the root of the game tree contain the exact same
sequence of actions for the acting player at the information set.

A pure normal-form strategy for Player i defines a choice of action for every information set that
belongs to i. A player can play a mixed strategy, i.e., sample from a distribution over their pure
normal-form strategies. However, this representation contains redundancies: some information sets
for Player i may become unreachable reachable after the player makes certain decisions higher up in
the tree. Omitting these redundancies leads to the notion of reduced-normal-form strategies, which
are known to be strategically equivalent to normal-form strategies (e.g., [Shoham and Leyton-Brown,
2009] for more details). Both the normal-form and the reduced-normal-form representation are
exponentially large in the size of the game tree.

Here, we fix some notations. Let Z be the set of terminal states (or equivalently, outcomes) in the
game and ui(z) be the utility obtained by player i if the game terminates at z ∈ Z. Let Πi be the
set of pure reduced-normal-form strategies for Player i. We define Πi(I), Πi(I, a) and Πi(z) to be
the set of reduced-normal-form strategies that (a) can lead to information set I , (b) can lead to I and
prescribes action a at information set I , and (c) can lead to the terminal state z, respectively. We
denote by Σi the set of information set-action pairs (I, a) (also referred to as sequences), where I is
an information set for Player i and a is an action at set I . For a given terminal state z let σi(z) be the
last (I, a) pair belonging to Player i encountered in the path from the root of the tree to z.

Extensive-Form Correlated Equilibrium Extensive-form correlated equilibrium (EFCE) is a
solution concept for extensive-form games introduced by von Stengel and Forges [2008].3 Like
in the traditional correlated equilibrium (CE), introduced by Aumann [1974], a correlation device
selects private signals for the players before the game starts. These signals are sampled from a
correlated distribution µ—a joint probability distribution over Π1×Π2—and represent recommended
player strategies. However, while in a CE the recommended moves for the whole game tree are
privately revealed to the players when the game starts, in an EFCE the recommendations are revealed
incrementally as the players progress in the game tree. In particular, a recommended move is only
revealed when the player reaches the decision point in the game for which the recommendation is
relevant. Moreover, if a player ever deviates from the recommended move, they will stop receiving
recommendations. To concretely implement an EFCE, one places recommendations into ‘sealed
envelopes’ which may only be opened at its respective information set. Sealed envelopes may
implemented using cryptographic techniques (see Dodis et al. [2000] for one such example).

In an EFCE, the players know less about the set of recommendations that were sampled by the
correlation device. The benefits are twofold. First, the players can be more easily induced to play
strategies that hurt them (but benefit the overall social welfare), as long as “on average” the players
are indifferent as to whether or not to follow the recommendations: the set of EFCEs is a superset
of that of CEs. Second, since the players observe less, the set of probability distributions for the
correlation device for which no player has an incentive to deviate can be described succinctly in
certain classes of games: von Stengel and Forges [2008, Theorem 1.1] show that in two-player,
perfect-recall extensive-form games with no chance moves, the set of EFCEs can be described by
a system of linear equations and inequalities of polynomial size in the game description. On the
other hand, the same result cannot hold in more general settings: von Stengel and Forges [2008,
Section 3.7] also show that in games with more than two players and/or chance moves, deciding
the existence of an EFCE with social welfare greater than a given value is NP-hard. It is important
to note that this last result only implies that the characterization of the set of all EFCEs cannot be
of polynomial size in general (unless P = NP). However, the problem of finding one EFCE can be

3Other CE-related solution concepts in sequential games include the agent-form correlated equilibrium
(AFCE), where agents continue to receive recommendations even upon defection, and normal-form coarse CE
(NFCCE). NFCCE does not allow for defections during the game, in fact, before the game starts, players must
decide to commit to following all recommendations upfront (before receiving them), or elect to receive none.

3



solved in polynomial time: Huang [2011] and Huang and von Stengel [2008] show how to adapt the
Ellipsoid Against Hope algorithm [Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown,
2015] to compute an EFCE in polynomial time in games with more than two players and/or with
chance moves. Unfortunately, that algorithm is only theoretical, and known to not scale beyond
extremely small instances [Leyton-Brown, 2019].

