
Appendices

A Auxiliary lemmas

The proofs of Theorem 1 and Theorem 2 require the lemmas provided below.
Lemma 1. The norms ‖ · ‖∞,1 and ‖ · ‖1,∞ are dual.

Proof. The dual norm of ‖ · ‖∞,1 assigns each w ∈ R|I||J | for finite sets I and J , the real number

sup
v: ‖v‖∞,1≤1

wTv.

We have that for v with ‖v‖∞,1 ≤ 1

wTv =
∑

i∈I

∑

j∈J

w(i,j)v(i,j) ≤
∑

i∈I

∑

j∈J

|w(i,j)||v(i,j)|

≤
∑

i∈I

(
max

j
|v(i,j)|

)∑

j∈J

|w(i,j)| ≤ max
i∈I

∑

j∈J

|w(i,j)|
∑

i∈I

(
max

j
|v(i,j)|

)

= ‖w‖1,∞‖v‖∞,1 ≤ ‖w‖1,∞
So, to prove the result we just need to find a vector u such that ‖u‖∞,1 ≤ 1 and wTu = ‖w‖1,∞.
Let ι ∈ argmaxi∈I

∑
j∈J |w(i,j)|, then u given by

u(i,j) =






1 if i = ι and w(i,j) ≥ 0
−1 if i = ι and w(i,j) < 0
0 otherwise

satisfies ‖u‖∞,1 ≤ 1 and wTu = ‖w‖1,∞.

Lemma 2. Let u ∈ R|I||J | for finite sets I and J , and f1, f2 be the functions f1(v) = ‖v‖∞,1 −
1Tv + I+(v) and f2(v) = vTu+ I+(v) for v ∈ R|I||J |, where

I+(v) =

{
0 if v & 0
∞ otherwise .

Then, their conjugate functions are

f∗
1 (w) =

{
0 if ‖(1+w)+‖1,∞ ≤ 1
∞ otherwise

f∗
2 (w) =

{
0 if w ( u
∞ otherwise .

Proof. By definition of conjugate function we have

f∗
1 (w) = sup

v
(wTv − ‖v‖∞,1 + 1Tv − I+(v)) = sup

v&0
((1+w)Tv − ‖v‖∞,1).

• If ‖(1+w)+‖1,∞ ≤ 1, for each v & 0, v )= 0 we have

(1+w)Tv ≤ ((1+w)+)
Tv = ‖v‖∞,1

(
((1+w)+)

T v

‖v‖∞,1

)

and by definition of dual norm we get

(1+w)Tv ≤ ‖v‖∞,1‖(1+w)+‖1,∞ ≤ ‖v‖∞,1

which implies
(1+w)Tv − ‖v‖∞,1 ≤ 0.

Moreover, (1+w)T0− ‖0‖∞,1 = 0, so we have that f∗
1 (w) = 0.
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• If ‖(1+w)+‖1,∞ > 1, by definition of dual norm and using Lemma 1 there exists u such
that ((1+w)+)Tu > 1 and ‖u‖∞,1 ≤ 1. Define ũ as

ũ(i,j) =

{
u(i,j) if u(i,j) ≥ 0 and 1 + w(i,j) ≥ 0
0 if u(i,j) < 0 or 1 + w(i,j) < 0

By definition of ũ and ‖ · ‖∞,1 we have

‖ũ‖∞,1 ≤ ‖u‖∞,1 ≤ 1

and
(1+w)Tũ = ((1+w)+)

Tũ ≥ ((1+w)+)
Tu > 1.

Now let t > 0 and take v = tũ & 0, then we have

(1+w)Tv − ‖v‖∞,1 = t
(
(1+w)Tũ− ‖ũ‖∞,1

)

which tends to infinity as t → +∞ because (1 + w)Tũ − ‖ũ‖∞,1 > 0, so we have that
f∗
1 (w) = +∞.

