
Response to Reviewer #11

The goal of this paper is to determine whether neural networks (NN) are equivalent to kernel methods or not. While at2

first sight one would guess that neural networks are more powerful than ‘simple’ kernel methods, the recently developed3

neural tangent (NT) kernel theory (with a dozen papers published by several groups) argue that SGD-trained networks4

are well approximated by the NT kernel, for very large networks.5

In this paper, we argue in the opposite direction, namely NN is superior to NT. Our argument consists in rigorously6

proving that, in a concrete example, a significant gap exists between NT and NN. In view of this, a simpler example7

results in a stronger conclusion. This being said, a series of extensions are available:8

1. RF model. The analysis of the random features model can be generalized to arbitrary target functions f∗, and9

activation function σ (under mild technical conditions). Also, the analysis can be generalized to the case of x and w10

distributed uniformly over the d-dimensional sphere.11

All of these generalizations are accessible to the same proof techniques developed in our paper. We focused on the12

quadratic case uniquely to make the comparison more transparent.13

2. NT model. This analysis can be generalized to arbitrary f∗, if x and w are distributed uniformly on the sphere.14

3. NN model. Generalizing the analysis of the NN model would require proving global convergence for gradient15

descent beyond quadratic activations. This has been an open problem for a long time, and it probably requires additional16

assumptions. Before our paper, this problem was open for quadratic activations as well.17

4. We have extensive experimental results comparing NN and NT for RELU and Tanh activations (see figure). Our18

experiments indicate that these nonlinearities behave in general as predicted by the theory developed for the square19

nonlinearity.20
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Figure 1: Left: Test error of NN, NT and RF in fitting a quadratic function in d = 450 dimensions. Here the experiments
are performed using ReLU nonlinearity. Similar to the case of square nonlinearity studied in the paper, there is a
significant gap between NT and NN. Right: Evolution of the risk for NT and NN with the number of samples.

Response to Reviewer #221

We agree that a direct comparison of RF and NT is not meaningful. We find the difference in behavior quite interesting,22

but not indicating the superiority of one method over the other.23

Response to Reviewer #324

1. We believe that the case of Gaussians with unequal means can also be analyzed within the RF and NT model (under25

certain technical assumptions) although at the cost of non-negligible technical complications.26

2. We believe that the analysis of RF and NT can be generalized to certain other models beyond Gaussian covariates x.27

For instance, the case of x and w uniform over the d-dimensional sphere can be treated using similar techniques. Also28

certain derivations can be extended to x = Σ1/2z with z having i.i.d. (non-Gaussian) components.29

3. Our proof uses the gradient flow dynamics for studying the convergence of the NN. In the small learning rate regime,30

both SGD and mini-batch SGD dynamics converge to the gradient flow dynamics. We use the mini-batch SGD setting31

because (1) the convergence happens with larger learning rates and (2) experiments with minibatch SGD can be done in32

a computationally efficient, GPU-friendly manner.33

4. We have performed an extensive set of experiments with different types of ∆, Σ and activation functions. Due to34

space constraints, we did not include these in the initial submission. We will definitely add these to the camera-ready35

version / appendix.36