3 Extensive-Form Correlated Equilibria as Bilinear Saddle-Point Problems

Our objective for this section is to cast the problem of finding an EFCE in a two-player game as a
bilinear saddle-point problem, that is a problem of the form minx∈X maxy∈Y x>Ay, where X and Y
are compact convex sets. In the case of EFCE, X and Y are convex polytopes that belong to a space
whose dimension is polynomial in the game tree size. This reformulation is meaningful:

• From a conceptual angle, it brings the problem of computing an EFCE closer to several other
solution concepts in game theory that are known to be expressible as BSPP. In particular, the BSPP
formulation shows that an EFCE can be viewed as a NE in a two-player zero-sum game between a
deviator, who is trying to decide how to best defect from recommendations, and a mediator, who
is trying to come up with an incentive-compatible set of recommendations.

• From a geometric point of view, the BSPP formulation better captures the combinatorial structure
of the problem: X and Y have a well-defined meaning in terms of the input game tree. This has
algorithmic implications: for example, because of the structure of Y (which will be detailed later),
the inner maximization problem can be solved via a single bottom-up game-tree traversal.

• From a computational standpoint, it opens the way to the plethora of optimization algorithms
(both general-purpose and those specific to game theory) that have been developed to solve BSPPs.
Examples include Nesterov’s excessive gap technique [Nesterov, 2005], Nemirovski’s mirror prox
algorithm [Nemirovski, 2004] and regret-methods based methods such as mirror descent, follow-
the-regularized-leader (e.g., Hazan [2016]), and CFR and its variants Zinkevich et al. [2007];
Farina et al. [2019]; Brown and Sandholm [2019a].

Furthermore, it is easy to show that by dualizing the inner maximization problem in the BSPP
formulation, one recovers the linear program introduced by von Stengel and Forges [2008] (we show
this in Appendix A in the full paper). In this sense, our formulation subsumes the existing one.

Triggers and Deviations One effective way to reason about extensive-form correlated equilibria is
via the notion of trigger agents, which was introduced (albeit used in a different context) in Gordon
et al. [2008] and Dudik and Gordon [2009]:
Definition 1. Let σ̂ :=(Î , â) ∈ Σi be a sequence for Player i, and let µ̂ be a distribution over Πi(Î).
A (σ̂, µ̂)-trigger agent for Player i is a player that follows all recommendations given by the mediator
unless they get recommended â at Î; in that case, the player ‘gets triggered’, stops following the
recommendations and instead plays based on a pure strategy sampled from µ̂ until the game ends.

A correlated distribution µ is an EFCE if and only if any trigger agent for Player i can get utility at
most equal to the utility that Player i earns by following the recommendations of the mediator at
all decision points. In order to express the utility of the trigger agent, it is necessary to compute the
probability of the game ending in each of the terminal states. As we show in Appendix B in the full
paper, this can be done concisely by partitioning the set of terminal nodes in the game tree into three
different sets. In particular, let ZÎ,â be the set of terminal nodes whose path from the root of the tree
contains taking action â at Î and let ZÎ be the set of terminal nodes whose path from the root passes
through Î and are not in ZÎ,â. We have

Lemma 1. Consider a (σ̂, µ̂)-trigger agent for Player 1, where σ̂ = (Î , â). The value of the trigger
agent, defined as the expected difference between the utility of the trigger agent and the utility of an
agent that always follows recommendations sampled from correlated distribution µ, is computed as

v1,σ̂(µ, µ̂) :=
∑
z∈ZÎ

u1(z)ξ1(σ̂; z)y1,σ̂(z)−
∑

z∈ZÎ,â

u1(z)ξ1(σ1(z); z),

where ξ1(σ̂; z) :=
∑
π1∈Π1(σ̂)

∑
π2∈Π2(z) µ(π1, π2) and y1,σ̂(z) :=

∑
π̂1∈Π1(z) µ̂(π̂1).

