
Appendix

Appendix outline. The appendix includes four main sections. In Appendix A, we summarize all
the important notations of variables used in the main paper. In Appendix B, we provide details of the
posterior inference of parameters and the derivation of the acceptance rate for the SMS sampler. The
entire inference process is summarized in Algorithm 1. In Appendix C, we provide additional details
of experiments, including the experiment settings, interpretation of inferred phases and cross-modal
interactions, inferred topics and patterns. In Appendix D, we present ablation studies on the SMS
sampler with qualitative and quantitative analysis.

A Summary of Notations

Table 3 summarizes the notations of major variables.

Table 3: Summary of Notations
Notation Explanation of notation

Variables about Phases
p index of phases
d index of observation sequences
t index of time steps
ψ transition matrix of phases
ω0 parameter of Dirichlet prior for phase transition
gd,t phase assignment for narration d step t

Variables about Verbal Narrations
l index of topics
ζ 1st-level stick breaking partition for topics
τp 2nd-level stick breaking partition for topics
ξ 1st-level DP concentration parameter for topics
a 2nd-level DP concentration parameter for topics
ω parameter of Dirichlet prior for word distribution in topics
ρl parameter of word distribution for topic l
vd,t topic assignment for narration d step t
wd,t word observation for narration d step t

Variables about Eye Movements
k index of eye movement states
j index of eye movement mixture components
β 1st-level stick partition for eye movement states
γ 1st-level DP concentration parameter for states
α 2nd-level DP concentration parameter for states
bk stick partition of mixture components for state k
γ∗ DP concentration parameter for mixture components
yd,t eye movement observation for sequence d step t
zd,t latent state for sequence d, step t
πp transition matrix for phase p
Ak,j coefficient for state k component j
Σk,j covariance matrix for state k mixture component j
θk,j parameter for state k component j
φk parameter of state k
Hk state-specific measure for θk,j for any component j
H global base measure for φk for any k
S0 prior of scale matrix of IW distribution
d0 prior degree of freedom of IW distribution
A0 prior mean of φ
U0 prior covariance of φ
D dimensionality of yd,t
nkk′ counts of transition from pattern k to pattern k′

ud,t auxiliary variable for slice sampling
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B Details of Posterior Inference
In this section, we provide the details of the posterior inference for latent variables, including phases,
topics, and eye movement patterns, and present the split-merge-switch sampler.

B.1 Sampling Latent Variables of Eye Movements

B.1.1 Sampling zd,t and sd,t

Given the phase assignment gd,t, we sample the eye movement state assignment zd,t and mixture
component assignment sd,t. Use the chain rule, (zd,t, sd,t) can be sampled from

p(zd,t, sd,t|yd, z−dt, s−dt,π,φ,θ, gd,t) ∝ p(sd,t|zd,t,yd, s−dt,θ)p(zd,t|yd, z−dt, s,π,φ,θ, gd,t)
(15)

where z−dt denotes all state assignments except for zd,t, and s−dt denotes all mixture component
assignments except for sd,t. The first term of Eq (15) can be estimated using

p(sd,t = j|zd,t = k,yd, s
−dt,θ) ∝


n−tk,j

γ∗ + n−tk.
p(yd,t|θk,j) j ≤ Jk

γ∗

γ∗ + n−tk.
p(yd,t|φk, S0, d0) j = Jk + 1

(16)

where Jk is the number of instantiated components for state k, and n−tk,j is the counts of observations
assigned to state k component j not including the observation at time step t.

To estimate the second term, we follow the Beam sampling algorithm proposed by [27]. In particular,
an uniformly distributed auxiliary variable ud,t is introduced with probabilistic density

p(ud,t|zd,t−1, zd,t, gd,t = p, πp) =
1

πpzd,t−1,zd,t

δ(0 < ud,t < πpzd,t−1,zd,t
) (17)

where δ(.) is an indicator variable.

The Beam sampling is an extension to the slice sampling, and the auxiliary variable ud,t serves as a
slice. It partitions πpzd,t−1,zd,t

, so that a finite number of states with πpzd,t−1,zd,t
≥ ud,t are considered

when we sample zd,t that transits out of zd,t−1.

