
AutoAssist: A Framework to
Accelerate Training of Deep Neural Networks

Jiong Zhang ⇤

zhangjiong724@utexas.edu
Hsiang-Fu Yu †

rofu.yu@gmail.com
Inderjit S. Dhillon⇤†

inderjit@cs.utexas.edu

Abstract

Deep Neural Networks (DNNs) have yielded superior performance in many con-
temporary applications. However, the gradient computation in a deep model
with millions of instances leads to a lengthy training process even with modern
GPU/TPU hardware acceleration. In this paper, we propose AutoAssist, a simple
framework to accelerate training of a deep neural network. Typically, as the training
procedure evolves, the amount of improvement by a stochastic gradient update
varies dynamically with the choice of instances in the mini-batch. In AutoAssist,
we utilize this fact and design an instance shrinking operation that is used to filter
out instances with relatively low marginal improvement to the current model; thus
the computationally intensive gradient computations are performed on informative
instances as much as possible. Specifically, we train a very lightweight Assistant
model jointly with the original deep network, which we refer to as the Boss. The
Assistant model is designed to gauge the importance of a given instance with re-
spect to the current Boss model such that the shrinking operation can be applied in
the batch generator. With careful design, we train the Boss and Assistant in a non-
blocking and asynchronous fashion such that overhead is minimal. To demonstrate
the effectiveness of AutoAssist, we conduct experiments on two contemporary
applications: image classification using ResNets with varied number of layers,
and neural machine translation using LSTMs, ConvS2S and Transformer models.
For each application, we verify that AutoAssist leads to significant reduction in
training time; in particular, 30% to 40% of the total operation count can be reduced
which leads to faster convergence and a corresponding decrease in training time.

1 Introduction

Deep Neural Networks (DNNs) trained on a large number of instances have been successfully applied
to many real world applications, such as [6, 11] and [20]. Due to the increasing number of training
instances and the increasing complexity of deep models, variants of (mini-batch) stochastic gradient
descent (SGD) are still the most widely used optimization methods because of their simplicity and
flexibility. In a typical SGD implementation, a batch of instances is generated by either a randomly
permuted order or a uniform sampler. Due to the complexity of deep models, the gradient calculation
is usually extremely computationally intensive and requires powerful hardware (such as a GPU or
TPU) to perform the entire training in a reasonable time frame. At any given time in the training
process, each instance has its own utility in terms of improving the current model. As a result,
performing SGD updates on a batch of instances which are sampled/generated uniformly can be
suboptimal in terms of maximizing the return-on-investment (ROI) on GPU/TPU cycles. In this paper,
we propose AutoAssist, a simple framework to accelerate training deep models with an Assistant that
generates instances in a sequence that attempts to improve the ROI.

⇤The University of Texas at Austin
†Amazon

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

There have been earlier similar attempts to improve the training speed of deep learning. In [3],
curriculum learning (CL), was shown to be beneficial for convergence; however, prior knowledge of
the training set is required to sort the instances by its difficulty. Self-paced learning (SPL) [19] is
another attempt that infers the “difficulty” of instances based on the corresponding loss value during
training and decreases the training weights of these difficult instances. [13] combined the above two
ideas and proposed Self Paced Curriculum learning (SPCL), which utilizes both prior knowledge
and the loss values as the learning progresses. However SPCL relies on a manually chosen scheme
function and introduces a considerable overhead in terms of both time and space complexity.

In our proposed AutoAssist framework, the main model, referred to as the Boss, is trained with
batches generated by a light-weight Assistant which is designed to adapt to the changes in the Boss
dynamically and asynchronously. Our contributions in this paper are as follows.

• We propose AutoAssist, a simple framework to accelerate training of deep neural networks by a
careful designed Assistant which is able to shrink less informative instances and generate smart
batches in an ROI aware sequence for the Boss to perform SGD updates.

• We also propose a concurrent computation mechanism to simultaneously utilize both CPUs and
GPUs such that learning of the Boss and the Assistant are conducted asynchronously, which
minimizes the overhead introduced by the Assistant.

• We conduct extensive experiments to show that AutoAssist is effective in accelerating the training
of various types of DNN models including image classification using Resnets with varied number
of layers, and neural machine translation using LSTMs, ConvS2S and Transformers.

