
Appendix

We give some further preliminaries in Section A. Our algorithms for DensestBall in low dimen-
sions are given and analyzed in Section B, and those for k-means and k-median are presented in
Section C. The resulting algorithms in high dimensions are obtained in Section D. Our results for
1-Cluster, Sample and Aggregate, agnostic learning of halfspaces with a margin, and ClosestPair
are presented in Sections E, F, G, and H respectively.

A Additional Preliminaries

For any vector v 2 Rd, we denote by kvk2 its `2-norm, which is defined by kvk2 :=

qP
d

i=1
v2
i
;

most of the times we simply use kvk as a shorthand for kvk2. For any positive real number �, the
Discrete Laplace distribution DLap(�) is defined as DLap(k;�) :=

1

C(�)
· e�

|k|
� for any k 2 Z,

where C(�) :=
P

1

k=�1
e
�

|k|
� is the normalization constant.

A.1 Composition Theorems

We recall the “composition theorems” that allow us to easily keep track of privacy losses when
running multiple algorithms on the same dataset.
Theorem 24 (Basic Composition [DKM+06]). For any ✏, � � 0 and k 2 N, an algorithm that runs

k many (✏, �)-DP algorithms (possibly adaptively) is (k✏, k�)-DP.

It is possible to get better bounds using the following theorem (albeit at the cost of adding a positive

�
0 parameter).

Theorem 25 (Advanced Composition [DRV10]). For any ✏, � � 0, �
0
> 0 and k 2 N, an algorithm

that runs k many (✏, �)-DP algorithms (possibly adaptively) is (2k✏(e
✏� 1)+ ✏

q
2k ln

1

�0 , k�+ �
0
)-

DP.

For an extensive overview of DP, we refer the reader to [DR14, Vad17].

B DensestBall in Low Dimensions

In this section, we provide our algorithms for DensestBall in low dimensions, stated formally
below. We start by stating our pure-DP algorithm.
Theorem 26. For every ✏ > 0 and 0 < ↵  1, there is an ✏-DP algorithm that runs in time

(1 + 1/↵)
O(d)

poly log(1/r) and, with probability 1 � �, returns a

⇣
1 + ↵, O↵

⇣
d

✏
log

⇣
1

�r

⌘⌘⌘
-

approximation for DensestBall, for every � > 0.

We next state our approximate-DP algorithm.
Theorem 27. For every ✏ > 0 and 0 < �,↵  1, there is an (✏, �)-DP algorithm that

runs in time (1 + 1/↵)
O(d)

poly log(1/r) and, with probability at least 1 � �, returns a⇣
1 + ↵, O↵

⇣
d

✏
log

⇣
n

min{✏,1}·��

⌘⌘⌘
-approximation for DensestBall, for every � > 0.

Notice that Theorems 26 and 27 imply Theorem 7 in Section 3.1. As discussed there, the main com-
ponents of our algorithm are efficiently list-decodable covers and algorithms for the SparseSelec-
tion problem, which will be dealt with in the upcoming two subsections. Finally, in Section B.3, we
put the ingredients together to obtain the DensestBall algorithms as stated in Theorems 26 and 27.

B.1 List-Decodable Covers of the Unit Ball

We start by defining the notion of a �-cover and its “list-decodable” variant.
Definition 28. A �-cover of the d-dimensional unit ball is a set C ✓ Rd

such that for every point x

in the unit ball, there exists c 2 C such that kc� xk  �.

16

Furthermore, we say that a �-cover is list-decodable at distance �
0 � � with list size ` if, for any

x in the unit ball, we have that |{c 2 C | kc � xk  �
0}|  `. Finally, if there is an algorithm

that returns such a list in time poly(`, d, log(1/�)), then we say that the cover is efficiently list-

decodable.

We will derive the existence of a certain family of efficiently list-decodable covers, which, as we
argue next, can be done by combining tools from the literature on packings, coverings, and lattice
algorithms. The properties of the family are stated below.
Lemma 29. For every 0 < � < 1, there exists a �-cover C� that is efficiently list-decodable at

any distance �
0 � � with list size O(1 +�

0
/�)

O(d)
.

Furthermore, we will need to be able to quickly sample points from the cover, as stated next:
Lemma 30. For every 0 < � < 1, there exists a poly(1/�, 2

d
)-time algorithm O� that samples a

random element from the cover C� (given in Lemma 29) such that the probability that each element

is output is at least
0.99

|C�|
.

We prove Lemmas 29 and 30 in Subsections B.1.2 and B.1.3 respectively. Before doing so, we
provide some additional preliminaries in Subsection B.1.1.

B.1.1 Additional Preliminaries on Lattices

We start by defining lattices and related quantities that will be useful in our proofs. Interested readers
may refer to surveys and books on the topic such as [MG12] for more background.

A basis is a set of linearly independent vectors. A lattice generated by a basis B = {b1, . . . , bm},
denoted by L(B), is defined as the set {

P
m

i=1
aibi | a1, . . . , am 2 Z}. The length of the shortest

non-zero vector of a lattice L is denoted by �(L), i.e.,
�(L) := min

v2L,v 6=0

kvk.

The covering radius of the lattice L(B) is defined as the smallest r 2 R+ such that every point in
Rd is within a distance of r from some lattice point; more formally, the covering radius is

µ(L) := inf

(
r 2 R+ |

[

v2L

B(v, r) = Rd

)
.

The Voronoi cell of a lattice L is denoted by V(L) and is defined as the set of points closer to 0 than
to other points of the lattice, i.e.,

V(L) = {y 2 Rd | kyk  min
v2L,v 6=0

kv � yk}.

It is known (see, e.g., [MV13]) that the Voronoi cell can also be defined as the intersection of at most
2(2

d � 1) halfspaces of the form {y 2 Rd | kyk  kv � yk} for v 2 L. These vectors v are said to
be the Voronoi relevant vectors; we denote the set of Voronoi relevant vectors by VR(L).
We will also use the following simple property of Voronoi relevant vectors. This fact is well-known
but we include its proof for completeness.
Observation 31. Let v 2 L be a non-zero vector in the lattice. There exists a Voronoi relevant

vector v
⇤ 2 VR(L) such that kv � v

⇤k < kvk.

Proof. Let ⌘ > 0 be the largest real number such that ⌘v 2 V(L). Notice that ⌘  1/2, as
otherwise ⌘v is closer to v than to 0. Moreover, ⌘v must lie on a facet of V(L); let v⇤ be the Voronoi
relevant vector corresponding to this facet. It is obvious that if v⇤ is a multiple of v, then the claimed
statement holds. Otherwise, we have

kv � v
⇤k = k(1� ⌘)v � (v

⇤ � ⌘v)k
 (1� ⌘)kvk+ kv⇤ � ⌘vk (triangle inequality)
 (1� ⌘)kvk+ k0� ⌘vk (from definition of v⇤)
= kvk.

Moreover, since we assume that v⇤ is not a multiple of v, the triangle inequality above must be a
strict inequality. As a result, we must have kv � v

⇤k < kvk as desired.

17

When L is clear from the context, we may drop it from the notations and simply write �, µ,V,VR
instead of �(L), µ(L),V(L),VR(L) respectively.

In the Closest Vector Problem (CVP), we are given a target vector v0, and the goal is to find a vector
v 2 L(B) that is closest to v

0 in the Euclidean metric (i.e., minimizes kv�v
0k). It is known that this

problem can be solved in time 2
O(d), as stated more precisely next.

Theorem 32 ([MV13]). There is a deterministic algorithm that takes a basis B = {b1, . . . , bm} ✓
Rd

and a target vector v
0 2 Rd

where each coordinate of these vectors has bit complexity M , and

finds the closest vector to v
0

in L(B) in time poly(M, 2
d
). Furthermore, the set of Voronoi relevant

vectors can be computed in the same time complexity.

Note that there are faster randomized CVP algorithms [ADS15, AS18] that run in 2
d+o(d)

poly(M)

time; we chose to employ the above algorithm, which is deterministic, for simplicity.

B.1.2 Almost Perfect Lattices and Proof of Lemma 29

For completeness, we will prove Lemma 29 in this subsection. Many of the proof components are
from [Mic04, Rog59]; in addition, we observe the efficient list-decodability. First, we have to define
the notion of almost perfect lattices [Mic04], which are the lattices that are simultaneously good
packings and coverings:
Definition 33. Let ⌧ � 1. A lattice L is said to be ⌧ -perfect if µ(L)/�(L)  ⌧/2.

It is known that O(1)-perfect lattices can be computed in 2
O(d)-time11.

Theorem 34 ([Rog59, Mic04]). There is an algorithm that, given d 2 N, runs in 2
O(d)

time and

outputs a basis B = {b1, . . . , bd} such that L(B) is 3-perfect.

With all the previous results stated, we can now easily prove Lemma 29.

Proof of Lemma 29. We use the algorithm from Theorem 34 to construct a basis B = {b1, . . . , bd}
that is 3-perfect. By scaling, we may assume that µ(L(B))  � and �(L(B)) � 2�/3. Our
�-cover is defined as C� := {v 2 L(B) | kvk  1 +�}.

To list-decode at distance �0, we first compute the set R := {v 2 L(B) | kvk  �
0
+�}, as follows.

We start from R = {0}. At each iteration, we go through all vectors w in the current set S and all
Voronoi relevant vectors v; if kw+vk  �

0
+�, we add w+v to S. We repeat this until no additional

vectors are added to S. The correctness of the algorithm to construct S follows from Observation 31.
Furthermore, since the list of Voronoi relevant vectors can be computed in time 2O(d) (Theorem 32),
it is obvious that the algorithm runs in poly(|S|, 2d). Now, from �(L(B)) � 2�/3, S is a �/3-
packing. As a result, by a standard volume argument, we have |S|  O(1 + �

0
/�)

O(d). In other
words, the running time of constructing S is at most O(1 +�

0
/�)

O(d) as desired.