(A symmetric result holds for Player 2, with symbols ξ2(σ̂; z) and y2,σ̂(z).) It now seems natural to
perform a change of variables, and pick distributions for the random variables y1,σ̂(·), y2,σ̂(·), ξ1(·; ·)
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and ξ2(·; ·) instead of µ and µ̂. Since there are only a polynomial number (in the game tree size) of
combinations of arguments for these new random variables, this approach allows one to remove the
redundancy of realization-equivalent normal-form plans and focus on a significantly smaller search
space. In fact, the definition of ξ = (ξ1, ξ2) also appears in [von Stengel and Forges, 2008], referred
to as (sequence-form) correlation plan. In the case of the y1,σ̂ and y2,σ̂ random variables, it is clear
that the change of variables is possible via the sequence form [von Stengel, 2002]; we let Yi,σ̂ be the
sequence-form polytope of feasible values for the vector yi,σ̂ . Hence, the only hurdle is characterizing
the space spanned by ξ1 and ξ2 as µ varies across the probability simplex. In two-player perfect-recall
games with no chance moves, this is exactly one of the merits of the landmark work by von Stengel
and Forges [2008]. In particular, the authors prove that in those games the space of feasible ξ can be
captured by a polynomial number of linear constraints. In more general cases the same does not hold
(see second half of Section 2), but we prove the following (Appendix C in the full paper):
Lemma 2. In a two-player game, as µ varies over the probability simplex, the joint vector of ξ1(·; ·),
ξ2(·; ·) variables spans a convex polytope X in Rn, where n is at most quadratic in the game size.

Saddle-Point Reformulation According to Lemma 1, for each Player i and (σ̂, µ̂)-trigger agent
for them, the value of the trigger agent is a biaffine expression in the vectors yi,σ̂ and ξi, and can
be written as vi,σ̂(ξi, yi,σ̂) = ξ>i Ai,σ̂yi,σ̂ − b>i,σ̂ξi for a suitable matrix Ai,σ̂ and vector bi,σ̂, where
the two terms in the difference correspond to the expected utility for deviating at σ̂ according to the
(sequence-form) strategy yi,σ̂ and the expected utility for not deviating at σ̂. Given a correlation plan
ξ = (ξ1, ξ2) ∈ X , the maximum value of any deviation for any player can therefore be expressed as

v∗(ξ) := max
{i,σ̂,yi,σ̂}

vi,σ̂(ξi, yi,σ̂) = max
i∈{1,2}

max
σ̂∈Σi

max
yσ̂∈Yσ̂

{ξ>i Ai,σ̂yi,σ̂ − b>i,σ̂ξi}.

We can convert the maximization above into a continuous linear optimization problem by introducing
the multipliers λi,σ̂ ∈ [0, 1] (one per each Player i ∈ {1, 2} and trigger σ̂ ∈ Σi), and write

v∗(ξ) = max
{λi,σ̂,zi,σ̂}

∑
i

∑
σ̂

ξ>i Ai,σ̂zi,σ̂ − λi,σ̂b>i,σ̂ξi,

where the maximization is subject to the linear constraints [C1]
∑
i∈{1,2}

∑
σ̂∈Σi

λi,σ̂ = 1 and [C2]

zi,σ̂ ∈ λi,σ̂Yi,σ̂ for all i ∈ {1, 2}, σ̂ ∈ Σi. These linear constraints define a polytope Y .

A correlation plan ξ is an EFCE if an only if vi,σ̂(ξ, yi,σ̂) ≤ 0 for every trigger agent, i.e., v∗(ξ) ≤ 0.
Therefore, to find an EFCE, we can solve the optimization problem minξ∈X v∗(ξ), which is a bilinear
saddle point problem over the convex domains X and Y , both of which are convex polytopes that
belong to Rn, where n is at most quadratic in the input game size (Lemma 2). If an EFCE exists, the
optimal value should be non-positive and the optimal solution is an EFCE (as it satisfies v∗(ξ) ≤ 0).
In fact, since EFCE’s always exist (as EFCEs are supersets of CEs von Stengel and Forges [2008]),
and one can select triggers to be terminal sequences for Player 1, the optimal value of the BSPP
is always 0. The BSPP can be interpreted as the NE of a zero-sum game between the mediator,
who decides on a suitable correlation plan ξ and a deviator who selects the yi,σ̂’s to maximize each
vi,σ̂(ξi, yi,σ̂). The value of this game is always 0.