2 Related Work

Considerable research has been conducted to optimize the way data is presented to the optimizer
for deep learning. For example, curriculum learning (CL) [3], which presents easier instances to
the model before hard ones, was shown to be beneficial to the overall convergence; however, prior
knowledge of the training set is required to decide the curriculum. To avoid this, [28] propose to
learn the curriculum with Bayesian optimization. Self-paced learning (SPL) [19] infers the difficulty
of instances with the corresponding loss value and then decreases the sample weight of difficult
instances. Self-paced Convolutional Networks (SPCN) [22] combines the SPL algorithm with the
training of Convolutional Neural Networks to get rid of noisy data. SPL type methods generally
require a user specified “pace rate” and the learning algorithm gradually incorporates more data after
every epoch until the whole dataset is incorporated into the curriculum. These methods have been
proven useful in a wide range of applications, including image recognition and natural language
processing. Similar ideas have been developed when optimizing other machine learning models.
For example, in classical SVM models, methods have been proposed to ignore trivial instances by
dimension shrinking in dual coordinate descent [12].

Importance sampling is another type of method that has been proposed to accelerate SGD convergence.
In importance sampling methods, instances are sampled by their importance weights. [31] proposed
Iprox-SGD that uses importance sampling to achieve variance reduction. The optimal importance
weight distribution to reduce the variance of the stochastic gradient is proved to be the gradient
norm of the sample, see [24, 31, 1]. Despite the variance reduction effect, importance sampling
methods tend to introduce large computational overhead. Before each stochastic step, the importance
weights need to be updated for all instances which makes importance sampling methods infeasible
for large datasets. [16] proposed an importance sampling scheme for deep learning models; however,
in order to reduce computation cost for evaluating importance scores, the proposed algorithm applied
a sub-sampling technique, thus leading to reliance on outdated importance scores during training.
The online batch selection method [23] samples instances with the probability exponential to their
last known loss value.

There are also several recent methods that propose to train an attached network with the original
one. ScreenerNet [17] trains an attached neural network to learn a scalar weight for each training
instance, while MentorNet [14] learns a data-driven curriculum that prevents the main network from
over-fitting. Leaning to teach [9] uses a student and a teacher model and optimizes the framework
with reinforcement learning. Since the additional model is another deep neural network, the above
methods introduce substantial computational and memory overhead to the original training process.

2

3 A Motivating Example: SGD with Instance Shrinking for Linear SVMs

In this section, we present and analyze the theoretical and empirical properties of SGD with instance
shrinking for linear Support Vector Machines (SVM). Although the analysis and observations apply
to convex problems such as linear SVM, the learning from this section is the inspirational cornerstone
for the design of our AutoAssist framework to accelerate training of non-convex deep learning models
in Section 4.

The shrinking strategy is a key technique widely used in many popular ML software libraries to
accelerate training for large-scale SVMs, such as SVMLight [15, Section 11.4], LIBSVM [4, Section
5.1] and LIBLINEAR [8, Section E.5]. The main idea behind the shrinking strategy is to identify
variables that are unlikely to change in upcoming iterations and temporarily remove them from
consideration to form a smaller/simpler optimization problem. Although, in most existing literature,
the shrinking strategy is applied to accelerate coordinate descent based methods for the dual SVM
problem, it is natural to ask if we can extend the shrinking strategy to accelerate stochastic gradient
descent based methods. Due to the primal-dual relationship for SVM problems, there is a direct
connection between a coordinate update in the dual SVM formulation and the stochastic gradient
update with respect to the corresponding instance in the primal SVM formulation (See for example
[12, Section 4.2]). After a careful examination of the relationship and the shrinking strategy adopted
for dual SVMs, it can be seen that when a dual variable meets the shrinking criterion during training,
the corresponding instance is not only correctly classified by the current model but is also relatively
far away from the decision boundary. Furthermore, as the decision boundary changes dynamically
during training, there is a mechanism for each shrunk dual variable to become active in all the
aforementioned approaches, thus guaranteeing convergence. Now, we discuss a simple Instance

Shrinking strategy designed for SGD on SVM-like convex functions.