Finally, the expression for f∗
2 is straightforward since

f∗
2 (w) = sup

v&0

((w − u)Tv).

B Proof of Theorem 1

Let set Ũ and function "̃(h, p) be given by

Ũ = {p : X × Y → R s.t. p & 0, ‖p‖1,∞ ≤ 1}

"̃(h, p) = bTµ∗
b − aTµ∗

a − ν∗ + pT(Φ(µ∗
a − µ∗

b) + (ν∗ + 1)1− h).

In the first step of the proof we show that ha,b satisfying (4) is a solution of optimization prob-
lem minh∈T (X ,Y)maxp∈Ũ "̃(h, p), and in the second step of the proof we show that a solution of

minh∈T (X ,Y)maxp∈Ũ "̃(h, p) is also a solution of minh∈T (X ,Y)maxp∈Ua,b "(h, p).

For the first step, note that

"̃(h, p) = bTµ∗
b − aTµ∗

a − ν∗ +
∑

x∈X

pT
x (Φx(µ

∗
a − µ∗

b ) + (ν∗ + 1)1− hx) .

Then, optimization problem minh∈T (X ,Y)maxp∈Ũ "̃(h, p) is equivalent to

min max
∑

x∈X pT
x (Φx(µ∗

a − µ∗
b ) + (ν∗ + 1)1− hx)

hx ∈ ∆(Y) ∀x ∈ X px & 0, ‖px‖1 ≤ 1∀x ∈ X

that is separable and has solution given by

ha,bx ∈ argmin max pT
x (Φx(µ∗

a − µ∗
b) + (ν∗ + 1)1− hx)

hx ∈ ∆(Y) px & 0, ‖px‖1 ≤ 1

for each x ∈ X . The inner maximization above is given in closed-form by

max
px&0,‖px‖1≤1

pT
x (Φx(µ∗

a − µ∗
b) + (ν∗ + 1)1− hx)

= ‖ (Φx(µ∗
a − µ∗

b) + (ν∗ + 1)1− hx)+ ‖∞ ≥ 0

that takes its minimum value 0 for any ha,b
x & Φx(µ∗

a − µ∗
b) + (ν∗ + 1)1.

For the second step, if ha,b is a solution of minh∈T (X ,Y)maxp∈Ũ "̃(h, p) we have that

min
h∈T (X ,Y)

max
p∈Ũ

"̃(h, p) = max
p∈Ũ

"̃(ha,b, p) ≥ max
p∈Ua,b

"(ha,b, p) ≥ min
h∈T (X ,Y)

max
p∈Ua,b

"(h, p) (16)
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where the first inequality is due to the fact that Ua,b ⊂ Ũ and "̃(h, p) ≥ "(h, p) for p ∈ Ua,b because

bTµ∗
b − aTµ∗

a + pTΦ(µ∗
a − µ∗

b) ≤ 0

by definition of Ua,b and since µ∗
a,µ

∗
b & 0.

Since "(h, p) is continuous and convex-concave, and both Ua,b and T (X ,Y) are convex and com-
pact, the min and the max in Ra,b = minh∈T (X ,Y)maxp∈Ua,b "(h, p) can be interchanged (see
e.g., [14]) and we have that Ra,b = maxp∈Ua,b minh∈T (X ,Y) "(h, p). In addition,

min
h∈T (X ,Y)

"(h, p) = min
h∈T (X ,Y)

pT(1− h) = pT1− ‖p‖∞,1

because the optimization problem above is separable for x ∈ X and

max
hx∈∆(Y)

pT
xhx = ‖px‖∞. (17)

Then Ra,b = maxp∈Ua,b pT1− ‖p‖∞,1 that can be written as

max
p

pT1− ‖p‖∞,1 − I+(p)

s. t. −pT1 = −1
a ( ΦTp ( b

(18)

where

I+(p) =

{
0 if p & 0
∞ otherwise

The Lagrange dual of the optimization problem (18) is

min bTµb − aTµa − ν + f∗ (Φ(µa − µb) + ν1)
µa,µb ∈ Rm, ν ∈ R

s.t. µa & 0,µb & 0
(19)

where f∗ is the conjugate function of f(p) = ‖p‖∞,1−pT1+I+(p) (see e.g., section 5.1.6 in [15]).
Then, optimization problem (19) becomes (3) using the Lemma 2 above.