Finally, we can enforce a minimum lower bound τ on the sum of players’ utility by introducing an
additional variable λsw ∈ [0, 1] and maximizing the new convex objective

v∗sw(ξ) := max
λsw∈[0,1]

{
(1− λsw) · v∗(ξ) + λsw

[
τ −

∑
z∈Z

u1(z)ξ1(z; z)−
∑
z∈Z

u2(z)ξ2(z; z)

]}
. (1)

4 Computing an EFCE using Subgradient Descent

von Stengel and Forges [2008] show that a SW-maximizing EFCE of a two-player game without
chance may be expressed as the solution of an LP and solved using generic methods such as the
simplex algorithm or interior-point methods. However, this does not scale to large games as these
methods require storing and inverting large matrices. Another way of computing SW-maximizing
EFCEs was provided by Dudik and Gordon [2009]. However, their algorithm assumes that sampling
from correlation plans is possible using the Monte Carlo Markov chain algorithm and does not factor
in convergence of the Markov chain. Furthermore, even though their formulation generalizes beyond
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our setting of two-player games without chance, our gradient descent method admits more complex
objectives. In particular, it allows the mediator to maximize over general concave objectives (in
correlation plans) instead of only linear objectives with potentially some regularization. Here, we
showcase the benefits of exploiting the combinatorial structure of the BSPP formulation of Section 3
by proposing a simple algorithm based on subgradient descent; in Section 6 we show that this method
scales better than commercial state-of-the-art LP solver in large games.

For brevity, we only provide a sketch of our algorithm, which computes a feasible EFCE; the extension
to the slightly more complicated objective v∗sw(ξ) (Equation 1) is straightforward—see Appendix D
in the full paper for more details. First, observe that the objective v∗(ξ) is convex since it is the
maximum of linear functions of ξ. This suggests that we may perform subgradient descent on v∗,
where the subgradients are given by ∂/∂ξ v∗(ξ) = Ai∗,σ̂∗y∗i∗,σ̂∗ − bi,σ̂∗ , where (i∗, σ̂∗, y∗i∗,σ̂∗) is a
triplet which maximizes the objective function v∗(ξ). The computation of such a triplet can be done
via a straightforward bottom-up traversal of the game tree. In order to maintain feasibility (that is,
ξ ∈ X ), it is necessary to project onto X , which is challenging in practice because we are not aware
of any distance-generating function that allows for efficient projection onto this polytope. This is so
even in games without chance (where ξ can be expressed by a polynomial number of constraints [von
Stengel and Forges, 2008]). Furthermore, iterative methods such as Dykstra’s algorithm, add a
dramatic overhead to the cost of each iterate.

To overcome this hurdle, we observe that in games with no chance moves, the set X of correlation
plans—as characterized by von Stengel and Forges [2008] via the notion of consistency constraints—
can be expressed as the intersection of three sets: (i) X1, the sets of vectors ξ that only satisfy
consistency constraints for Player 1; (ii) X2, the sets of vectors ξ that only satisfy consistency
constraints for Player 2; and (iii) Rn+, the non-negative orthant. X1 and X2 are polytopes defined by
equality constraints only. Therefore, an exact projection (in the Euclidean sense) onto X1 and X2 can
be carried out efficiently by precomputing a suitable factorization the constraint matrices that define
X1 and X2. In particular, we are able to leverage the specific combinatorial structure of the constraints
that form X1 and X2 to design an efficient and parallel sparse factorization algorithm (see Appendix D
in the full paper for the full details). Furthermore, projection onto the non-negative orthant can be
done conveniently, as it just amounts to computing a component-wise maximum between ξ and the
zero vector. Since X = X1 ∩ X2 ∩ Rn+, and since projecting onto X1, X2 and Rn+ individually is
easy, we can adopt the recent algorithm proposed by Wang and Bertsekas [2013] designed to handle
exactly this situation. In that algorithm, gradient steps are interlaced with projections onto X1, X2

and Rn+ in a cyclical manner. This is similar to projected gradient descent, but instead of projecting
onto the intersection of X1, X2 and Rn+ (which we believe to be difficult), we project onto just one of
them in round-robin fashion. This simple method was shown to converge by Wang and Bertsekas
[2013]. However, no convergence bound is currently known.

5 Introducing the First Benchmarks for EFCE

In this section we introduce the first two benchmark games for EFCE. These games are naturally
parametric so that they can scale in size as desired and hence used to evaluate different EFCE solvers.
In addition, we show that the EFCE in these games are interesting behaviorally: the correlation plan
in social-welfare-maximizing EFCE is highly nontrivial and even seemingly counter-intuitive. We
believe some of these induced behaviors may prove practical in real-world scenarios and hope our
analysis can spark an interest in EFCEs and other equilibria in sequential settings.