Given the auxiliary variables ud,t=1:T , the sequence zd,t=1:T can be updated through a forward-
backward procedure. The forward message is

p(zd,t|yd,1:t, ud,1:t, gd,t = p, πp,θ)

∝p(zd,t, yd,t, ud,t|yd,1:t−1, ud,1:t−1, gd,t = p, πp,θ)

=p(yd,t|zd,t,θ)
∑

zd,t−1:π
p
zd,t−1,zd,t

>ud,t

p(zd,t−1|yd,1:t−1, ud,1:t−1, gd,t = p, πp)
(18)

where the first term can be estimated as

p(yd,t|zd,t,θ) =

Jk∑
j=1

n−tk,j

γ∗ + n−tk.
p(yd,t|θk,j) +

γ∗

γ∗ + n−tk.
p(yd,t|φk, S0, d0) (19)

and the sequence zd,t=1:T can be sampled through a backward pass

p(zd,t|zd,t+1, yd,1:T , ud,1:T , gd,t,π,θ) ∝ p(zd,t|yd,1:t, ud,1:t,θ)p(zd,t+1|zd,t, ud,t+1, gd,t = p, πp)
(20)

B.1.2 Sampling πp

To sample the eye movement state transition matrix πp, let npkk′ denote the total occurrences of
transitions from pattern k to k′ at phase p. The conditional distribution of transition matrix πp is

(πpk1...π
p
kK ,

∞∑
k′=K+1

πpkk′) ∼ Dir(npk1 + αβ1, ...n
p
kK + αβK , αβu) (21)
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where βu =
∑∞
k′=K+1 βk′ and K is the total number of instantiated states. β is sampled from

(β1, ...βK , βu) ∼ Dir(m.1, ...,m.K , γ) (22)

where m.k =
∑
p

∑
k′ m

p
k′k and based on [41]

p(mp
k′k = m|z, α,β) ∝ S(npk′k,m)(αβk)m (23)

S(., .) is the Stirling number of the first kind.

B.1.3 Sampling θk,j

Given the eye movement pattern assignments (zd,t, sd,t), we sample the parameter of eye movement
patterns θk,j = (Ak,j ,Σk,j). With the prior (Ak,j ,Σk,j) ∼ NIW (S0, d0, κ, φk), it can be shown
that

p(Ak,j ,Σk,j |Yk,j , φk) = NIW (S∗, d0 + nk,j , κ+ nk,j , A
∗)

A∗ =
κ

κ+ nk,j
φk +

nk,j
κ+ nk,j

ȳ

S∗ = S0 +
∑

d,t:zd,t=k,sd,t=j

(yd,t − ȳ)(yd,t − ȳ)′ +
κnk,j
κ+ nk,j

(ȳ − φk)(ȳ − φk)′
(24)

Similarly, φk is updated as p(φk|θk.) = N(φ∗, U∗) with

U∗ = (U−10 +
∑
j

Σ−1k,j/κ)−1 φ∗ = U∗(
∑
j

(Σk,j/κ)−1θk,j + U−10 A0) (25)

B.2 Sampling Latent Variables of Verbal Narrations

B.2.1 Sampling vd,t

For sampling the topic assignments, let np,l denote the occurrence of words corresponding to topic l
at phase p, and ρl,w denote the weight of word w in topic l. Given phase gd,t, hidden topic assignment
vd,t is sampled from

p(vd,t = l|v−dt, gd,t = p, τ ,ρ) ∝
{

(np,l + aζl)ρl,w l ≤ L
aζuω l = L+ 1

(26)

where L is the number of instantiated topics and np,l is number of words assigned to topic l at phase
p.

B.2.2 Sampling τp

The topic distribution τp is sampled from

τp = (τp,1, ..., τp,L, τp,u) ∼ Dir(np,1 + αζ1, ..., np,L + αζL, αζu) (27)

where τp,u =
∑∞
l′=L+1 τp,l′ and L is the number of instantiated topics. ζ is sampled from

(ζ1, ..., ζL, ζu) ∼ Dir(m.1, ...,m.L, η) (28)

where m.l =
∑
pmp,l and based on [41]

p(mp,l = m|z, α, ζ) ∝ S(np,l,m)(αζl)
m (29)

S(., .) is the Stirling number of the first kind.