Given a dataset {(xi, yi) : i = 1, . . . , N}, we consider a objective function parametrized as follows:

min
w2Rd

F (w) :=
1

N

NX

i=1

fi(w | xi, yi), (1)

where fi(·) is a loss function for the i-th instance. In a typical SGD method, at the k-th step, an
instance (xi, yi) is uniformly sampled to perform the following update:

wk+1 wk � ⌘krfi(wk | xi, yi), (2)

where ⌘k is the learning rate at the k-th step. Motivated by the above primal-dual connection for
linear SVMs, in order to extend the shrinking strategy for SGD, it is intuitive to introduce the concept
of utility of each instance for the current model wk denoted by utility

�
xi, yi | wk

�
, which is used to

estimate the marginal improvement for this instance using the current model. As a result, we can
apply the following utility-aware instance shrinking strategy to SGD:

wk+1
⇢
wk � ⌘krfi(wk | xi, yi) if utility

�
xi, yi | wk

�
� Tk,

wk otherwise,
(3)

where Tk is a threshold used to control the aggressiveness of our instance shrinking strategy.

3.1 Choice of the Utility Function

The effectiveness of the instance shrinking strategy for SGD depends on the choice of the utility
function. There are two considerations:

• The utility function should be designed such that it accurately approximates the exact marginal
improvement of the instance (xi, yi) for the current model, which can be defined as F (wk �
⌘krfi(wk | xi, yi))� F (wk).

• The utility function should also be simple to compute so that its overhead is minimal. As a result,
the exact marginal improvement cannot be an effective utility function due to its high O(Nd)
computational overhead.

Obviously, the balance between both considerations is the key to designing an effective utility function.
Inspired by the existing shrinking strategy used in SVM optimization, there are two simple candidates
for the utility function: 1) the norm of the gradient: utility

�
xi, yi | wk

�
=

��rfi(wk | xi, yi)
��,

3

Figure 1: Comparison of Instance Shrinking with loss (Shrinking-loss) or gradient (Shrinking-grad)
norm as utility and Importance Sampling for SGD on the linear SVM problem on the public news20

and rcv1 datasets. In terms of the number of parameter updates, instance shrinking and impor-
tance sampling strategies show faster convergence than plain SGD. Because of large computational
overhead, importance sampling strategy is not effective in terms of reducing training time.

2) the loss: utility
�
xi, yi | wk

�
= fi(wk | xi, yi). First, both choices rely only on local information

(xi, yi), i.e., no other instances are involved in the computation. Thus the overhead is small. Next,
both choices are a good proxy: the gradient norm measures the magnitude of the change in the
SGD update while the loss directly measures the performance of the current model on this instance.
Experimental results on SVMs indicate that both gradient norm and loss utility achieves faster
convergence. As stated below, the choice of gradient norm can be shown to be theoretically sound.

Theorem 1. Given µ strongly convex function F (w) := 1
N

PN
i=1 fi(w) that satisfies Property 1 in

Appendix A. When

��rfi(wk | xi, yi)
�� is used as the utility function, there exists threshold Tk such

that SGD with the instance shrinking update rule (3) converges as follows: E
⇣��wk �w⇤

��2
⌘
 L

k

for some constant L, where w⇤
is the optimal solution of (1).

The proof of Theorem 1 can be found in the Appendix. From Theorem 1, we can see that shrinking
of instances with low utility during the training process does not hinder the theoretical convergence
of SGD for strongly convex problems.

3.2 Practical Consideration: Computational Overhead

As mentioned earlier, computational overhead is one of the major considerations for a shrinking
strategy to be effective in terms of acceleration of training process. In Figure 1, we show the results
of various acceleration techniques for SGD on the linear SVM problem with two datasets: news20
and rcv1. To further demonstrate the consequence of overhead in practical effectiveness, we also
include the importance sampling strategy into our comparison. The theoretical benefit of importance
sampling for SGD has been extensively studied in the literature [24, 31, 1]. In particular, it is well
known that the optimal distribution for the importance sampling strategy is that each instance be
sampled with a probability proportional to the norm of gradient of this instance given the current
model wk. To have a fair comparison, we implement Pegasos [27] as our plain SGD algorithm, the
shrinking strategy with the loss and gradient norm as the utility function, and the importance sampling
strategy with the exact optimal distribution in C++. From the top part of Figure 1, we can see that
instance shrinking with both utility choice and importance sampling yields faster convergence than
plain SGD in terms of the number of updates. However, in terms of the actual training time, from the
bottom part of Figure 1, we can see that the importance sampling strategy is significantly slower than
even plain SGD due to the huge computational overhead to maintain the exact sampling distribution
that leads to the optimal theoretical convergence. On the other hand, our shrinking strategies with a
very light-weight extra overhead show improvement over plain SGD in terms of training time.

