
We thank the reviewers for the detailed comments. We will address all the minor issues and do not discuss them1

individually here. We will also add high-level pictures and proof sketches in the revision.2

Novelty and Originality: We would like to first describe briefly the key differences between our work and the existing3

methods.4

(1) [17, 18] are the only prior work on OCSM where up to K = T 3/2 gradients are required per iteration. Note that K is5

not a constant, but a function of the total number of rounds T . Thus reducing K to 1 is an important step. To do so, we6

proposed a series of novel methods including the blocking procedure and the permutation methods (L114-131). Besides7

these, as noted in L137-144, a novel error analysis was performed although we relied on the same averaging technique8

proposed as in [37, 38].9

(2) Th extension from online setting to bandit is far from trivial given the one-point estimator. Indeed, the bandit10

information setting is far more challenging than the online (full information) setting and several novel steps are11

required to design a low-regret algorithm: First, in the bandit algorithm, the point at which we play and the point at12

which we get the gradient estimation are different (L206-209). To circumvent this issue, we proposed the biphasic13

(exploration/exploitation) method (L210-218). Second, the point for estimation may fall out of the constraint set14

(L178-179). In [23], this issue was resolved by assuming that rBd ⊂ K ⊂ RBd, which does not hold for many15

DR-continuous submodular function, whose domain is defined to be a subset of the non-negative orthant. Therefore we16

introduced the definition of δ-interior, and explained how it can help us address the bandit problem (L180-188). We17

also proposed a method to construct proper δ-interior (L195-197) and prove the result by a geometric analysis (Lemma18

1). We established the regret bound based on Lemma 1 (Theorem 2), but also provided the result for general constraint19

(Theorem 4, Lines 219-221).20

(3) By providing the hardness result (Lemma 2), we showed that it is difficult to extend our method directly from21

continuous settings to discrete case. Then we considered the RBSM model, and established a sublinear regret bound.22

Response to Reviewer #1:23

Q1: Using other gradient estimation techniques may lead to better regret bounds. A1: We agree with the reviewer and24

are grateful for suggesting an interesting future research direction.25

Q2: Provide results for the case that the horizon T is not available offline. A2: Using the doubling trick (Auer et al.,26

1995) will easily extend our methods to the cases where T is unknown. The exploration and exploitation phases are27

similar to those in Alg. 2, 3.28

Q3: Provide numerical experiments and compare its running time with previous algorithms for this problem. A3: We29

thank the reviewer for the suggestion. However, since our algorithms are the first with a sublinear regret bound for both30

one-shot online learning and continuous bandit problems, there is no previous work to compare with.31

Q4: Extension to continuous submodular functions. A4: Our results only apply to DR-submodular functions. We tried32

to make it clear in the abstract and throughout the paper. We are sorry for the confusion.33

Response to Reviewer #2:34

Q1: Some detailed comments. A1: The definition of radius uses the assumption that the constraint contains 0.35

Assumption 5 is an analogue of the assumption in [23], which assumes that rBd ⊂ K ⊂ RBd. This assumption is36

listed in the statement of Theorem 2 (4 to 6 on the first line). We assume that r is given.37

Q2: Applications of RBSM. A2: In theory, RBSM can be regarded as a relaxation of BSM, which helps us to better38

understand the nature of BSM. In practice, the responsive model (not only for submodular maximization or bandit) has39

potentially many applications when a decision cannot be committed, while we can still get the potential outcome of the40

decision as feedback. For example, suppose that we have an replenishable inventory of n items. Each time there is41

a customer coming with a utility function unknown to us. We allocate a collection of items to her, and the goal is to42

maximize the total utility (reward) of all the customers. We may use a partition matroid to model diversity (in terms of43

category, time, etc). In the RBSM model, we cannot allocate the collection of items which violates the constraint to the44

customer, but we can use it as a questionnaire, and the customer will tell us the potential utility if she received those45

items. The feedback will help us to make better decisions in the future. Similar examples include portfolio selection:46

when the investment choice is too risky, i.e., violates the recommended constraint set, we may stop trading and thus get47

no reward on that trading period, but at the same time observe the potential reward if we invested in that way. We will48

add more examples in the revision.49

Response to Reviewer #3:50

Q1: The resulting regret bounds are worse than the previous one, and shows a limitation of the techniques. A1: The51

previous O(
√
T ) bound is achieved by using

√
T exact gradients or T 3/2 stochastic gradients per round, while our52

method only needs one single gradient. Our result opens the possibility of achieving sub-linear regret with only one53

gradient evaluation. We agree that it is an interesting future work to achieve the same O(
√
T ) regret bound.54