Once we have constructed S, we can list-decode x at distance � as follows. First, we use the CVP
algorithm from Theorem 32 to find the closest vector v 2 L(B) to it. Then, we consider v + w for
each w 2 S; if kv+w�xk  �

0, we add v+w into the list. Clearly, this step of the algorithm runs
in time 2O(d)

+poly(|S|) = O(1+�
0
/�)

O(d), and this also constitutes the list size bound. Finally,
the correctness of this step is also straightforward: for any vector z 2 L(B) such that kz�xk  �

0,
we must have kz � vk  kz � xk+ kv � xk  �

0
+�, which means that it must be added to the

list by our algorithm.

B.1.3 Near-Uniform Sampler: Proof of Lemma 30

Finally, we give a proof of Lemma 30

Proof of Lemma 30. The algorithm repeats the following for W = 100 (1 + 2�)
d times: it samples

a point x uniformly at random from B(0, 1+2�), uses the CVP algorithm from Theorem 32 to find
11The claim in [Mic04] states the running time as d

O(d). However, this was just because, at the time of
publication of [Mic04], only d

O(d)-time algorithms were known for CVP. By plugging the 2O(d)-time algorithm
for CVP of [MV13] into the first step of the construction in [Mic04], the running time of the construction
immediately becomes 2O(d).

18

the closest lattice vector v 2 L(B) to x and, if kvk  1+�, it returns v and terminates. Otherwise,
it returns 0.

First of all, notice that when the algorithm terminates within W steps, it returns a point uniformly
at random from the cover C�. Hence, we only have to show that the probability that it does not
terminate within the first W steps is at most 0.01. To see that this is the case, note that the algorithm
always terminates if kxk  1; in each iteration, this happens with probability 100/W . Hence, the
probability that this does not happen in the W iterations is only (1� 100/W)

W  0.01.

We remark that, if we never stop after W iterations, then we would get an algorithm that has an
expected running time of O(W) and for which the output distribution is exactly uniform over C�.
While the exact uniformity seems neat, it turns out that we do not need it anyway in the next section,
which leads us to cut off after W iterations so as to get a fixed upper bound on the running time.

B.2 SparseSelection

In the Selection problem, each user i receives a subset Si of some universe U . The goal is to
output an element u 2 U that appears in a maximum number of the Si’s. This problem is very
well-studied in the DP literature, and tight bounds are known in a large regime of parameters both
in the central [SU17, BU17] and the local [Ull18] models.

However, known algorithms [MT07, DNR+09]12 for Selection run in time ⌦(|U|) which can be
large; specifically, this will be insufficient for our application to private clustering where |U| is
super-polynomial. Instead, we will consider a restriction of the problem where we have an upper
bound ` on the sizes of the Si’s, and show that, under certain assumptions, we can solve Selection
in this case with running time polynomial in ` and log |U|.
Definition 35 (SparseSelection). For a positive integer `, the input to the `-SparseSelection
problem is a list S = (S1, . . . , Sn) of subsets, where S1, . . . , Sn 2

�
U

`

�
for some finite universe U .

We say that an algorithm solves the `-SparseSelection problem with additive error t if it outputs a

universe element û 2 U such that

|{i | û 2 Si}| � max
u2U

|{i | u 2 Si}|� t.

Throughout this section, we assume that each universe element of U can be represented by a
poly log |U|-bit string, but that U itself is not explicitly known. (This is the case for lattice covers
from the previous subsection, where each element of the covers can be represented by the coeffi-
cients.) We will give two simple poly(n, `, log |U|)-time algorithms for the problem, both of which
are variants of the Exponential Mechanism of McSherry and Talwar [MT07].

Our first algorithm is an approximate-DP algorithm with an additive error independent of the uni-
verse size |U|; furthermore, this algorithm does not require any additional assumption.
Lemma 36 (Approximate-DP Algorithm for SparseSelection). For every ✏ > 0 and 0 <

�  1, there is a poly(n, `, log |U|)-time (✏, �)-DP algorithm that, with probability at least

1 � �, outputs a universe element that solves the `-SparseSelection problem with additive error

O

⇣
1

✏
log

⇣
n`

min{✏,1}·��

⌘⌘
, for every � 2 (0, 1).

Next, we give a pure-DP algorithm for the problem. This algorithm is nearly identical to the orig-
inal Exponential Mechanism of McSherry and Talwar [MT07] except that, instead of going over
all elements of U in the algorithm itself, we assume that there is an oracle O that can sample an
approximately uniformly random element from U .
Lemma 37 (Pure-DP Algorithm for SparseSelection). Suppose there is an oracle O that runs in

time poly log |U| and outputs a sample from U such that the probability of outputting each element

u 2 U is at least p > 0. Then, for every ✏ > 0, there is a poly(n, `, log |U|)-time ✏-DP algorithm

that, with probability at least 1� �, outputs a universe element that solves the `-SparseSelection
problem with additive error O

⇣
1

✏
ln

⇣
1

�p

⌘⌘
, for every � 2 (0, 1).

12See also Section 3.6 of [DR14] for a concise description of how [DNR+09] can be applied to Selection.

19

We remark that the approximate-DP algorithm in Lemma 36 has an additive error that does not grow
with |U|, whereas the pure-DP algorithm in Lemma 37 incurs an additive error that depends (at least)
logarithmically on |U| because p can be at most 1

|U|
. It is simple to see that this log(|U|) dependency

of the pure-DP algorithm is necessary even when ` = 1. Finally, note that Lemmas 37 and 36 imply
Lemmas 11 and 12 in Section 3.1.2, respectively.

We next prove Lemma 36 in Section B.2.1 and Lemma 37 in Section B.2.2.

B.2.1 Approximate-DP Algorithm

This section is devoted to the proof of Lemma 36. On a high level, the algorithm runs the Exponential
Mechanism on the union S1 [· · · [Sn, with a small modification: we have an additional candidate
? whose score is fixed. We prove below that, when the score of ? is set to be sufficiently large (i.e.,
O
�
1

✏
log

�
`

✏�

��
), the resulting algorithm is (✏, �)-DP.

Algorithm 2 Approximate-DP Algorithm for SparseSelection.

1: procedure APXSPARSESELECTION(S = (S1, . . . , Sn))

2: U(S) S1 [· · · [Sn.
3: for u 2 U(S) do
4: scoreS[u] |{i | u 2 Si}|
5: scoreS[?] 2

✏

⇣
1 + ln

⇣
`

�(1�e�✏/2)

⌘⌘

6: return a value drawn from U(S) [{?} where u has probability e
(✏/2)·scoreS[u]

P
u2U(S)[{?} e

(✏/2)·scoreS[u]

Proof of Lemma 36. We now prove that Algorithm 2 satisfies the desired privacy and accuracy guar-
antees. For brevity, we use M as a shorthand for the mechanism APXSPARSESELECTION. It is
immediate that the algorithm runs in time poly(n, `, log |U|), as desired.

Privacy. Consider any pair of neighboring input datasets S and S0. Recall that to show that the
algorithm is (✏, �)-DP, it suffices to show that

Pr
o⇠M(S)


Pr[o = M(S)]

Pr[o = M(S0)]
> e

✏

�
 �. (1)

To prove the inequality in (1), let score? be the (fixed) score of ?. Additionally, we denote

ZS :=

X

u2U(S)[{?}

e
(✏/2)·scoreS[u],

ZS0 :=

X

u2U(S0)[{?}

e
(✏/2)·scoreS0 [u]

.

First, we will argue that ZS � e
�✏/2 · ZS0 . This holds because

ZS =

X

u2U(S)[{?}

e
(✏/2)·scoreS[u]

�

0

@
X

u2U(S)\U(S0)

e
(✏/2)·scoreS[u]

1

A+ e
(✏/2)·score?

�

0

@
X

u2U(S)\U(S0)

e
(✏/2)·(scoreS0 [u]�1)

1

A+ e
(✏/2)·score?

= e
�✏/2 · ZS0 �

0

@
X

u2U(S0)\U(S)

e
(✏/2)·(scoreS0 [u]�1)

1

A+ e
(✏/2)·score? ·

⇣
1� e

�✏/2

⌘
. (2)

20

Now observe that if u belongs to U(S0
) \ U(S), it must belong to a single set in S0 or equivalently

scoreS0 [u] = 1. Furthermore, since each set has size at most `, we have |U(S0
) \ U(S)|  `.

Plugging this into (2), we get

ZS � e
�✏/2 · ZS0 � `+ e

(✏/2)·score? ·
⇣
1� e

�✏/2

⌘

� e
�✏/2 · ZS0 , (3)

where the last inequality holds from our setting of score? in Algorithm 2.

For every u 2 (U(S) \ U(S0
)) [{?}, we thus get that
Pr[u = M(S)]

Pr[u = M(S0)]
=

e
✏/2·scoreS[u]/ZS

e✏/2·scoreS0 [u]/ZS0

 e
✏/2·(scoreS0 [u]+1)

/ZS

e✏/2·scoreS0 [u]/ZS0

 e
✏
,

where the last inequality follows from (3) above. As a result, we obtain

Pr
u⇠M(S)


Pr[u = M(S)]

Pr[u = M(S0)]
> e

✏

�
 Pr

u⇠M(S)
[u 2 U(S) \ U(S0

)]

=

X

u2U(S)\U(S0)

e
✏/2·scoreS[u]

ZS

=

X

u2U(S)\U(S0)

e
✏/2

ZS

 ` · e✏/2
ZS

 ` · e✏/2

e✏/2·score?

 �,
where the second equality uses the fact that scoreS[u] = 1 whenever u 2 U(S) \ U(S0

), and the
last inequality follows from our setting of score? in Algorithm 2. Thus, Algorithm 2 is (✏, �)-DP as
claimed.

Accuracy. We will now show that, with probability at least 1� �, Algorithm 2 outputs a universe
element that solves the SparseSelection problem with additive error13

t = score? +
2

✏
ln

⇣
2n`

�

⌘
.

