
A Proof of Lemma 1

Figure 3: Geometry of the Robust Set R(xi) is shown by the shaded region. The linear approximation around
xi, i.e. fL, is shown by the dotted line. The orange and the blue regions are the two classification regions defined
by fL. The perturbation budget is ε.

Lemma 1 (Geometry of the robust set). For any x ∈ X , the robust set R(x) is given by

R(x) = {v : sgn(f(x))(f(x) +∇f(x)>v)− ε‖∇f(x)‖ ≥ 0} ∩ {v : ‖v‖2 ≤ ε}. (3)

Proof. Recall from Definition 1 that the robust set is the set of all directions vd that the defender D
can play at a point xi ∈ X such that no matter what (deterministic) action va the attacker A plays, it
will always have the utility −1, i.e. uD(xi, vd, va) = −1 for all va ∈ V :

R(xi) = {v : v ∈ V s.t. ∀v′ ∈ V uA(xi, v
′, v) = −1}

Observe that whenever xi + vd lies at a distance more than ε from the linear approximation fL
around xi, we have sgn(fL(xi+vd+v)) = sgn(fL(xi+vd)) ∀v ∈ B(0, ε). Hence, no matter what
direction va the attacker plays, she always gets a utility of −1. This shows that dist(xi + vd, L) ≥
ε is a sufficient condition for vd ∈ R(xi) given that vd lies on the same side of fL as xi, i.e.
sgnfL(xi + vd) = sgnfL(xi). If vd lies on the opposite side of fL as xi, then vd 6∈ R(xi) trivially
as the attacker can play va = 0 to get sgnfL(xi + vd + va) 6= sgnfL(xi) and thus +1 utility.

The above paragraph showing sufficiency of dist(xi + vd, L) ≥ ε does not need any restriction on
the decision boundary. However, the locally linear model additionally gives us the necessity of the
distance condition, as for any vd played by the defender with dist(xi + vd, L) < ε, the attacker can
take va to be the FGM direction (i.e. perpendicular to fL towards the other side of the decision
boundary as x + vd) to obtain sgnfL(xi + vd + va) 6= sgnfL(xi), and thus get a +1 utility. This
shows that dist(xi + vd, L) ≥ ε is a necessary condition for vd ∈ R(xi). We have thus shown that
the following condition is neccessary and sufficient for vd to belong to the robust set R(xi):

(1) The perturbed point staying at least ε away from the boundary, i.e. dist(xi + v, L) ≥ ε AND
(2) the label staying unchanged, i.e. sgnfL(xi + v) = sgnfL(xi)

The geometry of the problem is shown in Fig. 3. As dist(xi + v, L) = |fL(xi+v)|
‖∇f(xi)‖2 , the first con-

dition gives us |fL(xi + v)| − ε‖∇f(xi)‖2 ≥ 0. The second condition gives us |fL(xi + v)| =
sgn(f(xi))fL(xi + v). Since fL(xi + v) = f(xi) +∇f(xi)

>v, we get the equivalent condition:

sgn(f(xi))(f(xi) +∇f(xi)
>v)− ε‖∇f(xi)‖ ≥ 0

The above proof can also be expressed in short by tailoring all parts to our locally linear approximation:

R(x) = {v ∈ B(0, ε) : sgn(f(x))(f(x) +∇f(x)>(v + va)) ≥ 0 ∀va ∈ B(0, ε)}
= {v ∈ B(0, ε) : min

va∈B(0,ε)
sgn(f(x))(f(x) +∇f(x)>(v + va)) ≥ 0}

= {v ∈ B(0, ε) : sgn(f(x))(f(x) +∇f(x)>v)− ε‖∇f(x)‖ ≥ 0}
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B Proof of Lemma 2

Lemma 2 (FGM is a best-response to any defense). For any strategy sD ∈ P(AD) played by the
defender D, the strategy sFGM ∈ P(AA) played by the attacker A achieves the largest possible utility
against sD, i.e., ūA(sFGM, sD) ≥ ūA(sA, sD) for all sA ∈ P(AA).