4

It is not hard to see why the improvement in Figure 1 is almost negligible for the shrinking strategies.
Due to simplicity of the linear SVM and the choice of utility function (loss in this case), the time
saved by the shrinking strategy is almost the same as the overhead introduced by the computation of
the utility function. Based on these observations, we see that the opportunity of a shrinking strategy to
be effective in accelerating the training of complicated DNN models is in designing a utility function
whose overhead is significantly lower than the computation involved in a single SGD update.

4 AutoAssist: Training DNNs with an Automatic Assistant

Inspired by the observations in Section 3, given that a single SGD update for a DNN model is very
time-consuming, we believe that there is an opportunity for a properly designed shrinking strategy
to accelerate the training for a DNN model effectively. Note that in a typical SGD training process
for a DNN model, there are three major components: a batch generator which collects a batch of
instances to perform a (mini-)batch stochastic gradient update; a forward pass(FP) on the DNN model
to evaluate the loss values on a given batch of instances; and a backward pass(BP) on the DNN model
to compute the aggregated gradient for this batch so that an SGD update can be performed. The
major computation cost comes from the FP and BP phases, which usually require powerful hardware
such as GPU to perform the computation efficiently. This indicates that if we can skip the FP and BP
computations for instances with relatively lower utility with respect to the current model, a significant
amount of computation time can be saved. Thus, in AutoAssist, we propose to design an Assistant
to accelerate the training of a DNN model, which we refer to as the Boss model from now on. The
Assistant is a special batch generator which implements a utility aware instance shrinking strategy.

4.1 A Lightweight Assistant Grows with the Boss Dynamically

Algorithm 1 Assistant: Utility Aware
Batch Generator

1: Input: Dataset {xi,yi}Ni=1, �k
2: Output: batch Bk ⇢ {1, . . . , N}
3: Initialize: Bk {}
4: while |Bk| < batch_size do
5: i ⇠ uniformInt(N)
6: r1 ⇠ uniform(0, 1)
7: if r1 < 1� �k then
8: Bk Bk [{i}
9: else

10: r2 ⇠ uniform(0, 1)
11: if r2 < g(i | �) then
12: Bk Bk [{i}

return Bk

To design an effective Assistant, we need to take the same
two considerations of the shrinking strategy into account:
on one hand, Assistant should be aware of the latest ca-
pability of the Boss model so that an accurate shrinking
strategy can be used; on the other hand, Assistant should
be lightweight so that the overhead is as low as possible.

Due to the fact that extracting the per-instance loss in most
modern implementations of batch SGD is significantly eas-
ier than the per instance gradient, we consider using only
the loss to gauge the utility of a given instance for the cur-
rent Boss. However, unlike the simple linear SVM model,
even the forward pass in DNN training to compute the
loss is very time consuming. Thus, instead of exact loss
computation, we should design a lightweight Assistant
model to estimate instance utility. For most applications
where DNN is applied, there exist many traditional sim-
pler ML models which still yield reasonable performance.
These “shallow counterparts” of the DNN model are good
candidates to approximate the chosen utility function in
an efficient and accurate manner. In Section 5, we will see that even with a simple linear model
our Assistant is able to reduce training time significantly for real-world applications such as image
classification and neural machine translation.

In AutoAssist, we use � to denote the parameters of the shallow Assistant model, and use g(· | �) to
denote the approximate instance utility for the current Boss model. In particular, g(·) is designed to
model the following probability:

g((xi, yi) | �) ⇡ P
q

utility
�
xi, yi | wk

�
� Tk

y
, (4)

where (xi, yi) is the feature vector used in the shallow model, utility
�
xi, yi | wk

�
is the loss for

the i-th instance with the current Boss model wk, and Tk is a threshold used to determine whether
the marginal utility of the i-th instance is large enough to include it in the mini-batch. Note that
Tk also changes during the entire training phase to adapt to the dynamically changing Boss model.
In particular, we propose Tk to be an exponential moving average of the loss of instances updated