B.2.3 Sampling ρl

Given the topic assignments v, the word weights in topic l are sampled from

ρl ∼ Dir(ω +
∑
d

∑
t

δ(wd,t = w, vd,t = l)) (30)
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B.3 Sampling Latent Variables of Decision Phases

B.3.1 Sampling gd,t

The phase assignments gd,t=1:T for time step t = 1 : T in sequence d assumes a first-order
Markov structure, and can be block sampled through a forward-backward procedure given the state
assignments zd and topic assignments vd. Note that

p(gd,1:T |ψ,vd, zd, τ ,π) =p(gd,T |gd,T−1, ψ,vd, zd, τ ,π)

p(gd,T−1|gd,T−2, ψ,vd, zd, τ ,π)...p(gd,1|ψ,vd, zd, τ ,π)
(31)

So the sampling process starts by calculating the backward message from time step t = T to t = 1,
then sampling the latent phases from t = 1 to t = T . The backward message is defined as

msgt,t−1(gd,t−1 = p) ∝


∑
gd,t

p(gd,t|ψ)p(zd,t|πp)p(vd,t|τp)msgt+1,t(gd,t) t ≤ T

1 t = T + 1

∝p(vd,t:T , zd,t:T |gd,t−1, ψ, τ ,π)

(32)

The phase assignment gd,t is sampled in a forward pass as

p(gd,t = p|ψ,vd, zd, τ ,π) ∝p(gd,t|ψgd,t−1
)p(vd,t|τp)p(zd,t|πp)msgt+1,t(gd,t) (33)

B.3.2 Sampling ψ

Each row of the phase transition matrix ψ is updated as

ψp ∼ Dir(np1 + ω0, ..., npp′ + ω0..., npP + ω0) (34)

where npp′ is the counts of transition from phase p to p′.

B.4 Algorithm for Posterior Inference

Algorithm 1 describes the MCMC sampling for posterior inference. The split-merge-switch sampler,
which is discussed in the next subsection, is applied in each iteration for fast mixing.

B.5 The Split-Merge-Switch Sampler

To make the posterior inference more efficient, a Split-Merge-Switch (SMS) sampler is applied along
with the sampling algorithm discussed above.

The SMS sampler considers three types of proposals, namely split, merge, and switch. The three
proposals are mutually exclusive. The proposal is evaluated using a Metropolis-Hasting acceptance
ratio. If accepted, the proposal is implemented; if not, we ignore the proposal and proceed to sample
other variables.

B.5.1 Mutual Exclusivity

In this section, we show that the three proposals in the SMS sampler are mutually exclusive. This
property demonstrates the difference between the proposed SMS sampler and the existing split-merge
sampler which is designed for a flat cluster structure. The switch move, which is designed for
non-parametric hierarchical clustering, allows the SMS sampler to converge faster, as evidenced by
our experimental results reported in Appendix D.

The split, merge, and switch proposals in the SMS sampler are mutually exclusive, i.e., none proposal
can be achieved by performing a series of other proposals.

Let Fa(S) denote a series of split and merge moves starting from S, Fb(S) denote a series of merge
and switch moves starting from S, and Fc(Si, Se) denote a series of split and switch moves starting
from Si and Se Suppose to the contrary that