To do so, we let OPT := maxu2U |{i | u 2 Si}|. If OPT  t, the statement trivially holds.
If OPT > t, we let Ugood := {u 2 U | |{i | u 2 Si}| � OPT�t}. Let Zgood :=P

u2Ugood
e
(✏/2)·scoreS[u]. Note that Zgood � e

(✏/2)·OPT. We therefore have that

Pr
u⇠M(S)

[u /2 Ugood] = 1� Zgood

ZS

=

e
(✏/2)·score? +

P
u2U(S)\Ugood

e
(✏/2)·scoreS[u]

Zgood + e(✏/2)·score? +
P

u2U(S)\Ugood
e(✏/2)·scoreS[u]

 e
(✏/2)·score? + n` · e(✏/2)·(OPT�t)

Zgood

 e
(✏/2)·(score?�OPT)

+ n` · e(✏/2)·(�t)

 �,
where the first inequality follows from the fact that |U(S)|  |S1| + · · · + |Sn|  n`, and the last
inequality follows from our setting of t and from the assumption that OPT > t. We thus conclude
that the output of Algorithm 2, with probability at least 1��, solves SparseSelection with additive
error t as desired.

13Note that 1� e
�✏/2 � 0.5min{1, ✏}, which implies that t = O

⇣
1
✏
log

⇣
n`

min{✏,1}·��

⌘⌘
.

21

B.2.2 Pure-DP Algorithm

We next prove Lemma 37. It relies on Algorithm 3, which is very similar to Algorithm 2 for
approximate-DP, except that (i) instead of returning ?, we draw from the oracle O and return its
output, and (2) for each u 2 U(S), we adjust the probability of sampling it directly to offset the
probability that it is returned by O. (Below the “adjusted multiplier” is qS[u], which serves similar
purpose to e

scoreS[u] in the vanilla Exponential Mechanism.)

Algorithm 3 Pure-DP Algorithm for SparseSelection.

1: procedure PURESPARSESELECTIONO(S = (S1, . . . , Sn))

2: U(S) S1 [· · · [Sn.
3: for u 2 U(S) do
4: scoreS[u] |{i | u 2 Si}|
5: qS[u] e

(✏/2)·scoreS[u] � 1

6: scoreS[?] 2

✏
ln

⇣
1

p

⌘

7: qS[?] e
(✏/2)·scoreS[?]

8: û a value drawn from U(S) [{?} where u has probability qS[u]P
u2U(S)[{?} qS[u]

9: if û =? then
10: return an output from a call to O
11: else
12: return û

Proof of Lemma 37. We now prove that Algorithm 3 yields the desired privacy and accuracy guar-
antees. For brevity, we use M as a shorthand for the mechanism PURESPARSESELECTION. It is
immediate that Algorithm 3 runs in time poly(n, `, log |U|), as desired.

Privacy. For every u 2 U , we let pO(u) � p denote the probability that the oracle O outputs u.
For convenience, when u /2 U(S), we set scoreS[u] to 0. We define

]scoreS[u] :=
2

✏
· ln

⇣
e
(✏/2)·score? · pO(u) + 1[u 2 U(S)] · (e(✏/2)·scoreS[u] � 1)

⌘

=
2

✏
· ln

⇣
e
(✏/2)·score? · pO(u) + (e

(✏/2)·scoreS[u] � 1)

⌘
.

We observe that for an input S = (S1, · · · , Sn), the probability that each u
⇤ 2 U is selected is

exactly e
(✏/2)·ŝcoreS(u⇤)

P
u2U e

(✏/2)·ŝcoreS(u) . Thus, Algorithm 3 is equivalent to running the exponential mechanism

of [MT07] with the scoring function]scoreS. Hence, to prove that Algorithm 3 is ✏-DP, it suffices to
show that the sensitivity of]scoreS[u] is at most 1. Consider any two neighboring datasets S and S0.
Due to symmetry, it suffices to show that

]scoreS[u]�]scoreS0 [u]  1,

which is equivalent to

e
(✏/2)·score? · pO(u) + (e

(✏/2)·scoreS[u] � 1)

e(✏/2)·score? · pO(u) + (e(✏/2)·scoreS0 [u] � 1)
 e

✏/2
. (4)

To prove (4), notice that e(✏/2)·score? = 1/p. As a result, we have

e
(✏/2)·score? · p+ (e

(✏/2)·scoreS[u] � 1)

e(✏/2)·score? · p+ (e(✏/2)·scoreS0 [u] � 1)
=

e
(✏/2)·scoreS[u]

e(✏/2)·scoreS0 [u]
 e

✏/2
.

This, together with pO(u) � p, implies that (4) holds, and hence our algorithm is ✏-DP as desired.

22

Accuracy. The accuracy analysis is very similar to the proof of Lemma 36. Specifically, we will
now show that, with probability at least 1 � �, Algorithm 3 outputs a universe element that solves
the SparseSelection problem with additive error14

t = score? +
2

✏
ln

⇣
2|U|

�

⌘
. To do so, we let

OPT := maxu2U |{i | u 2 Si}|. If OPT  t, the statement trivially holds. If OPT > t, we let
Ugood := {u 2 U | |{i | u 2 Si}| � OPT�t}. Let Zgood :=

P
u2Ugood

e
(✏/2)·ŝcoreS[u]. Note that

Zgood � e
(✏/2)·OPT. Also, let ZS :=

P
u2U

e
(✏/2)·ŝcoreS[u]. We therefore have that

Pr
u⇠M(S)

[u /2 Ugood] = 1� Zgood

ZS


e
(✏/2)·score? +

P
u2U\Ugood

(e
(✏/2)·scoreS[u] � 1)

ZS

 e
(✏/2)·score? + |U| · e(✏/2)·(OPT�t)

Zgood

 e
(✏/2)·(score?�OPT)

+ |U| · e(✏/2)·(�t)

 �,

where the last inequality follows from our setting of t and from the assumption that OPT > t. We
thus conclude that the output of Algorithm 3, with probability at least 1��, solves SparseSelection
with additive error t as desired.

B.3 Putting Things Together

Having set up all the ingredients in Sections B.2 and B.1, we now put them together to derive our DP
algorithm for DensestBall in low dimensions. The idea is to run Algorithm 4, where the algorithm
for SparseSelection is either from Lemma 36 or Lemma 37.

Algorithm 4 DensestBall Algorithm.

1: procedure DENSESTBALLLOWDIMENSION(x1, . . . , xn; r,↵)

2: C↵r ↵r-cover from Lemma 29
3: for i 2 {1, . . . , n} do
4: Si decoded list of x at distance (1 + ↵)r with respect to C↵r

return SparseSelection (S1, . . . , Sn)

When we set SparseSelection on Line 4 to be the pure-DP algorithm for SparseSelection from
Lemma 37, we obtain the pure-DP algorithm for DensestBall in low dimensions (Theorem 26).

Proof of Theorem 26. We run Algorithm 4 with SparseSelection being the ✏-DP algorithm from
Lemma 37 using the oracle O from Lemma 30 for C↵r. Recall that the list size ` guarantee from
Lemma 29 is ((1 + ↵)/↵)

O(d)
= (1 + 1/↵)

O(d). Hence, the running time of the algorithm is
poly(`, d, log(1/r)) = (1 + 1/↵)

O(d)
poly log(1/r) as desired.

The privacy of the algorithm follows immediately from the ✏-DP of the SparseSelection algorithm.
Finally, to argue about its accuracy, assume that there exists a ball B(c⇤, r) that contains at least T
of the input points. Since C↵r is an ↵r-cover of the unit ball, there exists c 2 C↵r such that
kc � c

⇤k  ↵r. As a result, B(c, (1 + ↵)r) contains at least T of the input points, which means
that c belongs to the decoded list Si of these points. By Lemma 37, the algorithm SparseSelection
outputs, with probability at least 1 � �, a center c0 that belongs to at least T � O

⇣
1

✏
log

⇣
1

�p

⌘⌘
=

T �O

⇣
1

✏
log

⇣
|C↵r|

�

⌘⌘
= T �O↵

⇣
d

✏
log

⇣
1

�↵r

⌘⌘
decoded lists Si’s. This indeed means that c0 is

a
⇣
1 + ↵, O↵

⇣
d

✏
log

⇣
1

�r

⌘⌘⌘
-approximate solution, as desired.

14Notice that t = 2
✏
ln

⇣
2|U|
�p

⌘
= O

⇣
1
✏
ln

⇣
1
�p

⌘⌘
, where the inequality holds because p  1/|U|.

23

We similarly obtain an approximate-DP algorithm for DensestBall with possibly smaller additive
error than in Theorem 26 by setting SparseSelection to be the approximate-DP algorithm for
SparseSelection from Lemma 36:

Proof of Theorem 27. The proof of this theorem is exactly the same as that of Theorem 26, except
that SparseSelection is chosen as the (✏, �)-DP algorithm from Lemma 36.

C k-means and k-median in Low Dimensions

In this section, we use our algorithm for DensestBall in low dimensions from Section B to ob-
tain DP approximation algorithms for k-means and k-median, culminating in the proofs of the
following theorems, which essentially matches the approximation ratios in the non-private case:
Theorem 38. For any p � 1, suppose that there is a polynomial-time (not necessarily private)

w-approximation algorithm for (k, p)-Clustering. Then, for every ✏ > 0 and 0 < ↵  1, there

is an ✏-DP algorithm that runs in time 2
Op,↵(d) · poly(n) and, with probability 1 � �, outputs a⇣

w(1 + ↵), Op,↵,w

⇣
k
2
log

2
n·2

Op,↵(d)

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-approximation for (k, p)-Clustering, for ev-

ery � 2 (0, 1).

Theorem 39. For every ✏ > 0, 0 < ↵  1 and p � 1, there is an ✏-DP algo-

rithm that runs in time 2
O↵,p(dk+k log k) · poly(n) and, with probability 1 � �, outputs an⇣

1 + ↵, O↵,p

⇣
dk

2
logn

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-approximation for (k, p)-Clustering, for every � 2 (0, 1).

