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Abstract

In this paper, we propose three online algorithms for submodular maximization.
The first one, Mono-Frank-Wolfe, reduces the number of per-function gradient
evaluations from T 1/2 [18] and T 3/2 [17] to 1, and achieves a (1 − 1/e)-regret
bound of O(T 4/5). The second one, Bandit-Frank-Wolfe, is the first bandit al-
gorithm for continuous DR-submodular maximization, which achieves a (1− 1/e)-
regret bound of O(T 8/9). Finally, we extend Bandit-Frank-Wolfe to a bandit
algorithm for discrete submodular maximization, Responsive-Frank-Wolfe,
which attains a (1 − 1/e)-regret bound of O(T 8/9) in the responsive bandit set-
ting.

1 Introduction

Submodularity naturally arises in a variety of disciplines, and has numerous applications in machine
learning, including data summarization [45], active and semi-supervised learning [26, 47], com-
pressed sensing and structured sparsity [7], fairness in machine learning [8], mean-field inference in
probabilistic models [10], and MAP inference in determinantal point processes (DPPs) [36].

We say that a set function f : 2Ω → R≥0 defined on a finite ground set Ω is submodular if for every
A ⊆ B ⊆ Ω and x ∈ Ω \ B, we have f(x|A) ≥ f(x|B), where f(x|A) , f(A ∪ {x}) − f(A)
is a discrete derivative [39]. Continuous DR-submodular functions are the continuous analogue.
Let F : X → R≥0 be a differentiable function defined on a box X ,

∏d
i=1 Xi, where each Xi is

a closed interval of R≥0. We say that F is continuous DR-submodular if for every x, y ∈ X that
satisfy x ≤ y and every i ∈ [d] , {1, . . . , d}, we have ∂F

∂xi
(x) ≥ ∂F

∂xi
(y), where x ≤ y means

xi ≤ yi,∀i ∈ [d] [9].

In this paper, we focus on online and bandit maximization of submodular set functions and contin-
uous DR-submodular functions. In contrast to offline optimization where the objective function is
completely known beforehand, online optimization can be viewed as a two-player game between
the player and the adversary in a sequential manner [50, 42, 28]. Let F be a family of real-valued
functions. The player wants to maximize a sequence of functions F1, . . . , FT ∈ F subject to a
constraint set K. The player has no a priori knowledge of the functions, while the constraint set
is known and we assume that it is a closed convex set in Rd. The natural number T is termed the
horizon of the online optimization problem. At the t-th iteration, without the knowledge of Ft, the
player has to select a point xt ∈ K. After the player commits to this choice, the adversary selects
a function Ft ∈ F . The player receives a reward Ft(xt), observes the function Ft determined by
the adversary, and proceeds to the next iteration. In the more challenging bandit setting, even the
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function Ft is unavailable to the player and the only observable information is the reward that the
player receives [23, 3, 11].

The performance of the algorithm that the player uses to determine her choices x1, . . . , xT is
quantified by the regret, which is the gap between her accumulated reward and the reward of the best
single choice in hindsight. To be precise, the regret is defined by maxx∈K

∑T
t=1 Ft(x)−

∑T
t=1 Ft(xt).

However, even in the offline scenario, it is shown that the maximization problem of a continuous
DR-submodular function cannot be approximated within a factor of (1− 1/e+ ε) for any ε > 0 in
polynomial time, unless RP = NP [9]. Therefore, we consider the (1− 1/e)-regret [44, 34, 18]

R1−1/e,T , (1− 1/e) max
x∈K

T∑
t=1

Ft(x)−
T∑
t=1

Ft(xt).

For ease of notation, we writeRT forR1−1/e,T throughout this paper.

In this paper, we study the following three problems:

• OCSM: the Online Continuous DR-Submodular Maximization problem,
• BCSM: the Bandit Continuous DR-Submodular Maximization problem, and
• RBSM: the Responsive Bandit Submodular Maximization problem.

We note that although special cases of bandit submodular maximization problem (BSM) were studied
in [44, 27], the vanilla BSM problem is still open for general monotone submodular functions under a
matroid constraint. In BSM, the objective functions f1, . . . , fT are submodular set functions defined
on a common finite ground set Ω and subject to a common constraint I. For each function fi, the
player has to select a subset Xi ∈ I. Only after playing the subset Xi, the reward fi(Xi) is received
and thereby observed.