∃S : Switch(S) = Fa(S)
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Algorithm 1 The Posterior Inference Process
randomly initialize parameters ρ, θ, φ and assignments g, v, z, s;
for iteration i = 1 : maxIter do

for sequence d = 1 : D do
for time step t = 1 : T do

update phase assignment gd,t using (33);
end for
update parameter ψ using (34);

end for
for sequence d = 1 : D do

for time step t = 1 : T do
update topic assignment vd,t using (26);

end for
end for
for instantiated topic l = 1 : L do

update parameter ρl using (30);
end for
for sequence d = 1 : D do

for time step t = 1 : T do
update state assignment zd,t using (20);
update component assignment sd,t using (16);

end for
end for
for instantiated state k = 1 : K do

for instantiated mixture component j = 1 : J do
update parameter θk,j using (24);

end for
update parameter φk using (25);

end for
update parameter π using (21);
apply merge-split-switch sampler as discussed in Algorithm 2;

end for

By definition of switch proposal, znewd,t 6= zoldd,t , ∃(d, t) ∈ Switch(S). However, by definition of the
split and merge proposals znewd,t = zoldd,t , ∀(d, t) ∈ Fa(S). Therefore S does not exist.

Suppose to the contrary that
∃S : Split(S) = Fb(S)

However, Split(S) ends up with 2 mixture components, Fb(S) ends up with 1 mixture component.
Therefore S does not exist.

Suppose to the contrary that

∃Si, Se : Merge(Si, Se) = Fc(Si, Se)

However, Merge(Si, Se) ends up with 1 mixture component, Fc(Si, Se) ends up with no less than 2
mixture components. Therefore Si, Se do not exist.

B.5.2 The Split Proposal

The split proposal suggests splitting a mixture component into two within the same state. Let S denote
the indices of events assigned to state k and component j. First, a pair of indices [(di, ti), (do, to)] is
randomly selected from S and serve as anchors. Then we remove them from S and form singleton
sets Si = {(di, ti)} and So = {(do, to)}. For each (d, t) ∈ S, we sequentially add it to Si with

p((d, t) ∈ Si|Si, So, yd,t) =
|Si|

∫
f(yd,t|θ)dHSi

(θ)

|Si|
∫
f(yd,t|θ)dHSi

(θ) + |So|
∫
f(yd,t|θ)dHSo

(θ)
(35)

where HSi
(θ) is the posterior distribution of θ based on the prior p(θ|φ) and the current members in

Si, and f(yd,t|θ) is the probability of yd,t conditioned on its pattern assignment and θ.

Otherwise, we add it to So.
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The general form of Metropolis-Hastings acceptance ratio is provided as

a(ηold,ηnew) = min[1,
p(ηnew)p(y|ηnew)p(ηold|ηnew)

p(ηold)p(y|ηold)p(ηnew|ηold)
] (36)

where ηold denotes the old assignments, ηnew denotes the proposed new assignments. It satisfied the
detailed balance, which guarantees the convergence of the MCMC sampler [42].

For a split proposal, p(ηold|ηnew) is always 1, because there is only one way to transit from ηnew to
ηold. p(ηnew|ηold) is the probability of assigning members from ηold to the split allocations ηnew,
which equals to the product of p((d, t)|Si, So, yd,t) for all (d, t) based on the new allocation.

p(ηnew) and p(ηold) are calculated by using the Polya’s urn metaphor respectively [29], and the ratio
p(ηold)
p(ηold)

is
p(ηnew)

p(ηold)
= γ∗

(|Si| − 1)!(|So| − 1)!

(|S| − 1)!
(37)

where γ∗ is the concentration parameter defined in (5). And the ratio p(y|ηnew)
p(y|ηold)

is

p(y|ηnew)

p(y|ηold)
=

∏
(d,t)∈Si

∫
f(yd,t|θ)dHSi(θ)

∏
(d,t)∈So

∫
f(yd,t|θ)dHSo(θ)

/
∏

(d,t)∈S

∫
f(yd,t|θ)dHS(θ)

(38)

B.5.3 The Merge Proposal

The merge proposal suggests merging two mixture components from the same state into one single
one. It is essentially the reverse of a split proposal, and the acceptance ratio is calculated using (36).

p(ηnew|ηold) is always 1 since there is only one way of merging, while p(ηold|ηnew) is the joint
probability of assigning members from the merged allocations ηnew to the old allocations ηold, which
equals to the product of p((d, t)|Si, So, yd,t) for all (d, t) ∈ S based on the old allocation.

For a merge proposal, the ratio the prior distribution is calculated in a reversed way to that in a split
proposal.

p(ηnew)

p(ηold)
=

1

γ∗
(|S| − 1)!