Note here that Theorem 38 implies Theorem 14 in Section 4.

The structure of the proof of Theorem 38 closely follows the outline in Section 4. First, in Sec-
tion C.1, we construct a centroid set with w = O(1) by repeated applications of DensestBall. From
that point on, we roughly follow the approach of [FFKN09, HM04]. Specifically, in Section C.2,
we refine our centroid set to get w = 1 + ↵ using exponential covers. Then, in Section C.3.1, we
argue that the noisy snapped points form a private coreset with � arbitrarily close to zero. Finally, in
Section C.3.2, we put things together and obtain a proof of Theorem 38.

While this approach also yields an FPT algorithm with approximation ratio 1 + ↵, the additive er-
rors will depend exponentially on d (as in Theorem 38). In this case, the error can be reduced to
poly(d, k, log n, 1/✏) as stated in Theorem 39. Roughly speaking, we can directly run the Exponen-
tial Mechanism on the refined coreset. This is formalized in Section C.4.

C.1 Coarse Centroid Set via Repeated Invocations of DensestBall

The first step in our approximation algorithm is to construct a “coarse” centroid set (with w = O(1))
by repeatedly applying our DensestBall algorithm15, while geometrically increasing the radius r

with each call. Each time a center is found, we also remove points that are close to it. The procedure
is described more precisely below as Algorithm 5. (Here we use 0 to denote the origin in Rd.)

Algorithm 5 Finding Coarse Centroid Set.

1: procedure COARSECENTROIDSET✏(x1, . . . , xn)

2: Xuncovered (x1, . . . , xn)

3: C {0}
4: for i 2 {1, . . . , dlog ne} do
5: r 2

i
/n

6: for j = 1, . . . , 2k do
7: ci,j DENSESTBALLLOWDIMENSION(Xuncovered; r, 1)

8: C C [{c}
9: Xuncovered Xuncovered \ B(c, 8r)

return C

15Here we only require the approximation ratio to be some constant for DensestBall, which is fixed to 2 in
the algorithm itself.

24

We can show that the produced set C is a centroid set with approximation ratio w = O(1). In fact,
below we state an even stronger property that for every c and r where the ball B(c, r) contains many
points, at least one of the point in C is close to c. Throughout this section, we write OPT as a
shorthand for OPT

p,k

X .

Lemma 40. For any d 2 N, ✏ > 0, and 0 < r,↵,�  1, let Td,✏,�,r,↵ = O↵

⇣
d

✏
log

⇣
1

�r

⌘⌘

be the additive error guarantee from Theorem 26. Furthermore, let T
⇤

be a shorthand for

T
d,

✏

2kdlog ne ,
�

2kdlog ne ,
1
n
,1
= O

⇣
dk logn

✏
log

⇣
n

�

⌘⌘
.

For every ✏ > 0, there is a 2
O(d)

poly(n)-time ✏-DP algorithm that outputs a set C ✓ Rd
of size

O(k log n) which, for every � 2 (0, 1), satisfies the following with probability at least 1� �: for all

c 2 Rd
and r 2

⇥
1

n
, 1
⇤

such that nc,r := |X \ B(c, r)| is at least 2T
⇤
, there exists c

0 2 C such that

kc� c
0k  18 ·max

⇢
r,

⇣
2OPT

nc,rk

⌘1/p
�

.

Before we prove Lemma 40, let us note that it immediately implies that the output set is an⇣
Op(1), Op

⇣
dk

2
logn

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-centroid set, as stated below. Nonetheless, we will not use

this fact directly in subsequent steps since the properties in Lemma 40 are stronger and more conve-
nient to use.
Corollary 41. For every ✏ > 0 and p � 1, there is an 2

O(d)
poly(n)-time ✏-DP algorithm that,

with probability 1 � �, outputs an

⇣
Op(1), Op

⇣
dk

2
logn

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-centroid set for (k, p)-

Clustering of size O(k log n), for every � 2 (0, 1).

Note that Corollary 41 implies Lemma 15 in Section 4.

Proof of Corollary 41. We claim that the set of points C guaranteed by Lemma 40 forms the desired
centroid set. To prove this, let us fix an optimal solution c

⇤
1
, . . . , c

⇤

k
of (k, p)-Clustering on the input

X. where ties are broken arbitrarily. For such a solution, let the map : [n] ! [k] be such that
c
⇤

 (i)
2 argminj2[k] kxi� c

⇤

j
k (with ties broken arbitrarily). For every j 2 [k], let16

n
⇤

j
:= | �1

(j)|

be the number of input points closest to center c⇤
j

and let r⇤
j
:=

⇣
1

n⇤
j

P
i2 �1(j)

kxi � c
⇤

j
kp
⌘1/p

.

Finally, we use r̃j to denote max

⇢
2r

⇤

j
,
1

n
, 2

⇣
4OPT

n⇤
j
k

⌘1/p
�

.

Let T ⇤ be as in Lemma 40. Let J ✓ [k] be the set {j 2 [k] | n
⇤

j
� 4T

⇤}. Due to Markov’s
inequality and p � 1, we have that |X \ B(cj , 2r⇤j)| � 0.5n

⇤

j
, which is at least 2T ⇤ for all j 2 J .

Thus, Lemma 40 ensures that, with probability 1� �, the following holds for all j 2 J : there exists
c
0

j
2 C such that kc0

j
� c

⇤

j
k  18r̃j . Henceforth, we will assume that this event holds and show that

C must be an
⇣
Op(1), Op

⇣
dk

2
logn

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-centroid set of X.

For convenience, we let c0
j
= 0 for all j /2 J . From the discussion in the previous paragraph, we can

derive

cost
p

X(c
0

1
, . . . , c

0

k
) 

X

i2[n]

kx0

i
� c

0

 (i)
kp

=

X

j2[k]

X

i2 �1(j)

kx0

i
� c

0

j
kp

=

X

j2J

X

i2 �1(j)

kx0

i
� c

0

j
kp +

X

j2J\[k]

X

i2 �1(j)

kx0

i
� c

0

j
kp


X

j2J

X

i2 �1(j)

(kx0

i
� c

⇤

j
k+ kc⇤

j
� c

0

j
k)p +

X

j2J\[k]

X

i2 �1(j)

1

16We assume throughout that n⇤
j > 0. This is without loss of generality in the case where n � k. When

n < k, our DP algorithms can output anything, since the allowed additive errors are larger than k.

25


X

j2J

X

i2 �1(j)

�
2
pkx0

i
� c

⇤

j
kp + 2

pkc⇤
j
� c

0

j
kp
�
+

X

j2J\[k]

4T
⇤


X

j2J

X

i2 �1(j)

�
2
pkx0

i
� c

⇤

j
kp + 2

pkc⇤
j
� c

0

j
kp
�
+ 4kT

⇤

 2
p ·OPT+2

p

0

@
X

j2J

n
⇤

j
kc⇤

j
� c

0

j
kp
1

A+O

✓
dk

2
log n

✏
log

✓
n

�

◆◆
. (5)

Now, since kc0
j
� c

⇤

j
k  18r̃j , we have

X

j2J

n
⇤

j
kc⇤

j
� c

0

j
kp 

X

j2J

n
⇤

j
(18r̃j)

p

= 18
p
X

j2J

n
⇤

j

0

@max

8
<

:2r
⇤

j
,
1

n
, 2

4OPT

n⇤

j
k

!1/p
9
=

;

1

A
p

 18
p
X

j2J

n
⇤

j

�
2r

⇤

j

�p
+

✓
1

n

◆p

+
4OPT

n⇤

j
k

!

 36
p
OPT+18

p
+ 4 · 18p ·OPT .

Plugging this back into 5, we have

cost
p

X(c
0

1
, . . . , c

0

k
)  Op(1) ·OPT+Op

✓
dk

2
log n

✏
log

✓
n

�

◆
+ 1

◆
,

which concludes our proof.

We will now turn our attention back to the proof of Lemma 40.

Proof of Lemma 40. We claim that Algorithm 5, where DensestBall on Line 7 is the
⇣

✏

2kdlogne

⌘
-

DP algorithm from Theorem 26 (with ↵ = 1), satisfies the properties. It is clear that the runtime of
the algorithm is as claimed. We will next argue the privacy and security guarantees of our algorithm.

Privacy. We will now argue that the algorithm is ✏-DP. To do so, consider any pair of datasets
X,X0 and any possible output c̃ = (c̃i,j)i2[dlogne],j2[2k]. Furthermore, let M be the shorthand
for our algorithm COARSECANDIDATES, and for every (i, j) 2 [dlog ne] ⇥ [2k], let R<(i,j) =

{(i0, j0) 2 [dlog ne]⇥ [2k] | i0 < i or i0 = i, j
0
< j}. We have

Pr[M(X) = c]

Pr[M(X0) = c]
(6)

= ⇧(i,j)2[dlogne]⇥[2k]

Pr
⇥
M(X)(i,j) = c̃i,j | 8(i0, j0) 2 R<(i,j)M(X)(i0,j0) = c̃i0,j0

⇤

Pr
⇥
M(X0)(i,j) = c̃i,j | 8(i0, j0) 2 R<(i,j)M(X0)(i0,j0) = c̃i0,j0

⇤ . (7)

Now note that when M(X)(i0,j0) = M(X0
)(i0,j0) for all (i0, j0) < R<(i,j), the sets Xuncovered at

step (i, j) of the two runs are neighboring datasets. Thus, the
⇣

✏

2kdlogne

⌘
-DP guarantee of the call

to DensestBall on line 7 implies that

Pr
⇥
M(X)(i,j) = c̃i,j | 8(i0, j0) 2 R<(i,j)M(X)(i0,j0) = c̃i0,j0

⇤

Pr
⇥
M(X0)(i,j) = c̃i,j | 8(i0, j0) 2 R<(i,j)M(X0)(i0,j0) = c̃i0,j0

⇤  e
✏

2kdlog ne .