If the value of the corresponding multilinear extension1 F can be estimated by the submodular
set function f , we may expect to solve the vanilla BSM by invoking algorithms for continuous DR-
submodular maximization. In this paper, however, we will show a hardness result that subject to some
constraint I, it is impossible to construct a one-point unbiased estimator of the multilinear extension
F based on the value of f , without knowing the information of f in advance. This result motivates the
study of a slightly relaxed setting termed the Responsive Bandit Submodular Maximization problem
(RBSM). In RBSM, at round i, if Xi /∈ I, the player is still allowed to play Xi and observe the function
value fi(Xi), but gets zero reward out of it.

OCSM was studied in [18, 17], where T 1/2 exact gradient evaluations or T 3/2 stochastic gradient
evaluations are required per iteration (T is the horizon). Therefore, they cannot be extended to the
bandit setting (BCSM and RBSM) where one single function evaluation per iteration is permitted. As a
result, no known bandit algorithm attains a sublinear (1− 1/e)-regret.

In this paper, we first propose Mono-Frank-Wolfe for OCSM, which requires one stochastic gra-
dient per function and still attains a (1 − 1/e)-regret bound of O(T 4/5). This is significant as
it reduces the number of per-function gradient evaluations from T 3/2 to 1. Furthermore, it pro-
vides a feasible avenue to solving BCSM and RBSM. We then propose Bandit-Frank-Wolfe and
Responsive-Frank-Wolfe that attain a (1 − 1/e)-regret bound of O(T 8/9) for BCSM and RBSM,
respectively. To the best of our knowledge, Bandit-Frank-Wolfe and Responsive-Frank-Wolfe
are the first algorithms that attain a sublinear (1− 1/e)-regret bound for BCSM and RBSM, respectively.

The performance of prior approaches and our proposed algorithms is summarized in Table 1. We also
list further related works in Appendix A.

2 Preliminaries

Monotonicity, Smoothness, and Directional Concavity Property A submodular set function
f : 2Ω → R is called monotone if for any two sets A ⊆ B ⊆ Ω we have f(A) ≤ f(B).

For two vectors x and y, we write x ≤ y if xi ≤ yi holds for every i. Let F be a continuous
DR-submodular function defined on X . We say that F is monotone if F (x) ≤ F (y) for every
x, y ∈ X obeying x ≤ y. Additionally, F is called L-smooth if for every x, y ∈ X it holds that

1We formally define the multilinear extension of a submodular set function in Section 2.
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Table 1: Comparison of previous and our proposed algorithms.

Setting Algorithm Stochastic # of grad.
(1− 1/e)-regretgradient evaluations

OCSM
Meta-FW [18] No T 1/2 O(

√
T )

VR-FW [17] Yes T 3/2 O(
√
T )

Mono-FW (this work) Yes 1 O(T 4/5)

BCSM Bandit-FW (this work) - - O(T 8/9)

RBSM Responsive-FW (this work) - - O(T 8/9)

‖∇F (x)−∇F (y)‖≤ L‖x− y‖. Throughout the paper, we use the notation ‖·‖ for the Euclidean
norm. An important implication of continuous DR-submodularity is concavity along the non-negative
directions [16, 9], i.e., for all x ≤ y, we have F (y) ≤ F (x) + 〈∇F (x), y − x〉.

Multilinear Extension Given a submodular set function f : 2Ω → R≥0 defined on a finite ground
set Ω, its multilinear extension is a continuous DR-submodular function F : [0, 1]|Ω| → R≥0 defined
by F (x) =

∑
S⊆Ω f(S)Πi∈SxiΠj /∈S(1− xj), where xi is the i-th coordinate of x. Equivalently, for

any vector x ∈ [0, 1]|Ω| we have F (x) = ES∼x[f(S)] where S ∼ x means that S is a random subset
of Ω such that every element i ∈ Ω is contained in S independently with probability xi.

Geometric Notations The d-dimensional unit ball is denoted by Bd, and the (d− 1)-dimensional
unit sphere is denoted by Sd−1. LetK be a bounded set. We define its diameterD = supx,y∈K‖x−y‖
and radius R = supx∈K‖x‖. We say a set K has lower bound u if u ∈ K, and ∀x ∈ K, x ≥ u.

3 One-shot Online Continuous DR-Submodular Maximization

In this section, we propose Mono-Frank-Wolfe, an online continuous DR-submodular maximization
algorithm which only needs one gradient evaluation per function. This algorithm is the basis of the
methods presented in the next section for the bandit setting. We also note that throughout this paper,
∇F denotes the exact gradient for F , while ∇̃F denotes the stochastic gradient.

