Appendices

A Auxiliary lemmas

The proofs of Theorem[Iland Theorem 2 require the lemmas provided below.

Lemma 1. The norms || - ||o0,1 and || - ||1,00 are dual.

Proof. The dual norm of || - |01 assigns each w € RIZII7I for finite sets Z and 7, the real number

sup  wlv.

vi [Vl <1

We have that for v with ||v]|s,1 <1

WiV =" "wi v < DD ey lve|

iez jeg iez jeg
<> (max |v<m‘>|> D lwiy| <maxyfwis| <maX |”<w‘>|>
iez N 7 jed jeT iez N 7

= [[WllioollVileo < fIWll1,00

So, to prove the result we just need to find a vector u such that ||ufle,1 < 1 and wiu = ||W||1 c0-
Let: € argmaxier ) ;¢ 7 [w(i 5|, then u given by

1 if ¢+ = ¢ and w(z,]) Z 0
U(4,5) = —1 ifi=(tand w(;5) < 0
0 otherwise

satisfies [|u]|0,1 < 1 and whu = ||[W]|1,00-

O

Lemma 2. Let u € RIZII7! for finite sets Z and .7, and fi, fo be the functions f; (v) = IVlloor —
1Tv 4+ I, (v) and fo(v) = vTu + I, (v) for v € RIZII7I where

[0 ifv=0
Li(v) = { oo otherwise

Then, their conjugate functions are

N - 0 if[(1+w)i|1,0 <1
fi(w) = { 00 otherwise

" . 0 ifw=u
f3(w) = { oo otherwise

Proof. By definition of conjugate function we have

fi(w) =sup(wW'v = [|[V]ec1 + 1TV = I (v)) = SB%«I + W)V = [[V]loe,1)-

o If [[(1 +W)i]l1,00 <1, foreachv = 0, v # 0 we have
(14+w)™v < (14 W) )™V = [[V]|os (((1 + w>+>T|v|+1>
and by definition of dual norm we get

1+ W)V < V]l

(1+ W)-‘r”l,oo < ”VHOOJ

which implies
(1 4+ W)V~ [V]oes 0.

Moreover, (1 + w)T0 — ||0]| .1 = 0, so we have that f;(w) = 0.
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o If ||(1 +w)+|l1,00 > 1, by definition of dual norm and using Lemmal[I there exists u such
that (1 + w)4)Tu > 1 and ||ul|oc,1 < 1. Define @1 as

-] uey) ifug;) >0and 1 +wg ) >0

YaN T 00 ifugy <Oorl 4w, <0
By definition of t and || - ||0,1 We have

[floo,1 < fuflocr <1

and

A+wla=((1+w))a>((1+w))u>1.
Now let ¢ > 0 and take v = tu > 0, then we have

1+ W)V = [[Vllooq = (1 +w) 0 = [[d] 1)

which tends to infinity as ¢ — +oc because (1 + w)™a — [[i]|co.1 > 0, so we have that
fi(w) = oc.

Finally, the expression for f; is straightforward since

f2(w) = sup((w — u)'v).

B Proof of Theorem [1]

Let set { and function £(h, p) be given by
U={p: XxY—=>Rst.p=0, |plic<1}

Ui,p) = b — "l — " + PN (B(pf — i) + (v + 1)1 - h).
In the first step of the proof we show that hP satisfying @) is a solution of optimization prob-

lem miny e x,y) max £(h,p), and in the second step of the proof we show that a solution of

minper(x,y) Max, ;7 £(h, p) is also a solution of minyep(x,y) Maxpyeysan £(h, p).