Proof. Let the (possibly randomized) strategies played by the attacker A and the defender D be sA
and sD respectively. The utility obtained by the attacker is ūA(sA, sD):

ūA(sA, sD) = E
x∼pX ,a∼sA,d∼sD

uA(x, a(x), d(x)) (21)

= E
x∼pX ,d∼sD

E
a∼sA

[
uA(x, a(x), d(x))

∣∣∣x, d] (22)

=

∫
X

∫
AD

(∫
AA

uA(x, a(x), d(x)) p(a) da

)
p(d) p(x) dd dx (23)

≤ E
x∼pX ,d∼sD

sup
a∈AA

uA(x, a(x), d(x)) (Property of convex combination) (24)

In the above, we have used the fact that p(a, d, x) factorizes as p(a)p(d)p(x), due to the way our
game is played. Recall that for each x ∈ X , we are taking the approximate decision boundary to be
the zero-contour of a linear approximation of f around x, i.e. fL(x′) = f(x) +∇f(x)>(x′ − x).
Additionally, by the definition of R(x), we have the following for all x ∈ X, d ∈ P(AD):

sup
a∈AA

uA(x, a(x), d(x)) =

{
−1 if d(x) ∈ R(x)

+1 otherwise
(25)

Taking the underlying sample-space to be Ω = X × AD, and the associated joint probability
distribution over this space to be pX × sD, we define the event E = {(x, d) : (x, d) ∈ Ω, d(x) ∈
R(x)}. Ē is defined to be the complement of E. From Eq. (25), we see that:

E
x∼pX ,d∼sD

sup
a∈AA

uA(x, a(x), d(x)) = Pr[Ē]− Pr[E] (26)

Now, we will use simple geometry to see that the FGM direction always achieves the upper-bound
obtained in Eq. (24). Recall that the FGM strategy is a deterministic strategy, which plays the
funtion aFGM with probability 1 such that the distribution induced on (X,V ) has its entire mass on
aFGM(x) = −ε sgn(f(x))‖∇f(x)‖2∇f(x) for all x ∈ X . Following the same steps as above till Eq. (23), we
have:

ūA(sFGM, sD) =

∫
X

∫
AD

(∫
AA

uA(x, a(x), d(x)) p(a|d, x) da

)
p(d) p(x) dd dx

=

∫
X

∫
AD

uA(x, aFGM(x), d(x)) p(d) p(x) dd dx (27)

When d(x) ∈ R(x), all attacker directions lead to an utility of −1 for the attacker, hence so does the
FGM direction, i.e. uA(x, aFGM(x), d(x)) = −1.

When d(x) 6∈ R(x), then we claim that aFGM(x) is a direction such that sgnfL(x+d(x)+aFGM(x)) 6=
sgnfL(x)). This can be seen by observing that the point closest to x+ d(x) on the decision boundary
is the first boundary point we hit by moving towards the boundary in a direction perpendicular to
it. For the assumed linear boundary fL(x) = 0, this direction is given by −sgn(f(x))‖∇f(x)‖2 ∇f(x). Since
d(x) 6∈ R(x), there is atleast one vector va ∈ V such that sgnf(x+ d(x) + va) 6= sgnf(x+ d(x)).
This implies that one can rotate va towards the ray {x+k · −sgn(f(x))‖∇f(x)‖2 ∇f(x) : k ≥ 0} to maintain the
sign difference. Since the vector obtained on completing this rotation is exactly the FGM direction
aFGM(x), we are done. Hence, we have shown that when d(x) 6∈ R(x), then uA(x, aFGM(x), d(x)) =
+1.
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Continuing from Eq. (27), we have:∫
X

∫
AD

uA(x, aFGM(x), d(x)) p(d) p(x) dd dx

=

∫
X

∫
AD

(
(+1) · I[d(x) ∈ R(x)] + (−1) · I[d(x) 6∈ R(x)]

)
p(d) p(x) dd dx (28)

= Pr[Ē]− Pr[E] (29)

This shows that for all strategies sA ∈ P(AA), sD ∈ P(AD) played by A, D respectively, we have:

ūA(sFGM, sD) ≥ ūA(sA, sD)

C Proof of Lemma 3

Lemma 3 (Randomized Smoothing is a best-response to FGM). The strategy sSMOOTH achieves
the largest possible utility for the defender against the attack sFGM played by the attacker, i.e., for any
defense sD ∈ P(AD) we have ūD(sFGM, sSMOOTH) ≥ ūD(sFGM, sD).