We begin by reviewing the Frank-Wolfe (FW) [24, 33] method for maximizing monotone continuous
DR-submodular functions in the offline setting [9], where we have one single objective function F .
Assuming that we have access to the exact gradient∇F , the FW method is an iterative procedure that
starts from the initial point x(1) = 0, and at the k-th iteration, solves a linear optimization problem

v(k) ← arg max
v∈K

〈v,∇F (x(k))〉 (1)

which is used to update x(k+1) ← x(k) + ηkv
(k), where ηk is the step size.

We aim to extend the FW method to the online setting. Inspired by the FW update above, to get high
rewards for each objective function Ft, we start from x

(1)
t = 0, update x(k+1)

t = x
(k)
t + ηkv

(k)
t for

multiple iterations (let K denote the number of iterations), then play the last iterate x(K+1)
t for Ft. To

obtain the point x(K+1)
t which we play, we need to solve the linear program Eq. (1) and thus get v(k)

t ,
where we have to know the gradient in advance. However, in the online setting, we can only observe
the stochastic gradient ∇̃Ft after we play some point for Ft. So the key issue is to obtain the vector
v

(k)
t which at least approximately maximizes 〈·,∇Ft(x(k)

t )〉, before we play some point for Ft.

To do so, we use K no-regret online linear maximization oracles {E(k)}, k ∈ [K], and let v(k)
t be the

output vector of E(k) at round t. Once we update x(k+1)
t by v(k)

t for all k ∈ [K], and play x(K+1)
t for

Ft, we can observe ∇̃Ft(x(k)
t ) and iteratively construct d(k)

t = (1− ρk)d
(k−1)
t + ρk∇̃Ft(x(k)

t ), an
estimation of ∇Ft(x(k)

t ) with a lower variance than ∇̃Ft(x(k)
t ) [37, 38] for all k ∈ [K]. Then we set

〈·, d(k)
t 〉 as the objective function for oracle E(k) at round t. Thanks to the no-regret property of E(k),
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v
(k)
t , which is obtained before we play some point for Ft and observe the gradient, approximately

maximizes 〈·, d(k)
t 〉, thus also approximately maximizes 〈·,∇Ft(x(k)

t )〉.

This approach was first proposed in [18, 17], where stochastic gradients at K = T 3/2 points (i.e.,
{x(k)

t }, k ∈ [K]) are required for each function Ft. To carry this general idea into the one-shot setting
where we can only access one gradient per function, we need the following blocking procedure.

We divide the upcoming objective functions F1, . . . , FT into Q equisized blocks of size K (so
T = QK). For the q-th block, we first set x(1)

q = 0, update x(k+1)
q = x

(k)
q + ηkv

(k)
q , and play

the same point xq = x
(K+1)
q for all the functions F(q−1)K+1, . . . , FqK . The reason why we play

the same point xq will be explained later. We also define the average function in the q-th block as
F̄q , 1

K

∑K
k=1 F(q−1)K+k. In order to reduce the required number of gradients per function, the key

idea is to view the average functions F̄1, . . . , F̄Q as virtual objective functions.

Precisely, in the q-th block, let (tq,1, . . . , tq,K) be a random permutation of the indices {(q − 1)K +

1, . . . , qK}. After we update all the x(k)
q , for each Ft, we play xq and find the corresponding k′ such

that t = tq,k′ , then observe ∇̃Ft (i.e., ∇̃Ftq,k′ ) at x(k′)
q . Thus we can obtain ∇̃Ftq,k(x

(k)
q ) for all

k ∈ [K]. Since tq,k is a random variable such that E[Ftq,k ] = F̄q , ∇̃Ftq,k(x
(k)
q ) is also an estimation

of∇F̄q(x(k)
q ), which holds for all k ∈ [K]. As a result, with only one gradient evaluation per function

Ftq,k , we can obtain stochastic gradients of the virtual objective function F̄q at K points. In this way,
the required number of per-function gradient evaluations is reduced from K to 1 successfully.

Note that since we play yt = xq for each Ft in the q-th block, the regret w.r.t. the original objective
functions and that w.r.t. the average functions satisfy that

(1− 1/e) max
x∈K

T∑
t=1

Ft(x)−
T∑
t=1

Ft(yt) = K

[
(1− 1/e) max

x∈K

Q∑
q=1

F̄q(x)−
Q∑
t=1

F̄q(xq)

]
,

which makes it possible to view the functions F̄q as virtual objective functions in the regret analysis.
Moreover, we iteratively construct d(k)

q = (1 − ρk)d
(k−1)
q + ρk∇̃Ftq,k(x

(k)
q ) as an estimation of

∇Ftq,k(x
(k)
q ), thus also an estimation of ∇F̄q(x(k)

q ). So v(k)
q , the output of E(k), approximately

maximizes 〈·,∇F̄q(x(k)
q )〉. Inspired by the offline FW method, playing xq = x

(K+1)
q , the last iterate

in the FW procedure, may obtain high rewards for F̄q. As a result, we play the same point xq in the
q-th block.