5

Figure 2: The sequential training scheme on the left wastes CPU/GPU cycles, while the accelerated
training process with AutoAssist, shown on the right, asynchronously trains both the Boss and the
Assistant leading to a more efficient use of computational resources. (AQ denotes AssistantQueue,
while BQ denotes BossQueue.)

recently by Boss. There are three reasons why we choose to model the probability of the binary event
instead of the instance loss directly: a) the range of the instance loss varies depending on lots of
factors such as the choice of the loss function and training instance outliers. Thus, to increase the
robustness of Assistant, we choose to model (4) instead; b) Shallow models usually have a limited
capacity to approximate the exact loss of a given instance for a DNN model; c) with the probability
output of g(·), Assistant can perform a “stochastic” instance shrinking strategy to avoid the situation
that instances that always have a lower predicted probability are never seen by the Boss.

In order for the Assistant to know the latest capability of the Boss model, we propose a very
lightweight approach to collect the latest information about the Boss. In particular, after the forward
pass of a batch B, we collect the actual loss value (i.e., our utility function) of each instance (xi, yi)
to form a binary classification dataset {(i, zi) : i 2 B}, where i = (xi, yi) is the feature
vector, and zi := I

⇥
utility

�
xi, yi | wk

�
> Tk

⇤
, where I[⇤] is the indicator function, is the supervision

providing the latest information about the current Boss model. To keep the Assistant up-to-date with
the Boss, we update the parameters for the Assistant model:

� (1� �)�� ⌘
1

|B|
X

i2B

r�`CE(zi, g(i|�)), (5)

where `CE is the cross entropy loss, ⌘ is a fixed learning rate, and � is the weight decay factor.

To handle the situation where the Assistant model has not yet learned the capability of the Boss, we
propose a simple mechanism to control the rate of instances, denoted by �k 2 [0, 1], to be passed to
the stochastic instance shrinker defined by the Assistant model. In particular, in the early stage of
training, we set �0 = 0 so that Assistant includes all instances into the batch without any shrinking
operation. For the Assistant, �k acts like a safeguard which takes the confidence of the current model
g(· | �) in predicting a correct shrinking probability. The better the Assistant model performs, the
higher the value �k is set to. In particular, �k is dynamically set to an exponential running average
over the observed empirical accuracy of the Assistant model. In Algorithm 1, we describe the utility
aware batch generation performed by our Assistant.

Connections to Existing Curriculum-based Approaches. The concept of utility of an instance in
AutoAssist could be viewed as a machine learned curriculum for the current Boss. To contrast our
approach, existing curriculum based approaches are not capable of evolving with the Boss model in a
timely manner. For example, Self-Paced-Learning (SPL) only updates its curriculum (or self-pace)
after one full epoch of the dataset. ScreenerNet [17] is another attempt to dynamically learn a
curriculum with an auxiliary deep neural network, which requires additional GPU cycles to train the
auxiliary DNNs causing significant overhead. We compare these two methods in Section 5.

4.2 An Asynchronous Computational Scheme for Joint Learning of Boss and Assistant

In traditional batch SGD training for a DNN model, as depicted in the left part of Figure 2, there
is an interleaving of batch generation done in a CPU and FP/BP done in a GPU. Due to the simple
logic of most existing batch generators, batch generation takes a minimal number of CPU cycles,

6

which causes a lengthy idle period for the CPU. The Assistant in our AutoAssist framework needs to
perform instance shrinking in addition to updating the shrinking model to keep pace with Boss. To
reduce the overhead, we propose an asynchronous computational scheme to fully utilize the available
CPU and GPU. In particular, we maintain two concurrent queues to store the batches required for
Boss and Assistant respectively:

BossQueue = {. . . , Bs
, . . .} and AssistantQueue =

�
. . . ,M

t
, . . .

