
We thank the reviewers for finding our problem relevant (R4), the game-theoretic formulation of adversarial attacks and1

defenses novel (R1, R3, R4) and the paper clearly written (R1, R2, R3, R4). The main critique is that the assumptions2

(local-linearity, restrictions on defender strategies) are strong. However, the reviewers did not point to prior work that is3

able to handle our setting. We believe our solution under these assumptions is a necessary stepping stone which lays the4

foundations for future theoretical advancements into additive attacks and defenses. We now provide detailed responses:5

Figure A: Church-Window plots for a
CNN f reproduced from Fig. 11.2 of [C2].
Each plot shows f(x + au + bv) for
a, b ∈ [−ε, ε], where u is the FGM direc-
tion, v is a random direction orthogonal
to u and x is a random data-point from
CIFAR-10. White denotes the class f(x),
and other shades denote other classes.

[R1, R2, R3, R4] Validity of locally-linear assumption. While the as-6

sumption of local-linearity might seem strong at first, there is ample empir-7

ical evidence of its validity for neural networks. Fig. A shows the decision8

boundaries of a CNN trained on CIFAR-10 in a ε neighbourhood of many9

randomly-selected images, where white denotes the predicted class and10

other shades denote other classes. It can be seen that, locally, the boundary11

is approximately linear. This linearity hypothesis was proposed in [C1] and12

further explored in [C2] (showing empirical evidence) and [24] (linking13

to the existence of universal adversarial perturbations). Recent studies14

[C3], [C4] improve Deep Neural Networks’ robustness by promoting local-15

linearity. Hence, we stress that our work does partially apply to modern16

real-world classifiers, and is certainly not limited to linear classifiers. [C1]:17

Goodfellow et. al. Explaining and harnessing adversarial examples. [C2]:18

Warde-Farley et. al. Adversarial Perturbations of Deep Neural Networks.19

[C3]: Lee et. al. Towards Robust, Locally Linear Deep Networks. [C4]:20

Qin et. al. Adversarial Robustness through Local Linearization.21

[R1, R2] Do images typically lie near non-linear parts of the decision22

boundary? Yes, empirical evidence on real world networks as in Fig. A23

suggests that we almost never find a decision-boundary corner in a 2ε neigh-24

bourhood around the image. However, these networks partition the input25

space into thousands of polyhedra, and the problem of efficiently verifying26

whether a given input image lies in a linear-region far from any vertices or27

edges of these polyhedra is an open research question [C3].28

[R1] Strong assumption on defender’s knowledge. The design of a game29

theoretic framework for analyzing attacks and defenses in a level playing field requires imposing constraints that prevent30

the attacker or the defender from always winning. We thus intentionally do not work in a situation where the classifier31

is publicly released for attack. Instead, we want to model the reality that the defender will train the classifier knowing32

the possible attacks, and in turn the attacker will create new attacks knowing that the publisher was aware of possible33

attacks, and so on. This precisely leads to the game-theoretic notion of perfect knowledge that we use in Section 2.34

[R3, R4] Strong assumptions on defender’s strategies. As pointed out by R4, obtaining the optimal defense in our35

current robust set is already a hard problem. Extending the set to include perturbations dependent on the data-point xwill36

lead to more complex robust sets, and this is a direction for future work. A first step could be to let Ad contain all linear37

transformations projected to the set of allowed perturbations i.e. Ad = {fM |fM : X → V s.t. fM (x) = ΠV(Mx)}.38

[R3, R4] Scalability of the optimization procedure. As R4 correctly notes, the optimization problem (7) is hard,39

and we present an approximate solution which currently works for small datasets as shown in Table A (it takes < 1040

seconds for MNIST, FMNIST). In ongoing work, we are scaling it to larger datasets by exploiting the fact that (7) is a41

convex-maximization problem and applying techniques from the classical literature on efficient approximations to (7).42

Table A: Mean (Variance) over
(
10
2

)
pairs.

Attack Defense MNIST (%) FMNIST (%)

- - 99.9 (0.0) 99.9 (0.1)
FGM - 53.3 (10.0) 47.4 (5.1)
FGM SMOOTH 71.2 (14.2) 67.4 (9.0)
PGD - 71.9 (12.0) 74.7 (7.3)
PGD SMOOTH 94.0 (4.0) 90.3 (8.5)

[R2] Extensions to multiple classes, non-ReLU activations, incorpo-43

rating test accuracy. We thank R2 for the suggestions. They are excellent44

directions for future work. We will add [Sengupta et. al.] to prior work.45

[R2, R3] Experiments on other datasets. In our experiments we used46

ε = 4. Table A shows the result of repeating our experiment in Table 147

of the paper (the column Approximate Accuracy is shown) over all the48

55 pairs of classes in MNIST and FMNIST. It can be seen that the trends49

observed in the paper hold even when the experiment is repeated over50

multiple pairs.51

[R2, R3] Minor writing issues We will fix the typos in Eq. (33), CW method reference, and clarify that we are not52

using an isotropic Gaussian for randomized smoothing.53

[R2] Is PGD better than FGM against our defense? No. Under the locally linear assumption, FGM performs better54

than PGD (Table 1: 48.3 < 85.6 and 94.5 < 99.1) as expected by Lemma 2. The same trend is seen in Table A.55

[R4] Is there a PAC style argument? Yes, Sec. 5 establishes a PAC-style bound: The estimated solution is v∗n,56

and the optimal one is v∗. Eq. (16)-(18) upper bound the difference between the objectives by a quantity α, i.e.57

φ(v∗) − φ(v∗n) ≤ α. Eq. (19) establishes that the expectation of α is upper-bounded by a small quantity β, i.e.58

E[α] ≤ β. Using α in Eq. (10) now yields Pr[|φ(v∗)− φ(v∗n)− β| > ε] ≤ exp(−2nε2), which is a PAC bound.59