We also note that once tq,1, . . . , tq,k are revealed, conditioned on the knowledge, the expecta-
tion of Ftq,k+1

is no longer the average function F̄q but the residual average function F̄q,k(x) =
1

K−k
∑K
i=k+1 Ftq,i(x). As more indices tq,k are revealed, F̄q,k becomes increasingly different from

F̄q , which makes the observed gradient ∇̃Ftq,k+1
(x

(k+1)
q ) not a good estimation of∇F̄q(x(k+1)

q ) any
more. As a result, although we use the averaging technique (the update of d(k)

q ) as in [37, 38] for vari-
ance reduction, a completely different gradient error analysis is required. In Lemma 6 (Appendix B),
we establish that the squared error of d(k)

q exhibits an inverted bell-shaped tendency; i.e., the squared
error is large at the initial and final stages and is small at the intermediate stage.

We present our proposed Mono-Frank-Wolfe algorithm in Algorithm 1.

We will show that Mono-Frank-Wolfe achieves a (1 − 1/e)-regret bound of O(T 4/5). In order
to prove this result, we first make the following assumptions on the constraint set K, the objective
functions Ft, the stochastic gradient ∇̃Ft, and the online linear maximization oracles.

Assumption 1. The constraint set K is a convex and compact set that contains 0.

Assumption 2. Every objective function Ft is monotone, continuous DR-Submodular, L1-Lipschitz,
and L2-smooth.

Assumption 3. The stochastic gradient ∇̃Ft(x) is unbiased, i.e., E[∇̃Ft(x)] = ∇Ft(x). Addi-
tionally, it has a uniformly bounded norm ‖∇̃Ft(x)‖≤ M0 and a uniformly bounded variance
E[‖∇Ft(x)− ∇̃Ft(x)‖2] ≤ σ2

0 for every x ∈ K and objective function Ft.
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Algorithm 1 Mono-Frank-Wolfe

Input: constraint set K, horizon T , block size K, online linear maximization oracles on K:
E(1), · · · , E(K), step sizes ρk ∈ (0, 1), ηk ∈ (0, 1), number of blocks Q = T/K

Output: y1, y2, . . .
1: for q = 1, 2, . . . , Q do
2: d

(0)
q ← 0, x(1)

q ← 0

3: For k = 1, 2, . . . ,K, let v(k)
q ∈ K be the output of E(k) in round q, x(k+1)

q ← x
(k)
q + ηkv

(k)
q .

Set xq ← x
(K+1)
q

4: Let (tq,1, . . . , tq,K) be a random permutation of {(q − 1)K + 1, . . . , qK}
5: For t = (q − 1)K + 1, . . . , qK, play yt = xq and obtain the reward Ft(yt); find the

corresponding k′ ∈ [K] such that t = tq,k′ , observe ∇̃Ft(x(k′)
q ), i.e., ∇̃Ftq,k′ (x

(k′)
q )

6: For k = 1, 2, . . . ,K, d(k)
q ← (1 − ρk)d

(k−1)
q + ρk∇̃Ftq,k(x

(k)
q ), compute 〈v(k)

q , d
(k)
q 〉 as

reward for E(k), and feed back d(k)
q to E(k)

7: end for

Assumption 4. For the online linear maximization oracles, the regret at horizon t (denoted byRE(i)t )
satisfiesRE(i)t ≤ C

√
t, ∀i ∈ [K], where C > 0 is a constant.

Note that there exist online linear maximization oracles E(i) with regretRE(i)t ≤ C
√
t, ∀i ∈ [K] for

any horizon t (for example, the online gradient descent [50]). Therefore, Assumption 4 is fulfilled.

Theorem 1 (Proof in Appendix B). Under Assumptions 1 to 4, if we set K = T 3/5, ηk = 1
K , ρk =

2
(k+3)2/3

when 1 ≤ k ≤ K/2 + 1, and ρk = 1.5
(K−k+2)2/3

when K/2 + 2 ≤ k ≤ K, where we assume
that K is even for simplicity, then yt ∈ K,∀t, and the expected (1− 1/e)-regret of Algorithm 1 is at
most

E[RT ] ≤ (N + C +D2)T 4/5 +
L2D

2

2
T 2/5,

whereN = max{52/3(L1 +M0)2, 4(L2
1 +σ2

0)+32G, 2.25(L2
1 +σ2

0)+7G/3}, G = (L2R+2L1)2.

