
Method MAE(R) ↓ R2(R) ↑ MAE(t) ↓ R2(t) ↑
Random sampling 1.689 0.927 0.011 0.997
Closeness to other points 2.109 0.861 0.013 0.995
L2 Norm 1.454 0.939 0.010 0.997

(a) Different keypoint detection methods.

Different k MAE(R) ↓ R2(R) ↑ MAE(t) ↓ R2(t) ↑
16 27.843 -14.176 0.136 0.326
32 8.293 -1.848 0.048 0.892
64 3.129 0.563 0.024 0.979
128 2.007 0.879 0.016 0.991
256 1.601 0.932 0.012 0.996
384 1.508 0.934 0.011 0.997
512 1.454 0.939 0.010 0.997

(d) Different number of keypoints (k).

Model MAE(R) ↓ R2(R) ↑ MAE(t) ↓ R2(t) ↑
ICP 25.165 -5.860 0.250 -0.045
Go-ICP 2.336 0.308 0.007 0.994
FGR 2.088 0.393 0.003 0.999
PointNetLK 3.478 0.051 0.005 0.994
DCP 2.777 0.887 0.009 0.998

PRNet (Ours) 0.960 0.979 0.006 1.000
(b) Experiments on full point clouds.

Data Missing Ratio MAE(R) ↓ R2(R) ↑ MAE(t) ↓ R2(t) ↑
75% 6.447 0.028 0.042 0.921
50% 3.939 0.623 0.0288 0.969
25% 1.454 0.939 0.010 0.997

(e) Data missing ratio.
Discount Factor λ MAE(R) ↓ R2(R) ↑ MAE(t) ↓ R2(t) ↑
0.5 1.921 0.917 0.014 0.995
0.7 1.998 0.884 0.014 0.995
0.9 1.454 0.939 0.010 0.997
0.99 1.732 0.915 0.012 0.996

(c) Different discount factors (λ).

Data Noise MAE(R) ↓ R2(R) ↑ MAE(t) ↓ R2(t) ↑
N (0, 0.012) 2.051 0.889 0.012 0.995
N (0, 0.12) 5.013 0.617 0.020 0.991
N (0, 0.52) 21.129 -2.830 0.064 0.917

(f) Data noise.
Table 1: Ablation studies.

We thank reviewers for taking the time to consider our NeurIPS submission. We appreciate their feedback and will1

revise the paper according to the comments. We also respond to some of the comments below:2

Keypoint detection alternatives, experiments on full point clouds, effects of discount factor, choice of k, robust-3

ness to data missing ratio, robustness to data noise. (R1, R2) We show results of additional experiments in Table 1;4

to save space, we only show MAE and R2. (a) First, we consider alternatives to keypoint selection: in the first5

alternative, the two sets of keypoints are chosen independently and randomly on the two surfaces (X and Y); in the6

second alternative, we use centrality to choose keypoints, keeping the k points whose average distance (in feature space)7

to the rest in the point cloud is minimal. Empirically, the L2 norm used in our pipeline to select keypoints outperforms8

others. (b) Second, we compare our method to others on full point clouds. In this experiment, 768 points are sampled9

from each point cloud to cover the full shape using farthest-point sampling. In the full point cloud setting, PRNet10

still outperforms others. (c) Third, we verify our choice of discount factor λ; small large discount factors encourage11

alignment within the first few passes through PRNet while large discount factors promote longer-term return. (d) Fourth,12

we test the choice of number of keypoints: the model achieves surprisingly good performance even with 64 keypoints,13

but performance drops significantly when k < 32. (e) Fifth, we test its robustness to missing data. The missing data14

ratio in original partial-to-partial experiment is 25%; we further test with 50% and 75%. This test shows that with 75%15

points missing, the method still achieves reasonable performance, even compared to other methods tested with only 25%16

points missing. (f) Finally, we test the model robustness to noise level. Noise is sampled from N (0, σ2). The model is17

trained with σ = 0.01 and tested with σ ∈ [0.01, 0.1, 0.5]. Even with σ = 0.1, the model still performs reasonably well.18

Model MAE(R) ↓ R2(R) ↑ MAE(t) ↓ R2(t) ↑

Unseen point clouds PointNetLK 7.550 -0.654 0.025 0.975
PRNet (Ours) 1.454 0.939 0.010 0.997

Unseen categories PointNetLK 9.655 -2.137 0.033 0.955
PRNet (Ours) 2.329 0.850 0.015 0.995

With Gaussian noise PointNetLK 9.076 -1.343 0.032 0.960
PRNet (Ours) 2.051 0.889 0.012 0.995

Table 2: Comparison to PointNetLK.
# points ICP Go-ICP FGR PointNetLK DCP PRNet

512 0.134 14.763 0.230 0.049 0.014 0.042
1024 0.170 14.853 0.250 0.061 0.024 0.073
2048 0.242 14.929 0.248 0.069 0.058 0.152

Table 3: Inference time (in seconds).

Choice of λ in Gumbel-Softmax. (R2) We compare to alter-19

native choices of ways to determine λ: (1) fixing λ manually;20

(2) annealing λ to near 0 during training; and (3) including λ21

as a variable during training. Table 5 in supplementary verifies22

our choice of computing λ. This supports the intuition that23

data-driven adaptive approaches usually work better.24

Alternatives to Gumbel-Softmax. (R2) Methods to tackle25

non-differentiability usually fall into two categories: REIN-26

FORCE and Gumbel-Softmax. REINFORCE produces unbi-27

ased high-variance gradient estimation while Gumbel-Softmax28

produces biased gradients with low variance. Empirically, we29

tried vanilla REINFORCE to estimate the gradients of the matching function; due to its instability, the training did not30

converge. Studying unbiased low-variance gradient estimation is extremely valuable to reinforcement learning and/or31

discrete optimization, but introducing complicated gradient estimator is beyond the scope of this paper.32

Comparison to PointNetLK. (R3) Table 2 shows PRNet consistently outperforms PointNetLK in all settings. Ef-33

ficiency. (R2) We benchmark the inference time of different methods on a desktop computer with an Intel 16-core34

CPU, an Nvidia GTX 1080 Ti GPU, and 128G memory. Table 3 shows learning based methods (on GPUs) are faster35

than non-learning based counterparts (on CPUs). PRNet is on a par with PointNetLK while being slower than DCP.36

Miscellaneous. (R1, R3) We will add "Deep Part Induction from Articulated Object Pairs" to related works and discuss37

about it in details. Due to time and computational resource limits, we cannot finish experiments on KITTI dataset. We38

are actively working on extending this method to autonomous driving settings. We want to thank reviewers again for39

providing extremely insightful and valuable feedback. We believe these comments will help to make the work stronger.40