(|Si| − 1)!(|So| − 1)!
(39)

and the ratio of the likelihoods is calculated as

p(y|ηnew)

p(y|ηold)
=

∏
(d,t)∈S

f(yd,t, θ)dHS(θ)

/

 ∏
(d,t)∈Si

∫
f(yd,t, θ)dHSi

(θ)
∏

(d,t)∈So

∫
f(yd,t, θ)dHSo

(θ)

 (40)

B.5.4 The Switch Proposal

The switch proposal suggests moving some mixture components from one state and adding them to
another state as additional mixture components, while keeping the grouping of elements within each
mixture unchanged. We further consider two cases, namely switch1, where some mixture components
from a pattern k1 are moved to a new pattern k2, and switch2 where all mixture components from a
pattern k3 are moved to an existing pattern k4. For switch1, we randomly sample a pair of mixture
component indices from pattern k1 and serve as anchors. Then we sequentially allocate other mixture
components in a similar way to Eq 35, and calculate the probability of the proposal. The acceptance
rate is calculated as Eq 36. However, the switch incurs the change of both pattern assignment and
mixture assignment,

p(ηnew)

p(ηold)
=
p(snew|znew)

p(sold|zold)
p(znew)

p(zold)
(41)
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For all mixture components nested in a pattern k,

p(s|z = k) = (γ∗)J
∏
j(nk,j − 1)!∏nk

i=1(γ∗ + i+ 1)
(42)

Therefore,

p(snew|znew)

p(sold|zold)
=

|S2|∏
i=1

(γ∗ + i− 1)

|S3|∏
i=1

(γ∗ + i− 1)/

|S1|∏
i=1

(γ∗ + i− 1) (43)

And according to [32],

p(zold) = γKβu1βu2 ...βuk

K∏
k=1

K∏
k′=1

nkk′∏
i=1

(γβk′ + i− 1)/

K∏
k=1

nk∏
i=1

(γ + i− 1) (44)

where βuk
= 1−

∑k−1
i βi. And p(znew) can be calculated similarly.

The switch2 proposal is essentially the reverse of a switch1 proposal, and the acceptance ratio is
calculated in the reversed way. Notice that the switch also incurs the change of corresponding θ’s
conditional dependency on φ, because the component is assigned to a new state.

Algorithm 2 describes the split-merge-switch sampling.

Algorithm 2 The Split-Merge-Switch Sampler
randomly draw a data point indexed by i, and record its pattern assignment z. From the set of data points
assigned z, draw another data point indexed by o. Use (i, o) as anchors;
if si = so then

propose a split and calculate acceptance ratio AR using (36), (37), (38);
accept the proposal with AR and update mixture assignments;
resample stick portion bzi and bzo after the split;

else
propose a merge and calculate acceptance ratio AR using (36), (39), (40);
accept the proposal with AR and update mixture assignments;
resample stick portion bzi after the merge;

end if
randomly draw a data point indexed by i, and record its pattern and mixture assignment (z, s). From the set
of data points not assigned as (z, s), draw another data point indexed by o. Use (i, o) as anchors;
if zi = zo then

propose a switch1 proposal;
else

propose a switch2 proposal;
end if
calculate acceptance ratio AR using (36) (41);
accept the proposal with AR and update state assignments;
resample stick portion β and and transition matrix π after the switch;

C Additional Details of Experiments

In this section, we provide details of experiment settings and additional results.

C.1 Experiment Settings

The hyper-parameters are: γ = 1/20, γ∗ = 1/100, α = 1/16, ξ = 1/8, a = 1/16, ω = 1/40,
κ = 0.8, A0 = 0, U0 = 100 ∗ I , where I denotes the identity matrix.