Proof. Let sD be the strategy followed by D, specified by the distribution pD ∈ P(AD). Recall
that the attackers strategy sFGM plays the function aFGM with probability 1 such that the distribution
induced on (X,V ) has its entire mass on aFGM(x) = −ε sgn(f(x))‖∇f(x)‖2∇f(x) for all x ∈ X . The
defender’s utility can be written as follows:

ūD(sFGM, sD) = E
x∼pX ,d∼pD

uD(x, aFGM(x), d(x)) (30)

=

∫
X

∫
AD

uD(x, aFGM(x), d(x)) pD(d) pX(x) dd dx (31)

Following the proof of Lemma 2, we can see that under the FGM attack, the defender gets a utility of
+1 at the point x ∈ X when he plays from the robust-set R(x), i.e. for a sample d ∼ pD we have
d(x) ∈ R(x), and a utility of −1 otherwise. Accordingly, we now first split the domain in Eq. (31)
into two parts depending on whether the defender plays a direction in the robust-set:

ūD(sFGM, sD) =

∫
X

∫
AD

uD(x, aFGM(x), d(x))I[d(x) ∈ R(x)] pD(d) pX(x) dd dx+∫
X

∫
AD

uD(x, aFGM(x), d(x))I[d(x) 6∈ R(x)] pD(d) pX(x) dd dx (32)

R(x) =

∫
X

∫
AD

(+1)I[d(x) ∈ R(x)] pD(d) pX(x) dd dx+∫
X

∫
AD

(−1)I[d(x) 6∈ R(x)] pD(d) pX(x) dd dx (33)

=

∫
AD

∫
X

(+1)I[d(x) ∈ R(x)] pD(d) pX(x) dx dd+∫
AD

∫
X

(−1)I[d(x) 6∈ R(x)] pD(d) pX(x) dx dd (34)

The order of integration could be interchanged in Eq. (34) since the double integral of the absolute
value of the integrand is finite (Fubini’s Theorem). We now appeal to the structure of AD, and
recall that AD consists of all constant functions from X to V . For a particular element d ∈ AD,
let vd be its output such that ∀x ∈ X d(x) = vd. Further, we note from the definition of φ(v) that
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∫
X
I[v 6∈ R(x)]pX(x)dx = 1− φ(v). Continuing from Eq. (34):

ūD(sFGM, sD) =

∫
AD

φ(vd) pD(d) dd−
∫
AD

∫
X

I[d(x) 6∈ R(x)] pD(d) pX(x) dx dd (35)

=

∫
AD

φ(vd) pD(d) dd−
∫
AD

(1− φ(vd)) pD(d) dd (36)

=

∫
AD

(2φ(vd)− 1) pD(d) dd (37)

≤ 2φ(v∗)− 1 (By property of convex combination for any v∗ ∈ V ∗) (38)

Finally, we observe that sSMOOTH achieves the upper-bound obtained in Eq. (38). Let p be the density
for the uniform distribution over the set F ∗. Following the same steps as above till Eq. (38), we will
get the following:

ūD(sFGM, sSMOOTH) =

∫
AD

(2φ(vd)− 1) p(d) dd (39)

=

∫
F∗

(2φ(vd)− 1) p(d) dd (40)

= (2φ(v∗)− 1)

∫
F∗
p(d) dd (41)

= (2φ(v∗)− 1) (42)

Hence, we have have shown that uD(sFGM, sSMOOTH) ≥ uD(sFGM, sD) for all sD ∈ P(AD).

D Details for Experiments

Table 2: Attacks and Defenses for MNIST 0 vs 1. The FGM attack and SMOOTH defense correspond to
sFGM and sSMOOTH respectively. The PGD attack [22] is an iterated version of FGM. True Accuracy shows
accuracies using the true classifier f and Approximate Accuracy shows accuracies according to the locally linear
approximation fL. Detailed descriptions can be found in the Appendix.