Strong duality holds between optimization problems (18) and (3) since constraints in (18) are affine.
Then, if µ∗

a,µ
∗
b , ν

∗ is a solution of (3) we have that Ra,b is equal to the value of

max
p

pT1− ‖p‖∞,1 − I+(p)− (pTΦ− bT)µ∗
b + (pTΦ− aT)µ∗

a + (pT1− 1)ν∗ (20)

that equals

max
p∈Ũ

pT1− ‖p‖∞,1 + bTµ∗
b − aTµ∗

a − ν∗ + pT (Φ(µ∗
a − µ∗

b) + ν∗1)

since a solution of the primal problem (18) belongs to Ũ and is also a solution of (20). Therefore,

Ra,b = max
p∈Ũ

min
h∈T (X ,Y)

"(h, p) + bTµ∗
b − aTµ∗

a − ν∗ + pT (Φ(µ∗
a − µ∗

b) + ν∗1)

= max
p∈Ũ

min
h∈T (X ,Y)

"̃(h, p) = min
h∈T (X ,Y)

max
p∈Ũ

"̃(h, p)

where the last equality is due to the fact that "̃(h, p) is continuous and convex-concave, and both Ũ
and T (X ,Y) are convex and compact. Then, inequalities in (16) are in fact equalities and ha,b is
solution of minh∈T (X ,Y)maxp∈Ua,b "(h, p).

C Proof of Theorem 2

The result is a direct consequence of the fact that for any p ∈ Ua,b

min
p̃∈Ua,b

"(h, p̃) ≤ "(h, p) ≤ max
p̃∈Ua,b

"(h, p̃)
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and
min

p̃∈Ua,b
"(h, p̃) = min

p̃∈Ua,b
p̃T(1− h)

max
p̃∈Ua,b

"(h, p̃) = − min
p̃∈Ua,b

p̃T(h− 1).

The expression for κa,b(q) in (7) is obtained since

min
p̃∈Ua,b

p̃T(−q) = min
p̃

p̃T(−q) + I+(p̃)

s. t. −1Tp̃ = −1
a ( ΦTp̃ ( b

(21)

where

I+(p̃) =

{
0 if p̃ & 0
∞ otherwise

Then, the Lagrange dual of the optimization problem (21) is

max aTµa − bTµb + ν − f∗ (Φ(µa − µb) + ν1)
µa,µb ∈ Rm, ν ∈ R

s.t. µa & 0,µb & 0
(22)

where f∗ is the conjugate function of f(p̃) = p̃T(−q) + I+(p̃) that leads to (7) using Lemma 2.

D Proof of Theorem 3

Firstly, with probability at least 1− δ we have that p∗ ∈ Uan,bn and

‖τ∞ − τn‖2 ≤ ‖d‖2

√
logm+ log 2

δ

2n

because, using Hoeffding’s inequality [19] we have that for i = 1, 2, . . . ,m

P {|τ∞,i − τn,i| < ti} ≥ 1− 2 exp

{
−
2n2t2i
nd2i

}

so taking ti = di

√
logm+log 2

δ

2n we get

P





|τ∞,i − τn,i| < di

√
logm+ log 2

δ

2n





≥ 1− 2 exp

{
− logm− log

2

δ

}
= 1− δ

m

and using the union bound we have that

P

{

|τ∞,i − τn,i| < di

√
logm+ log 2

δ

2n
, i = 1, 2, . . . ,m

}

≥ 1−m+
m∑

i=1

P





|τ∞,i − τn,i| < di

√
logm+ log 2

δ

2n






≥ 1− δ.