5.1 Battleship: Conflict Resolution via a Mediator

In this section we introduce our first proposed benchmark game to illustrate the power of correlation
in extensive-form games. Our game is a general-sum variant of the classic game Battleship. Each
player takes turns to secretly place a set of ships S (of varying sizes and value) on separate grids of
size H ×W . After placement, players take turns firing at their opponent—ships which have been hit
at all the tiles they lie on are considered destroyed. The game continues until either one player has
lost all of their ships, or each player has completed r shots. At the end of the game, the payoff of
each player is computed as the sum of the values of the opponent’s ships that were destroyed, minus
γ times the value of ships which they lost, where γ ≥ 1 is called the loss multiplier of the game. The
social welfare (SW) of the game is the sum of utilities to all players.
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In order to illustrate a few interesting feature of social-welfare-maximizing EFCE in this game, we
will focus on the instance of the game with a board of size 3× 1, in which each player commands
just 1 ship of value and length 1, there are 2 rounds of shooting per player, and the loss multiplier is
γ = 2. In this game, the social-welfare-maximizing Nash equilibrium is such that each player places
their ship and shoots uniformly at random. This way, the probability that Player 1 and 2 will end the
game by destroying the opponent’s ship is 5/9 and 1/3 respectively (Player 1 has an advantage since
they act first). The probability that both players will end the game with their ships unharmed is a
meagre 1/9. Correspondingly, the maximum SW reached by any NE of the game is −8/9.

In the EFCE model, it is possible to induce the players to end the game with a peaceful outcome—that
is, no damage to either ship—with probability 5/18, 2.5 times of the probability in NE, resulting in a
much-higher SW of −13/18. Before we continue with more details as to how the mediator (correlation
device) is able to achieve this result in the case where γ = 2, we remark that the benefit of EFCE
is even higher when the loss multiplier γ increases: Figure 1 (left) shows, as a function of γ, the
probability with which Player 1 and 2 terminate the game by sinking their opponent’s ship, if they
play according to the SW-maximizing EFCE. For all values of γ, the SW-maximizing NE remains the
same while with a mediator, the probability of reaching a peaceful outcome increases as γ increases,
and asymptotically gets closer to 1/3 and the gap between the expected utility of the two players
vanishes. This is remarkable, considering Player 1’s advantage for acting first.
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Figure 1: (Left) Probabilities of players sinking their opponent when the players play according to the SW-
maximizing EFCE. For γ ≥ 2, the probability of the game ending with no sunken ship and the probability of
Player 2 sinking Player 1 coincide. (Right) Example of a playthrough of Battleship assuming both players are
recommended to place their ship in the same position a. Edge labels represents the probability of an action being
recommended. Squares and hexagons denote actions taken by Players 1 and 2 respectively. Blue and red nodes
represent cases where Players 1 and 2 sink their opponent, respectively. The Shoot action is abbreviated ‘Sh.’.

We now resume our analysis of the SW-maximizing EFCE in the instance where γ = 2. In a nutshell,
the correlation plan is constructed in a way that players are recommended to deliberately miss, and
deviations from this are punished by the mediator, who reveals to the opponent the ship location
that was recommended to the deviating player. First, the mediator recommends the players a ship
placement that is sampled uniformly at random and independently for each players. This results in 9
possible scenarios (one per possible ship placement) in the game, each occurring with probability 1/9.
Due to the symmetric nature of ship placements, only two scenarios are relevant: whether the two
players are recommended to place their ship in the same spot, or in different spots. Figure 1 (right)
shows the probability of each recommendation from the mediator in the former case, assuming that
the players do not deviate. The latter case is symmetric (see Appendix E in the full paper for details).
Now, we explain the first of the two methods in which the mediator compels non-violent behavior.
We focus on the first shot made by Player 1 (i.e., the root in Figure 3). The mediator suggests that
Player 1 shoot at the Player 2’s ship with a low 2/27 probability, and deliberately miss with high
probability. One may wonder how it is possible for this behavior to be incentive-compatible (that
is, what are the incentives that compel Player 1 into not defecting), since the player may choose to
randomly fire in any of the 2 locations that were not recommended, and get almost 1/2 chance of
winning the game immediately. The key is that if Player 1 does so and does not hit the opponent’s
ship, then the mediator can punish him by recommending that Player 2 shoot in the position where
Player 1’s was recommended to place their ship. Since players value their ships more than destroying
their opponents’, the player is incentivized to avoid such a situation by accepting the recommendation
to (most probably) miss. We see the first example of deterrent used by the mediator: inducing the
opponent to play punitive actions against players that have deviated from the recommendation, if
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ever that deviation can be detected from the player. A similar situation arises in the first move of
Player 2, where Player 2 is recommended to deliberately miss, hitting each of the 2 empty spots with
probability 1/2. A more detailed analysis is available in Appendix E in the full paper.