Attack Defense True Accuracy (%) Approximate Accuracy (%)

- - 99.9 99.9
FGM - 63.0 48.3
FGM SMOOTH 95.6 94.5
PGD - 47.7 85.6
PGD SMOOTH 75.1 99.1

Table 2 shows results for a particular binary classification task (0 vs 1) on the MNIST dataset. The
Table 1 in the main text reports summary statistics for this table over all possible pairs on MNIST
and FMNIST. A particular peculiarity is that the network when attacked with PGD has a better
approximate accuracy than the network attacked with FGM, whereas we know that PGD is a stronger
attack than FGM. This happens due to the fact that approximate accuracy is defined on a linearized
model (see description in Table 3), whereas PGD observes gradients for the original model, leading
to a bad attack performance when the evaluation is made according to the linearized model.

Table 3 is an expanded version of Table 2, where the Description column has been added which shows
how the accuracies have been computed. v∗n is obtained by following the optimization procedure
mentioned in Section 4. aPGD(xi) is obtained by repeatedly applying FGM and projecting to the set
of allowed perturbations V , i.e. we iterate the following steps 10 times for each test point xi to obtain
p1, p2, . . . , p10, starting with p0 = xi:

1. Perturb current iterate pj : p′j ← pj + aFGM(pj)

2. Project perturbation to B(xi, ε): pj+1 ← xi + ε
p′j−xi

‖p′j−xi‖

At the end we get aPGD(xi) = p10 − xi.
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Table 3: Attacks and Defenses for MNIST 0 vs 1. This is an expanded version of Table 2.

Attack Defense Accuracy (%) Description

- - 99.9 1
n

∑n
i=1 1[sgnf(xi) = yi]

TrueFGM - 63.0 1
n

∑n
i=1 1[sgnf(xi + va) = yi]

FGM SMOOTH 95.6 1
n

∑n
i=1 1[sgnf(xi + aFGM(xi) + v∗n) = yi]

PGD - 47.7 1
n

∑n
i=1 1[sgnf(xi + aPGD(xi)) = yi]

PGD SMOOTH 75.1 1
n

∑n
i=1 1[sgnf(xi + aPGD(xi) + v∗n) = yi]

- - 99.9 1
n

∑n
i=1 1[sgnfL(xi) = yi]

ApproximateFGM - 48.3 1
n

∑n
i=1 1[sgnfL(xi + aFGM(xi)) = fL(xi)]

FGM SMOOTH 94.5 1
n

∑n
i=1 1[sgnfL(xi + aFGM(xi) + v∗n) = fL(xi)]

PGD - 85.6 1
n

∑n
i=1 1[sgnfL(xi + aPGD(xi)) = fL(xi)]

PGD SMOOTH 99.1 1
n

∑n
i=1 1[sgnfL(xi + aPGD(xi) + v∗n) = fL(xi)]

E Validity of Modelling Assumptions

While the assumption of local-linearity might seem strong at first, there is ample empirical evidence of
its validity for neural networks. Fig. 4, reproduced from [34] shows the decision boundaries of a CNN
trained on CIFAR-10 in a ε neighbourhood of many randomly-selected images, where white denotes
the predicted class and other shades denote other classes. It can be seen that, locally, the boundary is
approximately linear. This linearity hypothesis was proposed in [10] and further explored in [34]
(showing empirical evidence) and [25] (linking to the existence of universal adversarial perturbations).
Recent studies [18], [29] improve Deep Neural Networks’ robustness by promoting local-linearity.
Hence, we stress that our modelling assumptions do partially hold for modern real-world classifiers,
and we are not limited to just linear classifiers.

Figure 4: Church-Window plots for a CNN f reproduced from Fig. 11.2 of [34]. Each plot shows f(x+au+bv)
for a, b ∈ [−ε, ε], where u is the FGM direction, v is a random direction orthogonal to u and x is a random
data-point from CIFAR-10. White denotes the class f(x), and other shades denote other classes.
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