For the first step, note that

Ah,p) = b —a"ps —v* + 3 Pl (Bl — i) + (' + 1)1 —hy).
reX

Then, optimization problem minycr(x,y) max iy £(h, p) is equivalent to

min max erx P;E (‘I)w(ﬂz - Hz) + (V* +1)1 - hw)
hIGA(y)V{EGX pxtovaznglvxeX

that is separable and has solution given by

haP ¢ argmin max pr(®.(ph — pi) + (v +1)1 —hy)
hﬂC € A(y) Pz = 07 HpmHl <1

for each x € X. The inner maximization above is given in closed-form by

max T (@, (pu — i)+ (" + 1)1 — by
Pztﬂvl\pxlhgp (P2 (pg — p5) + ( ) )

= H (‘I’z(ﬂz _H’Z) + (V* + 1)1 _hac)Jr ”00 >0

that takes its minimum value 0 for any h&® = &, (u* — p;) + (v* + 1)1.

~(h,p) we have that

. a7b . . .
For the second step, if h*® is a solution of miny,cp(x,y) max

in_ max(h,p) = max {(h®®,p) > max (b*P,p) > min_ max ((h, 16
wcip y maxl(h,p) = maxf(h®%,p) = wmax (h%p) 2 min | max (h,p) - (16)
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where the first inequality is due to the fact that > C U and Z(h, p) > £(h,p) forp € U>P because
by —alp; +p'®(p; —py) <0
by definition of /*P and since p, pi = 0.

Since £(h,p) is continuous and convex-concave, and both /** and T'(X,))) are convex and com-
pact, the min and the max in R*P = ming,epx,y) Max,eyab £(h, p) can be interchanged (see
e.g., [14]) and we have that R*P = maxc;ga.o minyer(a,y) £(h, p). In addition,

min {4(h,p) = min T(1_h)=pll_— .
heT (X,Y) (b, ) heT(X,y)p ( )=p [Plloc,1
because the optimization problem above is separable for x € X" and

T
hy = |Palloe. 17
02X Dy [Pl (17)

Then R*P = max,cyjab P'1 — ||p||oc,1 that can be written as

max  p'l—|[|plloc1 — I+(p)
s. t. —p'1=-1 (18)
a =< <I>Tp <b
where

. 0 ifp>=0
Li(p) = { oo otherwise

The Lagrange dual of the optimization problem (I8) is

min bTub — aTlLa — v+ (P, — ) + 1)
Ko,y ER™ v ER (19)
s.t. p, =0,y =0

where f* is the conjugate function of f(p) = ||p|lcc.1 —P 1+ 14 (p) (see e.g., section 5.1.6 in [13]).
Then, optimization problem (19) becomes (3) using the Lemma[2]above.

Strong duality holds between optimization problems (I8) and (3) since constraints in (I8)) are affine.
Then, if p’, py, v* is a solution of (3) we have that R2P is equal to the value of

maxp'l = [[pllocs = 1+(p) = (P'® =)y + (p'® —al)p; + (P'L - 1" (20)
that equals

mangl — IPlloc,t + By —a i — v+ p" (D(ph — py) +v*1)
P&

since a solution of the primal problem (I8)) belongs to U and is also a solution of @0). Therefore,
R*P —max min  ((h,p) +bTpuj —aTu! — v +p" (®(p) — p;) + 71
max, m (h,p) +b py —ap P (®(ng — my) )

—max min /(h,p)= min max/(h,p)
pell heT(X,Y) heT(X.Y) pett

where the last equality is due to the fact that 11 (h, p) is continuous and convex-concave, and both u

and T'(X,))) are convex and compact. Then, inequalities in (I6) are in fact equalities and h®P is
solution of minyep(x,y) Maxy,eyzab £(h, p).