5.2 Sheriff: Bargaining and Negotiation

Our second proposed benchmark is a simplified version of the Sheriff of Nottingham board game.
The game models the interaction of two players: the Smuggler—who is trying to smuggle illegal
items in their cargo—and the Sheriff —who is trying to stop the Smuggler. At the beginning of the
game, the Smuggler secretly loads his cargo with n ∈ {0, . . . , nmax} illegal items. At the end of the
game, the Sheriff decides whether to inspect the cargo. If the Sheriff chooses to inspect the cargo
and finds illegal goods, the Smuggler must pay a fine worth p · n to the Sheriff. On the other hand,
the Sheriff has to compensate the Smuggler with a utility s if no illegal goods are found. Finally,
if the Sheriff decides not to inspect the cargo, the Smuggler’s utility is v · n whereas the Sheriff’s
utility is 0. The game is made interesting by two additional elements (which are also present in
the board game): bribery and bargaining. After the Smuggler has loaded the cargo and before the
Sheriff chooses whether or not to inspect, they engage in r rounds of bargaining. At each round
i = 1, . . . , r, the Smuggler tries to tempt the Sheriff into not inspecting the cargo by proposing a
bribe bi ∈ {0, . . . bmax}, and the Sheriff responds whether or not they would accept the proposed
bribe. Only the proposal and response from round r will be executed and have an impact on the final
payoffs—that is, all but the r-th round of bargaining are non-consequential and their purpose is for
the two players to settle on a suitable bribe amount. If the Sheriff accepts bribe br, then the Smuggler
gets p · n− br, while the Sheriff gets br. See Appendix F in the full paper for a formal description of
the game.

We now point out some interesting behavior of EFCE in this game. We refer to the game instance
where v = 5, p = 1, s = 1, nmax = 10, bmax = 2, r = 2 as the baseline instance.

Effect of v, p and s. First, we show what happens in the baseline instance when the item value v,
item penalty p, and Sheriff compensation (penalty) s are varied in isolation over a continuous range
of values. The results are shown in Figure 2. In terms of general trends, the effect of the parameter
to the Smuggler is fairly consistent with intuition: the Smuggler benefits from a higher item value
as well as from higher sheriff penalties, and suffers when the penalty for smuggling is increased.
However, the finer details are much more nuanced. For one, the effect of changing the parameters
not only is non-monotonic, but also discontinuous. This behavior has never been documented and
we find it rather counterintuitive. More counterintuitive observations can be found in Appendix F.
Effect of nmax, bmax, and r. Here, we try to empirically understand the impact of n and b on the SW
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Figure 2: Utility of players with varying v, p and s for the SW-maximizing EFCE. We verified that these plots
are not the result of equilibrium selection issues.

maximizing equilibrium. As before we set v = 5, p = 1, s = 1 and vary n and r simultaneously
while keeping bmax constant. The results are shown in Table 1. The most striking observation is that
increasing the capacity of the cargo nmax may decrease social welfare. For example, consider the case
when bmax = 2, nmax = 2, r = 1 (shown in blue in Table 1, right) where the payoffs are (8.0, 2.0).
This achieves the maximum attainable social welfare by smuggling nmax = 2 items and having the
Sheriff accept a bribe of 2. When nmax is increased to 5 (red entry in the table), the payoffs to both
players drop significantly, and even more so when nmax increases further. While counter-intuitive, this
behavior is consistent in that the Smuggler may not benefit from loading 3 items every time he was rec-
ommended to load 2; the Sheriff reacts by inspecting more, leading to lower payoffs for both players.
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nmax r = 1 r = 2 r = 3

1 (3.00, 2.00) (3.00, 2.00) (3.00, 2.00)
2 (8.00, 2.00) (8.00, 2.00) (8.00, 2.00)
5 (2.28, 1.26) (8.00, 2.00) (8.00, 2.00)
10 (1.76, 0.93) (7.26, 1.82) (8.00, 2.00)

Table 1: Payoffs for (Smuggler, Sheriff) in the
SW-maximizing EFCE.