For fusing eye movements data and verbal narrations, the unsupervised model is trained using the
entire data sets. For downstream supervised tasks including the disease morphology classification
and diagnostic correctness prediction, eighty percent of the data is randomly split for training, and
the rest is used for testing. Five-fold cross-validation is applied for hyper-parameter tuning. For
model training, we only use the features of eye fixations. We use saccade features mainly for
interpretation: 1) We draw lines for saccades to visualize eye movement patterns; 2) We interpret
patterns as concentration/switching/cluttering using fixation duration and saccade amplitude.
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Table 4: Inferred Topics with Most Frequent Words (The topic indexes in this table match the topic
indexes in Fig 4 from the main paper)

Topic Top Words
1 there looks appears so little see some erythematous
2 upper chest back patches hypopigmented neck areas hyperpigmented
3 nose left nasal telangiectasias child tip young overlying
4 erythema foot there’s lower some crusting there dorsal
5 erythematous plaques scale patches some annular plaque scaly
6 papules lesions these some multiple on elbow scattered
7 papule nodule there’s lesion brown center surrounding on
8 macules as papules some they scattered three they’re
9 vesicles in bulla tense there’s bullae well as
10 patch right lip lower area depigmented serpiginous extending
11 on like or it’s what skin bit not
12 could differential versus think my diagnosis would also
13 would or other would like as probably in
14 vitiligo vasculitis scleroderma would xanthomas leukocytoclastic xanthoma petechiae
15 lupus drug eruption would multiforme cutaneous reaction erythematosus
16 tinea corporis mycosis erythema fungoides annulare versicolor would
17 melanoma vascular malignant blue sort kaposi’s lesion nodular
18 lichen linear planus striatus epidermal nevus see scabes
19 seborrheic nevus post-inflammatory keratosis hypopigmentation halo morphea diagnosis
20 bullous pemphigoid pemphigus linear vulgaris drug disease blistering
21 or could folliculitis infection like acne varicella zoster
22 but it’s so have not think if don’t
23 larva cutaneous migrans cafe-au-lait neurofibromatosis like hyperpigmentation one
24 dermatitis contact allergic eczematous eczema acute can rosacea
25 cell basal carcinoma nevus pigmented tumor spitz juvenile
26 but would my for one number at more
27 say i’m about gonna would am only for
28 percent certainty final diagnosis sure fifty go ninety

C.2 Additional Results of Interred Phases and Cross-Modal Interactions

Additional Results of phase transition, state transition, and topic distribution of each phase are
provided in Figures 6 and 7.

Each phase has a strong tendency of self transition, and there are moderate occurrences of phase
transition from description (P1) to reasoning (P2), and from reasoning to conclusion (P3). Besides,
each phase is associated with a unique set of topics (e.g., the description phase is closely related to
topics T3, T4, and the conclusion phase is closely related to topics T28, T31).

P1 P2 P3

P1

P2

P3

0

0.2

0.4

0.6

0.8

1

T1 T32

P1

P2

P3 0

0.05

0.1

Figure 6: Visualization of Decision Phase Transition Matrix (Left) and Topic Distribution of Each
Phase (Right) in Experiment II

For eye movements, we observe higher self-transition of S10(concentration) at the reasoning and
conclusion phase, which indicates that physicians’ eye movements are more stable upon conclusion.
There are more non-concentration transitions at the description phase, such as the transition from S13
to S5(clutter), indicating that experts change eye movement states more frequently at the description
phase in order to gather general information from the entire image.
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Figure 7: Visualization of Eye Movement State Transition Matrix at Description Phase (Left),
Reasoning Phase (Middle) and Conclusion Phase (Right) in Experiment II

C.3 Top Words from Inferred Topics

The inferred topics with top words from each topic are summarized in Table 4. The inferred
topics provide rich information about the diagnostic decision-making process of physicians. For
instance, Topic 7 mainly correspond to disease morphology, (‘papule’ and ‘nodule’,‘lesion’); Topic
2 correspond to body location (‘chest’, ‘back’, ‘neck’). Therefore, they are closely related to the
description phase. Topics T12 is closely related to the reasoning phase, as they contain keywords that
describe a physician’s logical thinking (i.e., differential, versus, think). Topics T28 is closely related
to the conclusion phase, as they contain keywords about a diagnostic decision (i.e., certainty, final).