4 Bandit Continuous DR-Submodular Maximization

In this section, we present the first bandit algorithm for continuous DR-submodular maximization,
Bandit-Frank-Wolfe, which attains a (1− 1/e)-regret bound of O(T 8/9). We begin by explaining
the one-point gradient estimator [23], which is crucial to the proposed bandit algorithm. The proposed
algorithm and main results are illustrated in Section 4.2.

4.1 One-Point Gradient Estimator

Given a function F , we define its δ-smoothed version F̂δ(x) , Ev∼Bd [F (x+ δv)], where v ∼ Bd
denotes that v is drawn uniformly at random from the unit ball Bd. Thus the function F is averaged
over a ball of radius δ. It can be easily verified that if F is monotone, continuous DR-submodular,
L1-Lipschitz, and L2-smooth, then so is F̂δ , and for all x we have |F̂δ(x)− F (x)|≤ L1δ (Lemma 7
in Appendix C). So the δ-smoothed version F̂δ is indeed an approximation of F . A maximizer of F̂δ
also maximizes F approximately.

More importantly, the gradient of the smoothed function F̂δ admits a one-point unbiased estimator
[23, 32]: ∇F̂δ(x) = Eu∼Sd−1

[
d
δF (x+ δu)u

]
, where u ∼ Sd−1 denotes that u is drawn uniformly

at random from the unit sphere Sd−1. Thus the player can estimate the gradient of the smoothed
function at point x by playing the random point x+ δu for the original function F . So usually, we
can extend a one-shot online algorithm to the bandit setting by replacing the observed stochastic
gradients with the one-point gradient estimations.

In our setting, however, we cannot use the one-point gradient estimator directly. When the point x is
close to the boundary of the constraint set K, the point x+ δu may fall outside of K. To address this
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issue, we introduce the notion of δ-interior. A set is said to be a δ-interior of K if it is a subset of

intδ(K) = {x ∈ K| inf
s∈∂K

d(x, s) ≥ δ} ,

where d(·, ·) denotes the Euclidean distance.

In other words, K′ is a δ-interior of K if it holds for every x ∈ K′ that B(x, δ) ⊆ K (Fig. 1a in
Appendix D). We note that there can be infinitely many δ-interiors of K. In the sequel, K′ will denote
the δ-interior that we consider. We also define the discrepancy between K and K′ by

d(K,K′) = sup
x∈K

d(x,K′),

which is the supremum of the distances between points in K and the set K′. The distance d(x,K′) is
given by infy∈K′ d(x, y).

By definition, every point x ∈ K′ satisfies x+δu ∈ K, which enables us to use the one-point gradient
estimator on K′. Moreover, if every Ft is Lipschitz and d(K,K′) is small, we can approximate the
optimal total reward onK (maxx∈K

∑T
t=1 Ft(x)) by that onK′ (maxx∈K′

∑T
t=1 Ft(x)), and thereby

obtain the regret bound subject to the original constraint set K, by running bandit algorithms on K′.
We also note that if the constraint set K satisfies Assumption 1 and is down-closed (e.g., a matroid
polytope), for sufficiently small δ, we can construct K′, a down-closed δ-interior of K, with d(K,K′)
sufficiently small (actually it is a linear function of δ). Recall that a set P is down-closed if it has a
lower bound u such that (1) ∀y ∈ P, u ≤ y; and (2) ∀y ∈ P, x ∈ Rd, u ≤ x ≤ y =⇒ x ∈ P [9].

We first define Bd≥0 = Bd ∩ Rd≥0 and make the following assumption2:

Assumption 5. There exists a positive number r such that rBd≥0 ⊆ K.

To construct K′, for sufficiently small δ such that δ < r√
d+1

, we first set α = (
√
d+1)δ
r < 1, and

shrink K by a factor of (1− α) to obtain Kα = (1− α)K. Then we translate the shrunk set Kα by
δ1 (Fig. 1b in Appendix D). In other words, the set that we finally obtain is

K′ = Kα + δ1 = (1− α)K + δ1.