For the first inequality in (9), we have that R(han,bn) ≤ Ran,bn with probability at least 1− δ since
p∗ ∈ Uan,bn with probability at least 1− δ.

For the second inequality in (9), let µ∗, ν∗ be the solution with minimum euclidean norm of (6) for
a = τ∞; [(µ∗)+, (−µ∗)+, ν∗] is a feasible point of (3) because µ∗ = (µ∗)+− (−µ∗)+ and µ∗, ν∗

is a feasible point of (6). Hence

Ran,bn ≤ bT
n(−µ∗)+ − aT

n(µ
∗)+ − ν∗ = Rτ∞ + (bn − τ∞)T(−µ∗)+ + (τ∞ − an)

T(µ∗)+
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= Rτ∞−



τ∞ − τn − d

√
logm+ log 2

δ

2n





T

(−µ∗)++



τ∞ − τn + d

√
logm+ log 2

δ

2n





T

(µ∗)+

= Rτ∞ + (τn − τ∞)Tµ∗ +

√
logm+ log 2

δ

2n
dT((µ∗)+ + (−µ∗)+)

Then the result is obtained using Cauchy-Schwarz inequality and the fact that ‖(µ∗)+ +
(−µ∗)+‖2 = ‖µ∗‖2.

For the result in (10), note that using Theorem 2 and since p∗ ∈ Uan,bn with probability at least
1− δ we have that

R(hτn) ≤ max
p∈Uan,bn

"(hτn , p) = min
Φ(µa−µa)+ν1(hτn−1

bT
nµb − aT

nµa − ν

so that, if µ∗
n, ν

∗
n is the solution with minimum euclidean norm of (6) for a = τn, we have that

R(hτn) ≤ bT
n(−µ∗

n)
+−aT

n(µ
∗
n)

+−ν∗n because µ∗
n = (µ∗

n)
+−(−µ∗

n)
+ and Φµ∗

n+ν∗n1 ( hτn−1
by definition of hτn . Therefore, the result is obtained since

R(hτn) ≤



τn + d

√
logm+ log 2

δ

2n





T

(−µ∗
n)

+ −



τn − d

√
logm+ log 2

δ

2n





T

(µ∗
n)

+ − ν∗n

=Rτn + dT

√
logm+ log 2

δ

2n

(
(µ∗

n)
+ + (−µ∗

n)
+
)
.

For the result in (11), note that using Theorem 2 and since p∗ ∈ Uτ∞ we have that

R(hτn) ≤ max
p∈Uτ∞

"(hτn , p) = min
Φµ+ν1(hτn−1

− (τ∞)Tµ− ν

so that, if µ∗
n, ν

∗
n is the solution with minimum euclidean norm of (6) for a = τn, we have that

R(hτn) ≤ −(τ∞)Tµ∗
n − ν∗n because Φµ∗

n + ν∗n1 ( hτn − 1 by definition of hτn . Let µ∗, ν∗ be
the solution with minimum euclidean norm of (6) for a = τ∞, the result is obtained since

R(hτn) ≤ −(τ∞)Tµ∗
n − ν∗n + τ T

nµ
∗
n − τ T

nµ
∗
n + (τ∞)Tµ∗ + ν∗ − (τ∞)Tµ∗ − ν∗

= (τn − τ∞)Tµ∗
n +Rτ∞ − τ T

nµ
∗
n − ν∗n + (τ∞)Tµ∗ + ν∗

≤ (τn − τ∞)Tµ∗
n + (τ∞ − τn)

Tµ∗ +Rτ∞ (23)
≤ ‖τn − τ∞‖2‖µ∗

n − µ∗‖2 +Rτ∞

where (23) is due to the fact that−τ T
nµ

∗
n− ν∗n ≤ −τ T

nµ
∗− ν∗ since µ∗, ν∗ is a feasible point of (6)

for a = τn.
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