, (6)

where each B
s is a batch of instance indices and each M

t =
�
(i, utility

�
xi, yi | wk

�
) : i 2 B

s

is
a batch of pairs of an instance index and the corresponding loss value (the utility function chosen
in AutoAssist) evaluated from the forward pass of the recent Boss model on a batch B

s. With the
help of these two concurrent queues, we can design the following computational scheme: For each
GPU worker performing Boss updates, it first dequeues a batch B

s from the BossQueue, performs
the forward computation, enqueues the M t containing the loss values along with the instance indices
to the AssistantQueue, conducts the backward computation to perform the SGD update on the
parameters of the Boss model. On the other hand, for each CPU worker performing Assistant updates,
whenever one of the queues is empty, it always generates and enqueues a new batch to the BossQueue;
otherwise, it dequeues an M

t from the AssistantQueue, forms the binary dataset from M
t to perform

the update (5). An illustration of the scheme is shown in the right part of Figure 2. It is not hard to
see that both the CPU and GPU are utilized in our scheme, and the only overhead introduced is the
step to collect the loss values and enqueuing the corresponding M

t, which is an operation that has
minimal computational cost.

5 Experimental results

To demonstrate the effectiveness of AutoAssist in training large-scale DNNs, we conduct experi-
ments 3 on two applications where DNNs have been successful: image classification and neural
machine translation.

5.1 Image classification

Datasets and DNN models. We consider MNIST [21], rotated MNIST4, CIFAR10 [18] and raw
ImageNet [7] datasets. The dataset statistics are presented in Table 1 of the Appendix. For the DNN
models, we consider the popular ResNets with varied number of layers (18, 34, and 101 layers).

Experimental Setting. Following [11], we use SGD with momentum as the optimizer. The detailed
parameter settings are listed in the Appendix. Three acceleration methods and SGD baseline are
included in our comparison:

• AutoAssist: L2-regularized logistic regression as our Assistant model, where the stacked pixel
values of the raw image are used as the feature vector except for ImageNet, where low resolution
images are used as feature vector.

• SGD baseline: vanilla stochastic gradient descent with momentum.
• Self-Paced Learning (SPL): We implement the same self-paced scheme in [22].
• ScreenerNet: We use the same screener structure and settings described in [17].

Experimental results, that include the training loss versus training time for each model and dataset
combination, are shown in Figure 3. As a sanity check, we also verified that the AutoAssist reaches
the same accuracy as SGD baseline. It can be observed that AutoAssist outperforms other competing
approaches in all (model, dataset) combinations in terms of training time. The Assistant model is
able to reach 80% ⇠ 90% shrinking accuracy even with a simple linear logistic regression model, as
shown in Figure 6 in the Appendix. It can be seen that AutoAssist yields effective SGD acceleration
compared to other approaches.

5.2 Neural Machine Translation

Datasets and DNN models. We consider the widely used WMT14 English to German dataset, which
contains 4M sentence pairs. We constructed source and target vocabulary with size 42k and 40k. In

3The code is available at https://github.com/zhangjiong724/autoassist-exp
4Constructed by randomly rotating each image in the original MNIST within ±90 degrees.

7

Figure 3: Comparison of various training schemes on image classification. X-axis is the training
time in seconds, while Y-axis is the training loss. ResNets with varied number of layers ranging
from {18, 34, 101} are considered. Each column of figures shows the ResNet results with a specific
number of layers, while each row of figures shows results on a specific dataset.

Figure 4: Comparison of various training schemes on neural machine translation. X-axis is the
training time, while Y-axis is the training perplexity. Four commonly sequence-to-sequence models
are considered: LSTM, ConvS2S, and Transformer(base and big). We use 8 CPUs for Assistant and
8 GPUs for Boss.

terms of the DNN models for NMT, we consider four popular deep sequence models: LSTM [30],
ConvS2S [10], Transformer base and big model [29].

Experimental Setting. We implement AutoAssist with the asynchronous update mechanism de-
scribed in Section 4.2 under the Fairseq [25] codebase. In particular we enable multiple CPUs for
multiple Assistant updates and multiple GPUs for Boss training. We use 8 Nvidia V100 GPUs for

8

Boss training and stop after training on 6 billion tokens. As ScreenerNet described in [17] cannot be
trivially extended to the NMT task, we exclude ScreenerNet in our comparison.

• AutoAssist: L2-regularized logistic regression is used as our Assistant model, where the term-
frequency / inverse-document-frequency [26] of each source-target pair is used as the feature
vector. The TF/IDF features are computed during preprocessing time to reduce overhead. Note that
although the Boss model is trained in a data-parallel fashion (gradients are synchronized after each
back-propagation), Assistant is updated in an asynchronous manner as described in Section 4.2.
In order to generate batches to train the Boss model with p GPUs, p Assistant models are created
such that batch generation can be done asynchronously for each GPU worker.