That behavior is avoided by increasing the number of
rounds r: by increasing to r = 2 (entry shown in purple),
the behavior disappears and we revert to achieving a
social welfare of 10 just like in the instance with nmax =
2, r = 1. With sufficient bargaining steps, the Smuggler,
with the aid of the mediator, is able to convince the Sheriff
that they have complied with the recommendation by the
mediator. This is because the mediator spends the first
r − 1 bribes to give a ‘passcode’ to the Smuggler so that the Sheriff can verify compliance—if an
‘unexpected’ bribe is suggested, then the Smuggler must have deviated, and the Sheriff will inspect
the cargo as punishment. With more rounds, it is less likely that the Smuggler will guess the correct
passcode. See also Appendix F in the full paper for additional insights.

6 Experimental Evaluation

Even our proof-of-concept algorithm based on the BSSP formulation and subgradient descent,
introduced in Section 3, is able to beat LP-based approaches using the commercial solver Gurobi
[Gurobi Optimization, 2018] in large games. This confirms known results about the scalability of
methods for computing NE, where in the recent years first-order methods have affirmed themselves
as the only algorithms that are able to handle large games.

We experimented on Battleship over a range of parameters while fixing γ = 2. All experiments
were run on a machine with 64 cores and 500GB of memory. For our method, we tuned step sizes
based on multiples of 10. In Table 2, we report execution times when all constraints (feasibility
and deviation) are violated by no greater than 10−1, 10−2 and 10−3. Our method outperforms the
LP-based approach for larger games. However, while we outperform the LP-based approach for
accuracies up to 10−3, Gurobi spends most of its time reordering variables and preprocessing and its
solution converges faster for higher levels of precision; this is expected of a gradient-based method
like ours. On very large games with more than 100 million variables, both our method and Gurobi
fail—in Gurobi’s case, it was due to a lack of memory while in our case, each iteration required
nearly an hour which was prohibitive. The main bottleneck in our method was the projection onto X1

and X2. We also experimented on the Sheriff game and obtained similar findings (Appendix H in the
full paper).

(H,W ) r
Ship #Actions #Relevant Time (LP) Time (ours)

length Pl 1 Pl 2 seq. pairs 10−1 10−2 10−3 10−1 10−2 10−3

(2, 2) 3 1 741 917 35241 2s 2s 2s 1s 2s 3s
(3, 2) 3 1 15k 47k 3.89M 3m 6s 3m 17s 3m 24s 8s 34s 52s
(3, 2) 4 1 145k 306k 26.4M 42m 39s 42m 44s 43m 2m 48s 14m 1s 23m 24s
(3, 2) 4 2 970k 2.27M 111M — out of memory† — — did not achieve ‡ —

Table 2: #Relevant seq. pairs is the dimension of ξ under the compact representation of von Stengel and
Forges [2008]. For LPs, we report the fastest of Barrier, Primal and Dual Simplex, and 3 different formulations
(Appendix G in the full paper). † Gurobi went out of memory and was killed by the system after ∼3000 seconds
‡ Our method requires 1 hour per iteration and did not achieve the required accuracy after 6 hours.

7 Conclusions

In this paper, we proposed two parameterized benchmark games in which EFCE exhibits interesting
behaviors. We analyzed those behaviors both qualitatively and quantitatively, and isolated two ways
through which a mediator is able to compel the agents to follow the recommendations. We also
provided an alternative saddle-point formulation of EFCE and demonstrated its merit with a simple
subgradient method which outperforms standard LP based methods.

We hope that our analysis will bring attention to some of the computational and practical uses of
EFCE, and that our benchmark games will be useful for evaluating future algorithms for computing
EFCE in large games.
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