Plugging this back into (6), we get

Pr[M(X) = c]

Pr[M(X0) = c]

⇣
e

✏

2kdlog ne
⌘2kdlogne

= e
✏
,

which means that our algorithm is ✏-DP as desired.

26

Accuracy. The rest of this proof is devoted to proving the accuracy guarantee of Algorithm 5.
To do so, we first note that the accuracy guarantee in Theorem 26 implies that each call to the
DensestBall algorithm in line 7 solves the DensestBall problem with approximation ratio 2 and
additive error T ⇤, with probability at least 1 � �

2kdlogne
. By a union bound, this holds for all calls

to DensestBall with probability at least 1 � �. Henceforth, we assume that this event, which we
denote by EDensestBall for brevity, occurs.

Now, let us fix c 2 Rd and r 2 [1/n, 1] such that nc,r := |X \ B(c, r)| is at least 2T ⇤. We
will next argue that, with probability at least 1 � �, there exists c

0 2 C such that kc � c
0k 

18 ·max

⇢
r,

⇣
2OPT

nc,rk

⌘1/p
�

. We will prove this by contradiction.

Suppose for the sake of contradiction that for all c
0 2 C, we have kc � c

0k > 18 ·

max

⇢
r,

⇣
2OPT

nc,rk

⌘1/p
�

. Let ĩ =
⇠
log

✓
n ·max

⇢
r,

⇣
2OPT

nc,rk

⌘1/p
�◆⇡

and r̃ = 2
ĩ
/n. Our assump-

tion implies that

kc� c
0k � 9r̃ (8)

for all c0 2 C.

Now, let us consider the centers selected on line 7 when i = ĩ; let these centers be c
0
1
, . . . , c

0

2k
.

Using (8) and the fact that r̃ � r, we get that all the nc,r points in X \ B(c, r) still remain in
Xuncovered. As a result, from our assumption that EDensestBall occurs, when c

0

j
is selected (in line 7)

we must have that

|B(c0
j
, 2r̃) \Xuncovered| � nc,r � T

⇤ � 0.5nc,r, (9)

for all j 2 [2k]. Note that this also implies that

kc0
j
� c

0

j0k > 6r̃, (10)

for j < j
0; otherwise, B(c0

j0 , 2r̃) would have been completely contained in B(c0
j
, 8r̃) and line 9

would have already removed all elements of B(c0
j0 , 2r̃) from Xuncovered.

Now, consider any optimal solution C
⇤
= {c⇤

1
, . . . , c

⇤

k
} to the (k, p)-Clustering problem with cost

OPT. Notice that (10) implies that the balls B (c
0
1
, 3r̃) , . . . ,B (c

0

2k
, 3r̃) are disjoint. As a result,

there must be (at least) k selected centers c0
j1
, . . . , c

0

jk
such that B

�
c
0

j1
, 3r̃

�
, . . . ,B

�
c
0

jk
, 3r̃

�
do not

contain any optimal centers from C
⇤. This implies that every point in B

�
c
0

j1
, 2r̃

�
, . . . ,B

�
c
0

jk
, 2r̃

�

is at distance more than r̃ from any centers in C
⇤. Furthermore, from (10) and (9), the balls

B
�
c
0

j1
, 2r̃

�
, . . . ,B

�
c
0

jk
, 2r̃

�
are all pairwise disjoint and each contains at least 0.5nc,r points. This

means that

cost
p

X(c
⇤

1
, . . . , c

⇤

k
) > k · 0.5 · nc,r · r̃p

� k · 0.5 · nc,r

 ✓
2OPT

nc,rk

◆1/p
!p

(from our choice of r̃)

= OPT .

This contradicts our assumption that costpX(c
⇤
1
, . . . , c

⇤

k
) = OPT.

As a result, the accuracy guarantee holds conditioned on EDensestBall. Since we argued earlier that
Pr[EDensestBall] � 1� �, we have completed our proof.

C.2 Centroid Set Refinement via Exponential Covers

As stated earlier, we will now follow the approach of [FFKN09], which is in turn based on a (non-
private) coreset construction of [HM04]. Specifically, we refine our centroid set by placing expo-
nential covers over each of the point in the coarse centroid set from Section C.1. This is described
formally in Algorithm 6 below. We note that [HM04] orginally uses exponential grids, where cov-
ers are replaced by grids; this does not work for us because grids will lead to an additive error
bound of O(d)

d (instead of O(1)
d for covers) which is super-polynomial for our regime of parame-

ter d = O(log k). We also remark that exponential covers are implicitly taken in [FFKN09] where

27

Algorithm 6 Centroid Set Refinement.

1: procedure REFINEDCENTROIDSET✏(x1, . . . , xn; ⇣)

2: C COARSECENTROIDSET✏(x1, . . . , xn)

3: C0 {0}
4: for c 2 C do
5: for i 2 {1, . . . , dlog ne} do
6: r 2

i
/n

7: Cr,j (⇣r)-cover of the ball B(c, 40r)
8: C0 C0 [Cr,j

return C0

the authors take equally space lines through each center and place points at exponentially increasing
distance on each such line.

At this point, we take two separate paths. First, in Section C.3, we will continue following the
approach of [FFKN09] and eventually prove Theorem 38. In the second path, we use a different
approach to prove Theorem 39 in Section C.4.

While the REFINEDCANDIDATES algorithm will be used in both paths, the needed guarantees are
different, and thus we will state them separately in each subsequent section.

C.3 Approximation Algorithm I: Achieving Non-Private Approximation Ratio via Private
Coresets

This section is devoted to the proof of Theorem 38. The bulk of the proof is in providing a good
private coreset for the problem, which is done in Section C.3.1. As stated earlier, this part closely
follows Feldman et al. [FFKN09], except that our proof is more general in that it works for every
p � 1 and that we give a full analysis for all dimension d. Once the private coreset is constructed,
we may simply run the non-private approximation algorithm on the coreset to get the desired result;
this is formalized in Section C.3.2.

C.3.1 Private Coreset Construction

We first show that we can construct a private coreset efficiently when the dimension d is small:

Lemma 42. For every ✏ > 0, p � 1 and 0 < ↵ < 1, there is an 2
O↵,p(d)poly(n)-time ✏-DP al-

gorithm that, with probability 1��, outputs an

⇣
↵, Op,↵

⇣
k
2
log

2
n·2

Op,↵(d)

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-coreset

for (k, p)-Clustering, for every � 2 (0, 1).

Notice that Lemma 42 implies Lemma 16 in Section 4. The algorithm is presented below in Algo-
rithm 7; here ⇣ is a parameter to be specified in the proof of Lemma 42.

Algorithm 7 Private Coreset Construction.

1: procedure PRIVATECORESET✏(x1, . . . , xn; ⇣)

2: C0 REFINEDCENTROIDSET✏/2(x1, . . . , xn; ⇣).
3: for c 2 C0 do
4: count[c] = 0

5: for i 2 [n] do
6: x

0

i
 closest point in C0 to xi

7: count[x
0

i
] count[x

0

i
] + 1

8: X0 ;
9: for c 2 C0 do

10: ĉount[c] count[c] + DLap(2/✏)

11: Add max{ĉount[c], 0} copies of c to X0

12: return X0

To prove Lemma 42, we will use the following simple fact:

28

Fact 43. For any p � 1 and � > 0, define �p,� :=

⇣
1+�

((1+�)1/p�1)p

⌘
. Then, for all a, b � 0, we have

(a+ b)
p  (1 + �)a

p
+ �p,� · bp.

Proof. It is obvious to see that the inequality holds when a = 0 or b = 0. Hence, we may assume
that a, b > 0. Now, consider two cases, based on whether b 

�
(1 + �)

1/p � 1
�
a.

If b 
�
(1 + �)

1/p � 1
�
a, we have (a+ b)

p  ((1 + �)
1/p

a)
p
= (1 + �)a

p.

On the other hand, if b >
�
(1 + �)

1/p � 1
�
a, we have a <

b

(1+�)1/p�1
. This implies that

(a+ b)
p 

✓
(1 + �)

1/p

(1 + �)1/p � 1
· b
◆p

= �p,� · bp.

We run Algorithm 6 with ⇣ = 0.01 ·
⇣

↵

10�p,↵/2

⌘1/p

. It is obvious that the algorithm is ✏-DP. Fur-
thermore, the running time of the algorithm is polynomial in n, k and the size of the cover used in
Line 7 of Algorithm 6. We can pick such a cover so that the size17 is O(1/⇣)

d
= 2

O↵,p(d) as desired.
Thus, we are only left to prove that X0 is (with high probability) a good coreset of X.

To prove this, let Xsnapped denote the multiset of points that contain count[c] copies of every c 2 C.
(In other words, for every input point xi 2 X, we add its closest point ci from C to Xsnapped.) The
correctness proof of Lemma 42 is then divided into two parts. First, we will show that Xsnapped is
a good coreset of X:

Lemma 44. For every � > 0, with probability 1 � �

2
, Xsnapped is an⇣

↵, Op,↵

⇣
dk

2
logn

✏
· log

⇣
n

�

⌘
+ 1

⌘⌘
-coreset of X.

Then, we show that the final set X0 is a good coreset of X.

Lemma 45. For every � > 0, with probability 1� �

2
, X0

is a

⇣
0, O

⇣
(k log

2
n)·2

Op,↵(d)

✏
· log

⇣
n

�

⌘⌘⌘
-

coreset of Xsnapped.

It is simple to see that Lemma 42 is an immediate consequence of Lemmas 44 and 45. Hence, we
are left to prove these two lemmas.

Snapped Points are a Coreset: Proof of Lemma 44. The proof of Lemma 44 share some similar
components as that in Corollary 41, but the (⇣r)-covers employed in Algorithm 6 allow one to get a
sharped bound, leading to the better ratio.