C Proof of Theorem [2

The result is a direct consequence of the fact that for any p € U®P

in ¢(h,D) < l(h.p) < ¢(h,p
_min, (h,p) < (7p)__}51§?3§b (b, p)
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and
min ¢(h,p) = min p'(1 — h)

’ﬁeua,b ’ﬁeua,b
max £(h,p)=— min p'(h—1).
Jnax, (h,Dp) Jmin p'(h—1)

The expression for x*P(q) in (Z) is obtained since
Jmin p'(-q) = min p'(~q) +1.(p)
s.t. —1Tp=-1 21
a<®'p=<b
where

[0 ifp=o
L(p) = { oo otherwise

Then, the Lagrange dual of the optimization problem 1) is

max a'p, —b ', +v— f* (®(p, — p,) +v1)
Hgs Ky ERmaV eR (22)
s.t. p, =0,y =0

where f* is the conjugate function of f(p) = p'(—q) + I (p) that leads to (7) using Lemma[2l

D Proof of Theorem 3|
Firstly, with probability at least 1 — J we have that p* € U/2~"P» and

logm + log %

||Too - TWHQ < Hd||2 m

because, using Hoeffding’s inequality we have that fori =1,2,...,m

o2n2t?
P{|Tm,i—7n,i|<ti}21—2exp{— i }

2
nd;
. log m+log %
so taking ¢; = d;\/ ——,— we get

logm + log %

P |Too,i — Tn,i| < dz o

2
21—26Xp{—logm—logg}_1—£
m

and using the union bound we have that

lo +log 2
]P){lToo,i — Tn,il < diﬂ %,iz 1,2,...,m}
n

m
Zl—m—i—Z]P’ |Too,i_Tn,i|<di
=1

logm + log %
2n

>1-6.
For the first inequality in (9), we have that R(h#~-P») < Ra=Pn with probability at least 1 — J since
p* € U3P» with probability at least 1 — 6.

For the second inequality in (9), let p*, v* be the solution with minimum euclidean norm of (@) for
a=To; ()T, (—p*)t, v*] is a feasible point of (3) because pu* = (u*)* — (—p*)™ and p*, v*
is a feasible point of (G). Hence

R P <y (—p*) " —ap (W) = v = RT 4 (by = 7o) (—p") "+ (7o —an) " (07)
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T T
logm + log %
2n

logm + log 2
:RTOO— T o —Tn—d 7g 5 gé (—H*)++ Too — Tn +
n

. . logm + log 2 . .
= R 4 (= 7o) " 4| BT+ () )

Then the result is obtained using Cauchy-Schwarz inequality and the fact that ||(p*)™ +
(=) 2 = [l 2.

For the result in (I0), note that using Theorem 2 and since p* € U2 P~ with probability at least
1 — 6 we have that

R(h™) < max /¢(h™ = min blu —alpy —v
( ) = petdan.bn ( 7p) ®(p, —p,)+v1<h™n 1 nMy nMaq
so that, if ¥, v* is the solution with minimum euclidean norm of (@) for a = 7,,, we have that

R(h™) < bt (—p2)* —al (i) — v because p, = ()" —(—p) and By, +v;1 < h7—1

by definition of h™. Therefore, the result is obtained since
T T
logm + log %
2n

logm + log %

Rh™) < |7, +d
(b)) < | 70 + 5

(—p) " =70 - (ko)™ =y
logm + log %

=R +d"
+ 2n

(i)™ + (=pi)™)

For the result in (TI), note that using Theorem 2] and since p* € U™ > we have that

th < h"'n — 1 — ooT —
R( )_pgbag;ﬁ( D) e (Too) =V

so that, if p), v is the solution with minimum euclidean norm of (@) for a = T,,, we have that
R(h™) < —(7Too)"puy — v because ®p), + 11 < h™ — 1 by definition of h™. Let p*, v* be
the solution with minimum euclidean norm of (6) for a = 7, the result is obtained since

R(hT) < —=(Too) i, = vy + Tty = Tobts, + (Too) " + 07 — (7o) " = v°

= (Tn - TOO)TN:; + RT> — T;sz’:; - I/;; + (TOO)TN* + v*
< (Tn = Too) Tl + (Too — )T + RT> (23)
< HTn - TOO||2HN; - H*H2 + R7>

where (23) is due to the fact that —7% p* — v < —71 u* — v* since p*, v* is a feasible point of (G)
fora = T1,.
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