In Lemma 1, we establish that K′ is indeed a δ-interior of K and deduce a linear bound for d(K,K′).
Lemma 1 (Proof in Appendix D). We assume Assumptions 1 and 5 and also assume that K is
down-closed and that δ is sufficiently small such that α = (

√
d+1)δ
r < 1. The set K′ = (1−α)K+ δ1

is convex and compact. Moreover, K′ is a down-closed δ-interior of K and satisfies d(K,K′) ≤
[
√
d(Rr + 1) + R

r ]δ.

4.2 No-(1− 1/e)-Regret Biphasic Bandit Algorithm

Our proposed bandit algorithm is based on the online algorithm Mono-Frank-Wolfe in Section 3.
Precisely, we want to replace the stochastic gradients in Algorithm 1 with the one-point gradient
estimators, and run the modified algorithm on K′, a proper δ-interior of the constraint set K. Note
that the one-point estimator requires that the point at which we estimate the gradient (i.e., x) must
be identical to the point that we play (i.e., x + δu), if we ignore the random δu. In Algorithm 1,
however, we play point xq but obtain estimated gradient at other points x(k′)

q (Line 5). This suggests
that Algorithm 1 cannot be extended to the bandit setting via the one-point gradient estimator directly.

To circumvent this limitation, we propose a biphasic approach that categorizes the plays into the
exploration and exploitation phases. To motivate this biphasic method, recall that in Algorithm 1, we
need to play xq to gain high rewards (exploitation), whilst we observe ∇̃Ft(x(k′)

q ) to obtain gradient
information (exploration). So in our biphasic approach, we expend a large portion of plays on
exploitation (play xq , so we can still get high rewards) and a small portion of plays on exploring the
gradient (play x(k′)

q to get one-point gradient estimators, so we can still obtain sufficient information).

To be precise, we divide the T objective functions into Q equisized blocks of size L, where L = T/Q.
Each block is subdivided into two phases. As shown in Algorithm 2, we randomly choose K � L
functions for exploration (Line 6) and use the remaining (L−K) functions for exploitation (Line 7).

2This assumption is an analogue of the assumption rBd ⊆ K ⊆ RBd in [23].
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We describe our algorithm formally in Algorithm 2. We also note that for a general constraint
set K with a proper δ-interior K′ such that d(K,K′) ≤ c1δ

γ , Theorem 4 (Appendix E.1) shows a

(1− 1/e)-regret bound of O(T
3+5min{1,γ}
3+6min{1,γ} ). Moreover, with Lemma 1, this result can be extended to

down-closed constraint sets K, as shown in Theorem 2.

Algorithm 2 Bandit-Frank-Wolfe

Input: smoothing radius δ, δ-interior K′ with lower bound u, horizon T , block size L, the number
of exploration steps per block K, online linear maximization oracles on K′: E(1), · · · , E(K), step
sizes ρk ∈ (0, 1), ηk ∈ (0, 1), the number of blocks Q = T/L

Output: y1, y2, . . .
1: for q = 1, 2, . . . , Q do
2: d

(0)
q ← 0, x(1)

q ← u

3: For k = 1, 2, . . . ,K, let v(k)
q ∈ K′ be the output of E(k) in round q, x(k+1)

q ← x
(k)
q +

ηk(v
(k)
q − u). Set xq ← x

(K+1)
q

4: Let (tq,1, . . . , tq,L) be a random permutation of {(q − 1)L+ 1, · · · , qL}
5: for t = (q − 1)L+ 1, · · · , qL do
6: If t ∈ {tq,1, · · · , tq,K}, find the corresponding k′ ∈ [K] such that t = tq,k′ , play
yt = ytq,k′ = x

(k′)
q + δuq,k′ for Ft (i.e., Ftq,k′ ), where uq,k′ ∼ Sd−1 . Exploration

7: If t ∈ {(q − 1)L+ 1, · · · , qL} \ {tq,1, · · · , tq,K}, play yt = xq for Ft . Exploitation
8: end for
9: For k = 1, 2, . . . ,K, gq,k ← d

δFtq,k(ytq,k)uq,k, d(k)
q ← (1− ρk)d

(k−1)
q + ρkgq,k, compute

〈v(k)
q , d

(k)
q 〉 as reward for E(k), and feed back d(k)

q to E(k)

10: end for

Assumption 6. Every objective function Ft satisfies that supx∈K|Ft(x)|≤M1.