Proof of Lemma 44. Let us fix an optimal solution c
⇤
1
, . . . , c

⇤

k
of (k, p)-Clustering on the input X.

where ties are broken arbitrarily. For such a solution, let the map : [n] ! [k] be such that
c
⇤

 (i)
2 argminj2[k] kxi � c

⇤

j
k (with ties broken arbitrarily). For every j 2 [k], let n⇤

j
:= | �1

(j)|

be the number of input points closest to center c⇤
j

and let r⇤
j
:=

⇣
1

n⇤
j

P
i2 �1(j)

kxi � c
⇤

j
kp
⌘1/p

.

Finally, we let r̃j to denote max

⇢
2r

⇤

j
,
1

n
, 2

⇣
4OPT

n⇤
j
k

⌘1/p
�

.

Let T ⇤ be as in Lemma 40, but with failure probability �/2 instead of �. Let J ✓ [k] be the set {j 2
[k] | n⇤

j
� 4T

⇤}. Due to Markov’s inequality and p � 1, we have that |X \ B(cj , 2r⇤j)| � 0.5n
⇤

j
,

which is at least 2T ⇤ for all j 2 J .

Thus, Lemma 40 ensures that, with probability 1 � �/2, the following holds for all j 2 J : there
exists c

0

j
2 C such that kc0

j
� c

⇤

j
k  18r̃j . Henceforth, we will assume that this event holds and

show that Xsnapped must be an
⇣
↵, Op,↵

⇣
dk

2
logn

✏
log

⇣
n

�

⌘⌘⌘
-coreset of X.

17This holds for any (⇣r)-cover that is also a ⌦(⇣r)-packing. For example, covers described in Section B.1
satisfy this property.

29

Consider any input point i 2 �1
(J). Let r̂i = kxi�c⇤ (i)k+18r̃ (i). From the previous paragraph,

we have kxi � c
0

 (i)
k  r̂i. Hence, from Line 7 of Algorithm 6,

kxi � x
0

i
k  2⇣ r̂i. (11)

Now, consider any c1, . . . , ck 2 Rd. We have

cost
p

Xsnapped
(c1, . . . , ck) =

X

i2[n]

✓
min
j02[k]

kx0

i
� cj0k

◆p


X

i2[n]

✓✓
min
j02[k]

kxi � cj0k
◆
+ kxi � x

0

i
k
◆p


X

i2[n]

✓
(1 + ↵/2) ·

✓
min
j02[k]

kxi � cj0k
◆p

+ �p,↵/2 · kxi � x
0

i
kp
◆

(by Fact 43)

= (1 + ↵/2) · costpX(c1, . . . , ck) + �p,↵/2 ·
X

i2[n]

kxi � x
0

i
kp. (12)

Now, we can separate the term
P

i2[n]
kxi � x

0

i
kp as follows.

X

i2[n]

kxi � x
0

i
kp =

X

j2k

X

i2 �1(j)

kxi � x
0

i
kp

=

X

j2J

X

i2 �1(j)

kxi � x
0

i
kp +

X

j /2J

X

i2 �1(j)

kxi � x
0

i
kp

(11)


X

j2J

X

i2 �1(j)

(2⇣ r̂i)
p
+

X

j2[k]\J

X

i2 �1(j)

1

 (2⇣)
p ·

0

@
X

j2J

X

i2 �1(j)

r̂
p

i

1

A+ k · 4T ⇤

= (2⇣)
p ·

0

@
X

j2J

X

i2 �1(j)

r̂
p

i

1

A+O

✓
dk

2
log n

✏
log

✓
n

�

◆◆
, (13)

where in the last inequality we recall from the definition that | �1
(j)|  4T

⇤ for all j /2 J .

From the definition of r̂i, we can now bound the term
P

j2J

P
i2 �1(j)

r̂
p

i
by

X

j2J

X

i2 �1(j)

r̂
p

i
=

X

j2J

X

i2 �1(j)

�
kxi � c

⇤

j
k+ 18r̃j

�p

 19
p ·

X

j2J

X

i2 �1(j)

max{kxi � c
⇤

 (i)
k, r̃j}p

= 19
p ·

X

j2J

X

i2 �1(j)

⇣
kxi � c

⇤

 (i)
kp + r̃

p

j

⌘

 19
p

0

@OPT+

X

j2J

n
⇤

j
r̃
p

j

1

A . (14)

where the first inequality follows from the fact that (a+ b)
p  (2a)

p
+ (2b)

p.

From the definition of r̃j , we may now bound the term
P

j2J
n
⇤

j
r̃
p

j
by

X

j2J

n
⇤

j
r̃
p

j
=

X

j2J

n
⇤

j
·max

8
<

:2r
⇤

j
,
1

n
, 2

4OPT

n⇤

j
k

!1/p
9
=

;

p

30

= 2
p
X

j2J

n
⇤

j
·

(r

⇤

j
)
p
+

1

n
+

4OPT

n⇤

j
k

!

 2
p
(OPT+1 + 4OPT)

= 5 · 2p ·OPT+Op(1). (15)

Plugging (13), (14), and (15) back into (12), we get

cost
p

Xsnapped
(c1, . . . , ck)

 (1 + ↵/2) · costpX(c1, . . . , ck) + �p,↵/2 · (100⇣)p OPT+Op,↵

✓
dk

2
log n

✏
log

✓
n

�

◆
+ 1

◆

 (1 + ↵/2) · costpX(c1, . . . , ck) + (↵/2) ·OPT+Op,↵

✓
dk

2
log n

✏
log

✓
n

�

◆
+ 1

◆

 (1 + ↵) · costpX(c1, . . . , ck) +Op,↵

✓
dk

2
log n

✏
log

✓
n

�

◆
+ 1

◆
,

where the second inequality follows from our choice of ⇣.

Using an analogous argument, we get that

costX(c1, . . . , ck)  (1 + ↵) · costpXsnapped
(c1, . . . , ck) +Op,↵

✓
dk

2
log n

✏
log

✓
n

�

◆
+ 1

◆
.

Dividing both sides by 1 + ↵ yields

(1� ↵) · costpX(c1, . . . , ck)  cost
p

Xsnapped
(c1, . . . , ck) +Op,↵

✓
dk

2
log n

✏
log

✓
n

�

◆
+ 1

◆
.

Thus, Xsnapped is a
⇣
1 + ↵, Op,↵

⇣
dk

2
logn

✏
log

⇣
n

�

⌘⌘
+ 1

⌘
-coreset of X as desired.

Handling Noisy Counts: Proof of Lemma 45. We next give a straightforward proof of
Lemma 45. Similar statements were shown before in [FFKN09, Ste20]; we include the proof here
for completeness.

Proof of Lemma 45. For each c 2 C0, recall that |ĉount[c] � count[c]| is just distributed as the
absolute value of the discrete Laplace distribution with parameter 2/✏. It is simple to see that, with
probability 0.5�/|C0|, we have |ĉount[c] � count[c]|  log(2|C

0
|/�)

✏
. As a result, by a union bound,

we get that
P

c2C0 |ĉount[c]� count[c]|  |C0| · log(|C
0
|/�)

✏
with probability at least 1� �/2.

Finally, we observe that for any centers c1, . . . , ck 2 Rd, it holds that

| costpXsnapped
(c1, . . . , ck)� cost

p

X0(c1, . . . , ck)|


X

c2C0

���max{ĉount[c], 0}� count[c]

��� ·
✓
min
i2[k]

kci � ck
◆
.


X

c2C0

���ĉount[c]� count[c]

���

 |C0| · log(|C
0|/�)
✏

.

Finally, recall that |C0|  |C| · dlog ne · O(1/⇣)
d
= O

�
k log

2
n · 2Op,↵(d)

�
. Plugging this to the

above yields the desired bound.

C.3.2 From Coreset to Approximation Algorithm

Finally, we give our DP approximation algorithm. This is extremely simple: first find a private
coreset using Algorithm 7 and then run a (possibly non-private) approximation algorithm on this
coreset.

31

Algorithm 8 Algorithm for (k, p)-Clustering in Low Dimension.

1: procedure CLUSTERINGLOWDIMENSION✏(x1, . . . , xn, k; ⇣)

2: X0 PRIVATECORESET✏(x1, . . . , xn; ⇣)

3: return NONPRIVATEAPPROXIMATION(X0
, k)

As alluded to earlier, the above algorithm can give us an approximation ratio that is arbritrarily
close to that of the non-private approximation algorithm, while the error remains small (when the
dimension is small). This is formalized below.

Proof of Theorem 38. We run Algorithm 8 with ⇣ being the same as in the proof of Lemma 42,
except that with approximation guarantee 0.1↵ instead of ↵, and NONPRIVATEAPPROXIMATION
being the (not necessarily DP) w-approximation algorithm. The privacy and running time of the
algorithm follow from Lemma 42. We will now argue its approximation guarantee.

By Lemma 42, with probability at least 1 � �, X0 is a (0.1↵, t)-coreset of X, where t =

Op,↵

⇣
k
2
log

2
n·2

Op,↵(d)

✏
log

⇣
n

�

⌘
+ 1

⌘
. Let c⇤

1
, . . . , c

⇤

k
be the optimal solution of X. Since NONPRI-

VATEAPPROXIMATION is a w-approximation algorithm, it must return a set c1, . . . , ck of centers
such that

costX0(c1, . . . , ck)  w ·OPT
p,k

X0

 w · costpX0(c
⇤

1
, . . . , c

⇤

k
)

 w(1 + 0.1↵) · costpX(c
⇤

1
, . . . , c

⇤

k
) + wt

(since X0 is a (0.1↵, t)-coreset of X)

= w(1 + 0.1↵) ·OPT
p,k

X +wt. (16)

Using once again the fact that X0 is a (0.1↵, t)-coreset of X, we get

cost
p

X(c1, . . . , ck) 
1

1� 0.1↵
· (costpX0(c1, . . . , ck) + t)

(16)
 1

1� 0.1↵
·
⇣
w(1 + 0.1↵) ·OPT

p,k

X +wt+ t

⌘

 w(1 + ↵)OPT
p,k

X +Ow(t),

which completes our proof.