• SGD baseline: vanilla stochastic gradient descent with momentum.
• Self-Paced Learning (SPL): we implement the same self-paced scheme in [22].

The experimental results are shown in Figure 4, which includes the number of tokens/training time
versus training perplexity for each DNN model. Similar to image classification, we also observe that
AutoAssist outperforms other training schemes for all our experiments on neural machine translation.
In particular, the AutoAssist is able to save around 40% tokens per epoch and achieves better final
BLEU scores than the baseline. Some training statistics and the final BLEU scores are listed in table 2
in Appendix.

6 Conclusions

In this paper, we propose a training framework to accelerate deep learning model training. The
proposed AutoAssist framework jointly trains a batch generator (Assistant) along with the main
deep learning model (Boss). The Assistant model conducts instance shrinking to get rid of trivial
instances during training and can automatically adjust the criteria based on the ability of the Boss.
We further propose a method to reduce the computational overhead by training Assistant and Boss
asynchronously on CPU/GPU and extend this framework to multi-GPU/CPU settings. Experimental
results demonstrate that both convergence speed and training time are improved by our Assistant
model.

Acknowledgement This research was supported by NSF grants IIS-1546452 CCF-1564000 and
AWS Cloud Credits for Research program.

References

[1] Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua Bengio. Vari-
ance reduction in SGD by distributed importance sampling. arXiv preprint arXiv:1511.06481,
2015.

[2] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. In Advances in Neural Information

Processing Systems, pages 1171–1179, 2015.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual International Conference on Machine Learning, pages 41–48.
ACM, 2009.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[5] Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training
more accurate neural networks by emphasizing high variance samples. In Advances in Neural

Information Processing Systems, pages 1002–1012, 2017.

[6] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference

on Machine learning, pages 160–167. ACM, 2008.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

9

[8] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIB-
LINEAR: A library for large linear classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[9] Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. arXiv preprint

arXiv:1805.03643, 2018.

[10] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[12] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam Sundarara-
jan. A dual coordinate descent method for large-scale linear SVM. In Proceedings of the 25th

International Conference on Machine learning, pages 408–415. ACM, 2008.

[13] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. Self-paced
curriculum learning. In AAAI, page Vol. 2. No. 5.4., 2015.

[14] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. arXiv preprint

arXiv:1712.05055, 2017.

[15] Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Schölkopf,
Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods –

Support Vector Learning, pages 169–184, Cambridge, MA, 1998. MIT Press.

[16] Angelos Katharopoulos and François Fleuret. Biased importance sampling for deep neural
network training. arXiv preprint arXiv:1706.00043, 2017.

[17] Tae-Hoon Kim and Jonghyun Choi. ScreenerNet: Learning curriculum for neural networks.
arXiv preprint arXiv:1801.00904, 2018.

[18] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

[19] M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems, pages 1189–1197, 2010.

[20] Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised feature learning
and deep learning for time-series modeling. Pattern Recognition Letters, 42:11–24, 2014.

[21] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[22] Hao Li and Maoguo Gong. Self-paced convolutional neural networks. In Proceedings of the

International Joint Conference on Artificial Intelligence, 2017.

[23] Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks.
arXiv preprint arXiv:1511.06343, 2015.

[24] Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling,
and the randomized Kaczmarz algorithm. In Advances in Neural Information Processing

Systems, pages 1017–1025, 2014.

[25] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. Fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of

NAACL-HLT 2019: Demonstrations, 2019.

[26] Stephen Robertson. Understanding inverse document frequency: on theoretical arguments for
idf. Journal of documentation, 60(5):503–520, 2004.

10

[27] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal
estimated sub-gradient solver for SVM. Mathematical programming, 127(1):3–30, 2011.

[28] Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Brian MacWhinney, and Chris Dyer. Learning the
curriculum with bayesian optimization for task-specific word representation learning. arXiv

preprint arXiv:1605.03852, 2016.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-

tion Processing Systems, pages 5998–6008, 2017.

[30] Sam Wiseman and Alexander M Rush. Sequence-to-sequence learning as beam-search opti-
mization. arXiv preprint arXiv:1606.02960, 2016.

[31] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. In International Conference on Machine Learning, pages 1–9, 2015.

11