Theorem 2 (Proof in Appendix E.2). We assume Assumptions 1, 2 and 4 to 6, and also assume
that K is down-closed. If we generate K′ as in Lemma 1, and set δ = r√

d+2
T−

1
9 , L = T

7
9 ,K =

T
2
3 , ηk = 1

K , ρk = 2
(k+2)2/3

, then yt ∈ K,∀t, and the expected (1− 1/e)-regret of Algorithm 2 is at
most

E[RT ] ≤NT 8
9 +

3r[2L2
1 + (3L2R+ 2L1)2]

41/3(
√
d+ 2)

T
2
3 +

L2D
2

2
T

1
3 ,

whereN = (1−1/e)r√
d+2

[
√
d(Rr +1)+ R

r ]L1 + (2−1/e)r√
d+2

L1 +2M1 +
3·41/6(

√
d+2)d2M2

1

r + 3(
√
d+2)D2

4r +C.

5 Bandit Submodular Set Maximization

In this section we aim to solve the problem of bandit submodular set maximization by lifting it to
the continuous domain. Let objective functions f1, · · · , fT : 2Ω → R≥0 be a sequence of monotone
submodular set functions defined on a common ground set Ω = {1, . . . , d}. We also let I denote the
matroid constraint, and K be the matroid polytope of I, i.e., K = conv{1I : I ∈ I} ⊆ [0, 1]d [16],
where conv denotes the convex hull.

5.1 An Impossibility Result

A natural idea is that at each round t, we apply Bandit-Frank-Wolfe, the continuous algorithm
in Section 4.2, on Ft subject to K, where Ft is the multilinear extension of the discrete objective
function ft. Then we get a fractional solution yt ∈ K, round it to a set Yt ∈ I, and play Yt for ft.

For the exploitation phase, we will use a lossless rounding scheme such that ft(Yt) ≥ Ft(yt), so we
will not get lower rewards after the rounding. Instances of such a lossless rounding scheme include
pipage rounding [4, 16] and the contention resolution scheme [46].

In the exploration phase, we need to use the reward ft(Yt) to obtain an unbiased gradient estimator of
the smoothed version of Ft. As the one-point estimator dδF (x+ δu)u in Algorithm 2 is unbiased, we
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require the (random) rounding scheme roundI : [0, 1]d → I to satisfy the following unbiasedness
condition

E[f(roundI(x))] = F (x), ∀x ∈ [0, 1]d (2)

for any submodular set function f on the ground set Ω and its multilinear extension F .

Since we have no a priori knowledge of the objective function ft before playing a subset for it, such
a rounding scheme roundI should not depend on the function choice f . In other words, we need to
find an independent roundI such that Eq. (2) holds for any submodular function f defined on Ω.

We first review the random rounding scheme RandRound : [0, 1]d → I{
i ∈ RandRound(x) with probability xi ;

i /∈ RandRound(x) with probability 1− xi .
(3)

In other words, each element i ∈ Ω is included with an independent probability xi, where xi is the
i-th coordinate of x. RandRound satisfies the unbiasedness requirement Eq. (2). However, its range
is 2Ω in general, so the rounded set may fall outside of I. In fact, as shown in Lemma 2, there exists
a matroid I for which we cannot find a proper unbiased rounding scheme whose range is contained
in I.

Lemma 2 (Proof in Appendix F). There exists a matroid I for which there is no rounding scheme
round : [0, 1]d → I whose construction does not depend on the function f and which satisfies Eq. (2)
for any submodular set function f .

5.2 Responsive Bandit Algorithm

The impossibility result Lemma 2 shows that the one-point estimator may be incapable of solving the
general BSM problem. As a result, we study a slightly relaxed setting termed the responsive bandit
submodular maximization problem (RBSM). Let Xt be the subset that we play at the t-th round. The
only difference between the responsive bandit setting and the vanilla bandit setting is that in the
responsive setting, if Xt /∈ I, we can still observe the function value ft(Xt) as feedback, while the
received reward at round t is 0 (since the subset that we play violates the constraint I). In other words,
the environment is always responsive to the player’s decisions, no matter whether Xt is in I or not.

We note that the RBSM problem has broad applications in both theory and practice. In theory, RBSM
can be regarded as a relaxation of BSM, which helps us to better understand the nature of BSM. In
practice, the responsive model (not only for submodular maximization or bandit) has potentially many
applications when a decision cannot be committed, while we can still get the potential outcome of the
decision as feedback. For example, suppose that we have a replenishable inventory of items where
customers arrive (in an online fashion) with a utility function unknown to us. We need to allocate a
collection of items to each customer, and the goal is to maximize the total utility (reward) of all the
customers. We may use a partition matroid to model diversity (in terms of category, time, etc). In the
RBSM model, we cannot allocate the collection of items which violates the constraint to the customer,
but we can use it as a questionnaire, and the customer will tell us the potential utility if she received
those items. The feedback will help us to make better decisions in the future. Similar examples
include portfolio selection when the investment choice is too risky, i.e., violates the recommended
constraint set, we may stop trading and thus get no reward on that trading period, but at the same
time observe the potential reward if we invested in that way.