C.4 Approximation Algorithms II: Private Discrete (k, p)-Clustering Algorithm

In this section, we show how to reduce the additive error in some cases, by using a DP algorithm
for Discrete (k, p)-Clustering. Recall the definition of discrete (k, p)-Clustering from Section 2: in
addition to X = (x1, . . . , xn) 2 (Rd

)
n and k 2 N, we are also given a set C ✓ Rd and the goal is

to find c1, . . . , ck 2 C that minimizes costpX(c1, . . . , ck).

The overview is very simple: we will first show (in Section C.4.1) that REFINEDCENTROIDSET
can produce a centroid set with an approximation ratio arbitrarily close to one. Then, we explain
in Section C.4.2 that by running the natural Exponential Mechanism for Discrete (k, p)-Clustering
with the candidate set being the output from REFINEDCENTROIDSET, we arrive at a solution for
(k, p)-Clustering with an approximation ratio arbitrarily close to one, thereby proving Theorem 39.

We remark that previous works [BDL+17, SK18, Ste20] also take the approach of producing a cen-
troid set and then run DP approximation for Discrete (k, p)-Clustering from [GLM+10]. However,
the centroid sets produced in previous works do not achieve ratio arbitrarily close to one and thus
cannot be used to derive such a result as our Theorem 39.

C.4.1 Centroid Set Guarantee of REFINEDCENTROIDSET

The centroid set guarantee for the candidates output by REFINEDCENTROIDSET is stated below.
The crucial point is that the approximation ratio can be 1 + ↵ for any ↵ > 0.

32

Lemma 46. For every ✏ > 0, p � 1 and 0 < ↵  1, there is an 2
O↵,p(d)poly(n)-time ✏-DP

algorithm that, with probability 1� �, outputs an

⇣
1 + ↵, O↵,p

⇣
dk

2
logn

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-centroid

set for (k, p)-Clustering of size O
�
k log

2
n · 2O↵,p(d)

�
, for every � 2 (0, 1).

The proof of Lemma 46 below follows similar blueprint as that of Lemma 44.

Proof of Lemma 46. We simply run Algorithm 6 with ⇣ = 0.01 ·
⇣

↵

10�p,↵/2

⌘1/p

(where �·,· is as
defined in Fact 43). It follows immediately from Lemma 40 that the algorithm is ✏-DP. To bound the
size of C, note that we may pick the cover on Line 7 so that its size is O(1/⇣)

d
= 2

O↵,p(d). Hence,
the size of the output set C0 is at most O

�
k log

2
n · 2O↵,p(d)

�
as desired.

We let c⇤
1
, . . . , c

⇤

k
, , n

⇤
1
, . . . , n

⇤

k
, r

⇤
1
, . . . , r

⇤

k
, r̃1, . . . , r̃k, T

⇤
, J be defined similarly as in the proof of

Lemma 44.

Recall from the proof of Lemma 44 that, with probability at least 1� �, the following holds for all
j 2 J : there exists c0

j
2 C such that kc0

j
� cjk  18r̃j . We henceforth assume that this event occurs.

From line 7, this implies that for all j 2 J there exists cj 2 C0 such that

kcj � c
⇤

j
k  2⇣ r̃j . (17)

For all j /2 J , let cj = 0 for notational convenience.

We will now bound OPT
p,k

X (C0
) as follows.

OPT
p,k

X (C0
)  cost

p

X(c1, . . . , ck)

=

X

i2[n]

✓
min
j02[k]

kxi � cj0k
◆p

=

X

j2[k]

X

i2 �1(j)

✓
min
j02[k]

kxi � cj0k
◆p


X

j2[k]

X

i2 �1(j)

kxi � cjkp

=

0

@
X

j2J

X

i2 �1(j)

kxi � cjkp
1

A+

0

@
X

j2[k]\J

X

i2 �1(j)

kxi � cjkp
1

A . (18)

We will bound the two terms in (18) separately. First, we bound the second term. Recall that since
j /2 J , we have that | �1

(j)|  n
⇤

j
 4T

⇤
= O

⇣
dk logn

✏
log

⇣
n

✏�

⌘⌘
. Hence, we get

0

@
X

j2[k]\J

X

i2 �1(j)

kxi � cjkp
1

A =

0

@
X

j2[k]\J

X

i2 �1(j)

kxikp
1

A

 k · 4T ⇤

= O

✓
dk

2
log n

✏
log

✓
n

�

◆◆
. (19)

Next, we can bound the first term in (18) as follows.
0

@
X

j2J

X

i2 �1(j)

kxi � cjkp
1

A 

0

@
X

j2J

X

i2 �1(j)

(kxi � c
⇤

j
k+ kcj � c

⇤

j
k)p

1

A



0

@
X

j2J

X

i2 �1(j)

(1 + ↵/2) · kxi � c
⇤

j
kp + �p,↵/2 · kcj � c

⇤

j
kp
1

A

(Fact 43)

33

 (1 + ↵/2) ·OPT+

0

@
X

j2J

n
⇤

j
· �p,↵/2 · kcj � c

⇤

j
kp
1

A

(17)
 (1 + ↵/2) ·OPT+

0

@
X

j2J

n
⇤

j
· �p,↵/2 · (2⇣ r̃j)p

1

A

= (1 + ↵/2) ·OPT+�p,↵/2 · (2⇣)p ·

0

@
X

j2J

n
⇤

j
r̃j

1

A

 (1 + ↵/2) ·OPT+�p,↵/2 · (2⇣)p · (5 · 2p ·OPT+Op(1))

 (1 + ↵) ·OPT+O↵,p(1), (from our choice of ⇣)

where the second-to-last inequality holds via a similar argument to (15). Plug-
ging (19) and (from our choice of ⇣) back into (18), we conclude that C0 is a⇣
1 + ↵, O↵,p

⇣
dk

2
logn

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-centroid set of X as desired.

C.4.2 Approximation Algorithm from Private Discrete (k, p)-Cluster

It was observed by Gupta et al. [GLM+10]18 that the straightforward application of the Exponential
Mechanism [MT07] gives an algorithm with approximation ratio 1 and additive error O

⇣
k log |C|

✏

⌘
,

albeit with running time |C|k · poly(n):
Theorem 47 ([GLM+10, Theorem 4.1]). For any ✏ > 0 and p � 1, there is an |C|k · poly(n)-time

✏-DP algorithm that, with probability 1 � �, outputs an

⇣
1, O

⇣
k

✏
log

⇣
|C|

�

⌘⌘⌘
-approximation for

(k, p)-Clustering, for every � 2 (0, 1).

Our algorithm is simply to run the above algorithm on (X, REFINEDCENTROIDSET(X)):

Algorithm 9 Approximation Algorithm for (k, p)-Clustering.

1: procedure APXCLUSTERING✏(x1, . . . , xn; ⇣)

2: C REFINEDCENTROIDSET✏/2(x1, . . . , xn; ⇣).
3: return DISCRETECLUSTERINGAPPROX✏/2(x1, . . . , xn, C, k)

Proof of Theorem 39. We run Algorithm 9, where ⇣ is as in the proof of Lemma 46 and the algo-
rithm on Line 3 is an (✏/2)-DP algorithm from Theorem 47. To see that the algorithm is ✏-DP, recall
from Lemma 46 that the algorithm on Line 2 is (✏/2)-DP. Since DISCRETECLUSTERINGAPPROX
is (✏/2)-DP, Basic Composition (Theorem 24) implies that the entire algorithm is ✏-DP as desired.
The bottleneck in terms of running time comes from DISCRETECLUSTERINGAPPROX. From The-
orem 47, the running time bound is

|C|k · poly(n)  O(k log
2
n · 2O↵,p(d))

k · poly(n) = 2
O↵,p(kd+k log k) · poly(n)

where the bound on |C| comes from Lemma 46, and the second inequality comes from the fact that19

(k log n)
k  2

O(k log k) · poly(n).
Finally, we argue the approximation guarantee of the algorithm. Recall from Lemma 46 that, with
probability 1 � �/2, C is a

⇣
1 + ↵, O↵,p

⇣
dk

2
logn

✏
log

⇣
n

�

⌘
+ 1

⌘⌘
-centroid set of X. Further-

more, from the approximation guarantee of Theorem 47, DISCRETECLUSTERINGAPPROX outputs

18Note that the precise theorem statement in [GLM+10] is only for k-median. However, the same argument
applies for (k, p)-Clustering for any p � 1.

19Specifically, if k  logn

log logn
, it holds that (log n)O(k)  poly(n); on the other hand, if k >

logn

log logn
, then

(log n)O(k)  k
O(k) = 2O(k log k).

34

c1, . . . , ck such that costpX(c1, . . . , ck)  OPT
p,k

X (C) + O

⇣
k

✏
log

⇣
|C|

�

⌘⌘
. Combining these two,

the following holds with probability 1� �:

cost
p

X(c1, . . . , ck)

 OPT
p,k

X (C) +Op

✓
k

✏
log

✓
|C|
�

◆◆


✓
(1 + ↵) ·OPT+O↵,p

✓
dk

2
log n

✏
log

✓
n

�

◆
+ 1

◆◆
+O

✓
k

✏
log

✓
k log

2
n · 2O↵,p(d)

�

◆◆

 (1 + ↵) ·OPT+O↵,p

✓
dk

2
log n

✏
log

✓
n

�

◆
+ 1

◆
,

which completes our proof.