C.4 Visualization of Eye Movement Patterns

Additional inferred eye movement patterns, including states (main patterns) and mixture components
(sub-patterns), are summarized in Table 5. Notice that we use terms including concentration, switch-
ing and clutter only for interpretating the eye movement patterns, while the main and sub-patterns
discovered by the nonparametric model are based on statistical regularities. Eye movement patterns
usually match the disease morphology, and thus the patterns are usually similar for the same dis-
ease. For instance, the skin disease Halo Nevus is usually characterized by a single discrete lesion
(morphology), and the concentration pattern dominates eye movement patterns for most experts who
viewed the image. Phytophotodermatitis is usually characterized by diffuse lesions with random
distribution, and the clutter pattern dominates eye movement patterns.

Table 5: Visualization of Selective Eye Movement Patterns: Each row corresponds to a state (main
pattern), each column corresponds to a mixture component (fine-grained pattern) and each image is
an example of the pattern

Component 1 Component 2 Component 3

State 1

State 2

State 3

State 4

State 5

State 6

State 7

The inferred states (main patterns) capture high-level characteristics of eye movements. For instance,
State 1 can be interpreted as clutter pattern because it is characterized by saccades with large
amplitude; State 2 can be interpreted as concentration because it is characterized by fixations within a
small area, and State 3 can be interpreted as switching because it is characterized by saccade between
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two locations. Different states correspond to different characteristics. For instance, both States 2 and
7 can be interpreted as concentration, but State 7 manifests slightly larger fixed areas than State 2.

A state may have multiple components (sub-patterns), and those components are slightly different
from each other. For instance, State 2 has three components. All those components can be interpreted
as concentration, but Component 3 manifests slightly larger fixed areas than Component 1.

D Ablation Study on Split-Merge-Switch Sampler

For illustration purpose, we perform an ablation study on the SMS sampler using synthetic data
where the structure of the latent states are known in advance, which can serve as ground-truth for
evaluation.

The synthetic data in the ablation study provides a controlled experiment environment where the
ground truth of the number of main patterns and sub-patterns are known. It is generated through
hierarchical Gaussian mixtures with four main patterns and 16 sub-patterns in total. The main patterns
are centered at [4.5,4.5], [-4.5,4.5], [-4.5,-4.5], and [4.5,-4.5] respectively. Each main pattern has 4
sub-patterns, whose center deviates from its main pattern’s center by [1.5 1.5], [-1.5,1.5], [-1.5,-1.5],
[1.5,-1.5], as shown in Figure 8. We generate 50 sequences, where each sequence has 50 observations.
The first observation of a sequence is randomly assigned a main pattern and a sub-pattern, while the
following observations’ pattern assignments are drawn from a pre-set Markov transition matrix. Given
the pattern assignments, each observation is drawn from a Gaussian distribution N(θk,j , 0.5× I),
where I is an identity matrix.

M1 S1 M1 S2 M1 S3 M1 S4

M2 S1 M2 S2 M2 S3 M2 S4

M3 S1 M3 S2 M3 S3 M3 S4

M4 S1 M4 S2 M4 S3 M4 S4

Ground Truth of Sub-Patterns

M1 S1 M1 S2

M2 S1 M2 S2

Initialization of Sub-Patterns

Figure 8: Visualization of sub-patterns: ground truth (left) and random initialization (right)

We initialize the number of main patterns K = 2 and the number of sub-patterns in each main
pattern J = 2. The pattern assignments for all observations are randomly initialized, as shown in
Figure 8. An infinite hidden Markov Model with nested Dirichlet process (iHMM-nDP) algorithm is
implemented, with or without the SMS sampler.
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Figure 9: Visualization of inferred main patterns with and without SMS sampler (Left and Middle),
Log marginal likelihood up to 500 iterations (Right)

The inferred main patterns are visualized in Figure 9. To quantitatively analyze how the SMS sampler
affects the performance, we estimate the log marginal likelihood for one run with or without the SMS
sampler. If SMS sampler is not applied, the Beam sampler, the classical split-merge (SM) sampler
[29], and the block sampler (with truncation level set to 4) are used as backbones. Results indicate
that the SMS sampler contributes to the fast mixing rate and better hierarchical clustering results.
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