Now, we turn to propose our algorithm. As discussed in Section 5.1, we want to solve the problem of
bandit submodular set maximization by applying Algorithm 2 on the multilinear extensions Ft with
different rounding schemes. Precisely, in the responsive setting, we use the RandRound Eq. (3) in
the exploration phase to guarantee that we can always obtain unbiased gradient estimators, and use
a lossless rounding scheme LosslessRound in the exploitation phase to receive high rewards. We
present Responsive-Frank-Wolfe in Algorithm 3, and show that it achieves a (1 − 1/e)-regret
bound of O(T 8/9).

Assumption 7. Every objective function ft is monotone submodular with supX⊆Ω|ft(X)|≤M1.

Theorem 3 (Proof in Appendix G). Under Assumptions 4, 5 and 7, if we generate K′ as in Lemma 1,
and set δ = r√

d+2
T−

1
9 , L = T

7
9 ,K = T

2
3 , ηk = 1

K , ρk = 2
(k+2)2/3

, then in the responsive setting,

8



Algorithm 3 Responsive-Frank-Wolfe

Input: matroid constraint I, matroid polytope K, smoothing radius δ, δ-interior K′ with lower
bound u, horizon T , block size L, the number of exploration steps per block K, online linear
maximization oracles on K′: E(1), · · · , E(K), steps sizes ρk ∈ (0, 1), ηk ∈ (0, 1), the number of
blocks Q = T/L

Output: Y1, Y2, . . .
1: for q = 1, 2, . . . , Q do
2: d

(0)
q ← 0, x(1)

q ← u

3: For k = 1, 2, . . . ,K, let v(k)
q ∈ K′ be the output of E(k) in round q, x(k+1)

q ← x
(k)
q +

ηk(v
(k)
q − u). Set xq ← x

(K+1)
q

4: Let (tq,1, . . . , tq,L) be a random permutation of {(q − 1)L+ 1, · · · , qL}
5: for t = (q − 1)L+ 1, · · · , qL do
6: If t ∈ {tq,1, · · · , tq,K}, find the corresponding k′ ∈ [K] such that t = tq,k′ , play Yt =

Ytq,k′ = RandRound(ytq,k′ ) for ft (i.e., ftq,k′ ), where ytq,k′ = x
(k′)
q + δuq,k′ , uq,k′ ∼ Sd−1. If

Yt ∈ I, get reward ft(Yt); otherwise, get reward 0. . Exploration
7: If t ∈ {(q − 1)L+ 1, · · · , qL} \ {tq,1, · · · , tq,K}, play Yt = LosslessRound(yt) for ft,

where yt = xq . Exploitation
8: end for
9: For k = 1, 2, . . . ,K, gq,k ← d

δ ftq,k(Ytq,k)uq,k, d(k)
q ← (1− ρk)d

(k−1)
q + ρkgq,k, compute

〈v(k)
q , d

(k)
q 〉 as reward for E(k), and feed back d(k)

q to E(k)

10: end for

the expected (1− 1/e)-regret of Algorithm 3 is at most

E[RT ] ≤NT 8
9 +

3r[2L2
1 + (3

√
dL2 + 2L1)2]

41/3(
√
d+ 2)

T
2
3 +

L2d

2
T

1
3 ,

where N = (1−1/e)r√
d+2

[dr +
√
d(1 + 1

r )]L1 + (2−1/e)r√
d+2

L1 + 3M1 +
3·42/3(

√
d+2)d2M2

1

r + 3(
√
d+2)d
4r +C,

L1 = 2M1

√
d, L2 = 4M1

√
d(d− 1).

6 Conclusion

In this paper, by proposing a series of novel methods including the blocking procedure and the
permutation methods, we developed Mono-Frank-Wolfe for the OCSM problem, which requires only
one stochastic gradient evaluation per function and still achieves a (1−1/e)-regret bound ofO(T 4/5).
We then introduced the biphasic method and the notion of δ-interior, to extend Mono-Frank-Wolfe
to Bandit-Frank-Wolfe for the BCSM problem. Finally, we introduced the responsive model and
the corresponding Responsive-Frank-Wolfe Algorithm for the RBSM problem. We proved that
both Bandit-Frank-Wolfe and Responsive-Frank-Wolfe attain a (1 − 1/e)-regret bound of
O(T 8/9).
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