D Dimensional Reduction: There and Back Again

In this section, we will extend our algorithm to work in high dimension. The overall idea is quite
simple: we will use well-known random dimensionality reduction techniques, and use our formerly
described algorithms to solve the problem in this low-dimensional space. While the centers found in
low-dimensional space may not immediately give us the information about the centers in the high-
dimensional space, it does give us an important information: the clusters. For (k, p)-Clustering,
these clusters mean the partition of the points into k parts (each consisting of the points closest to
each center). For DensestBall, the cluster is simply the set of points in the desired ball. As we
will elaborate below, known techniques imply that it suffices to only consider these clusters in high
dimension without too much additional error. Given these clusters, we only have to find the center
in high-dimension. It turns out that this is an easier task, compared to determining the partitions
themselves. In fact, without privacy constraints, finding the optimal center of a given cluster is a
simple convex program. Indeed, for (k, p)-Clustering, finding a center privately can be done using
known tools in private convex optimization [CMS11, KST12, JKT12, DJW13, BST14, WYX17].
On the other hand, the case of DensestBall is slightly more complicated, as applying these exisiting
tools directly result in a large error; as we will see below, it turns out that we will apply another
dimensional reduction one more time to overcome this issue.

We will now formalize the intuition outlined above. It will be convenient to use the following
notation throughout this section: For any ✓ � 0, we write a ⇡1+✓ b to denote 1

1+✓
 a

b
 1 + ✓.

D.1 (k, p)-Clustering

We will start with (k, p)-Clustering. The formal statements of our results are stated below:
Theorem 48. For any p � 1, suppose that there exists a polynomial time (not necessarily private)

w-approximation algorithm for (k, p)-Clustering. Then, for every 0 < ✏  O(1) and 0 < ↵,� 
1, there exists an ✏-DP algorithm that runs in (k/�)

Op,↵(1)
poly(nd) time and, with probability

1 � �, outputs an

⇣
w(1 + ↵), Op,↵,w

⇣⇣
kd+(k/�)

Op,↵(1)

✏

⌘
· poly log

⇣
n

�

⌘⌘⌘
-approximation (k, p)-

Clustering.

Theorem 49. For any p � 1, suppose that there exists a polynomial time (not necessarily private)

w-approximation algorithm for (k, p)-Clustering. Then, for every 0 < ✏  O(1) and 0 < �,↵,� 
1, there exists an ✏-DP algorithm that runs in (k/�)

Op,↵(1)
poly(nd) time and, with probability

1��, outputs an

⇣
w(1 + ↵), Op,↵,w

⇣⇣
k
p
d

✏
· poly log

⇣
k

��

⌘⌘
+

⇣
(k/�)

Op,↵(1)

✏
· poly log

⇣
n

�

⌘⌘⌘⌘
-

approximation for (k, p)-Clustering.

We remark that, throughout this section, we will state our results under the assumption that ✏ 
O(1). In all cases, our algorithms extend to the case ✏ = !(1), but with more complicated additve
error expressions; thus, we choose not state them here.

To do so, we will need the following definition of the cost of a k-partition, as stated below. Roughly
speaking, this means that we already fix the points assigned to each of the k clusters, and we can
only select the center of each cluster.

35

Definition 50 (Partition Cost). Given a partition X = (X1, . . . ,Xk) of X, its cost is defined as

cost
p
(X) :=

kX

i=1

min
ci2Rd

kxi � cjkp.

For (k, p)-Clustering, we need the following recent breakthrough result due to Makarychev et
al. [MMR19], which roughly stating that reducing to O(log k) dimension suffices to preserve the
cost of (k, p)-Clustering for all paritions.
Theorem 51 (Dimensionality Reduction for (k, p)-Cluster [MMR19]). For every 0 < �, ↵̃ < 1, p �
1 and k 2 N, there exists d

0
= O↵̃

�
p
4
log(k/�)

�
. Let S be a random d-dimensional subspace of

Rd
and ⇧S denote the projection from Rd

to S. Then, with probability 1 � �, the following holds

for every partition X = (X1, . . . ,Xk) of X:

cost
p
(X) ⇡1+↵̃ (d/d

0
)
p/2 · costp(⇧S(X)),

where ⇧S(X) denote the partition (⇧S(X1), . . . ,⇧S(Xk)).

Another ingredient we need is the algorithms for private empirical risk minimization (ERM). Recall
that, in ERM, there is a convex loss function ` and we are given data points x1, . . . , xn. The goal to
find ✓ in the unit ball in p dimension that minimizes

P
n

i=1
`(✓;xi). When ` is L-Lipschitz, Bassily

et al. [BST14] give an algorithm with small errors, both for pure- and approximate-DP. These are
stated formally below.
Theorem 52 ([BST14]). Suppose that `(·;x) is convex and L-Lipschitz for some constant L. For

every ✏ > 0, there exists an ✏-DP polynomial time algorithm for ERM with loss function ` such that,

with probability 1� �, the additive error is at most OL

⇣
d

✏
· poly log

⇣
1

�

⌘⌘
, for every � 2 (0, 1).

Theorem 53 ([BST14]). Suppose that `(·;x) is convex and L-Lipschitz for some constant L. For ev-

ery 0 < ✏ < O(1) and 0 < � < 1, there exists an ✏-DP polynomial time algorithm for ERM with loss

function ` such that, with probability 1� �, the additive error is at most OL

⇣p
d

✏
· poly log

⇣
n

��

⌘⌘
,

for every � 2 (0, 1).

We remark here that the “high probability” versions we use above are not described in the main body
of [BST14], but they are included in Appendix D of the arXiv version of [BST14].

Notice that the (1, p)-Clustering is exactly the ERM problem, but with `(✓, x) = k✓�xkp where ✓ is
the center. Note that since both ✓, x 2 B(0, 1), `(·;x) is Op(1)-Lipschitz for p � 1. It is also simple
to see that `(·;x) is convex. Thus, results of [BST14] immediately yield the following corollaries.
Corollary 54. For every ✏ > 0 and p � 1, there exists an ✏-DP polynomial time algorithm for (1, p)-

Clustering such that, with probability 1 � �, the additive error is at most Op

⇣
d

✏
· poly log

⇣
1

�

⌘⌘
,

for every � 2 (0, 1).

Corollary 55. For every 0 < ✏ < O(1), 0 < � < 1 and p � 1, there exists an (✏, �)-DP polynomial

time algorithm for (1, p)-Clustering such that, with probability 1 � �, the additive error is at most

Op

⇣p
d

✏
· poly log

⇣
n

��

⌘⌘
, for every � 2 (0, 1).

We are now ready to state the algorithm. As outlined before, we start by projecting to a random low-
dimensional space and use our low-dimensional algorithm (Theorem 38) to determine the clusters
(i.e., partition). Then, for each of the cluster, we use the algorithms above (Corollaries 54 and 55) to
find the center. The full pseudo-code of the algorithm is given in Algorithm 10. There is actually one
deviation from our rough outline here: we scale the points after projection by a factor of ⇤ (and zero
them out if the norm is larger than one). The reason is: if we do not implement this step, the additive
error from our low dimensional algorithm will get multiplied by a factor of (d/d0)p/2 = ⌦̃(d

p/2
),

which is too large for our purpose. By picking an appropriate scaling factor ⇤, we only incur a
polylogarithmic multiplicative factor in the additive error.

We will now prove the guarantee of the algorithm, starting with the pure-DP case:

Proof of Theorem 48. We simply run Algorithm 11 where d0 be as in Theorem 51 with failure prob-
ability �/4 and ↵̃ = 0.1↵, ⇤ =

q
0.01

log(n/�)
· d0

d
, CLUSTERINGLOWDIMENSION is the algorithm

36

Algorithm 10 Algorithm for (k, p)-Clustering.

1: procedure CLUSTERINGHIGHDIMENSION✏(x1, . . . , xn; r,↵; d
0
,⇤)

2: S Random d
0-dimension subspace of Rd

3: for i 2 {1, . . . , n} do
4: x̃i ⇧S(xi)

5: if kx̃ik  1/⇤ then
6: x

0

i
= ⇤x̃i

7: else
8: x

0

i
= 0

9: (c
0
1
, . . . , c

0

k
) CLUSTERINGLOWDIMENSION✏/2(x0

1
, . . . , x

0
n
)

10: (X1, . . . ,Xk) the partition induced by (c
0
1
, . . . , c

0

k
) on (x

0
1
, . . . , x

0
n
)

11: for j 2 {1, . . . , k} do
12: cj FINDCENTER✏/2(Xj)

13: return (c1, . . . , ck)

from Theorem 38 that is (✏/2)-DP, has with ↵ = 0.1↵ and the failure probability �

4k
, and FIND-

CENTER is the algorithm from Corollary 54 that is (✏/2)-DP and the failure probability �/4. Since
algorithm CLUSTERINGLOWDIMENSION is (✏/2)-DP and each parition Xj is applied FINDCEN-
TER only once, the trivial composition implies that the entire algorithm is ✏-DP. Furthermore, it is
obvious that every step except the application of CLUSTERINGLOWDIMENSION runs in polynomial
time. From Theorem 38, the application of CLUSTERINGLOWDIMENSION takes

(1 + 10/↵)
Op,↵(d

0
)
poly(n) = (1 + 10/↵)

Op,↵(log(k/�))
poly(n) = (k/�)

Op,↵(1)
poly(n)

time. As a result, the entire algorithm runs in (k/�)
O↵(1)

poly(nd) time as desired.

We will now prove the accuracy of the algorithm. Let X̃ = (x̃1, . . . , x̃n) and X = (x
0
1
, . . . , x

0
n
). By

applying Theorem 51, the following holds with probability 1� �/4:

OPT
p,k

X̃

✓
d
0

d

◆p/2

· (1 + 0.1↵) ·OPT
p,k

X . (20)

Furthermore, standard concentration implies that kx̃ik  1/⇤ with probability 0.1�/n. By union
bound, this means that the following simultaneously holds for all i 2 {1, . . . , n} with probability
1� 0.1�:

x
0

i
= ⇤x̃i. (21)

When (20) and (21) both hold, we may apply Theorem 38, which implies that, with probability
1� �/2, we have

cost
p

X0(c1, . . . , ck)

 w(1 + 0.1↵)OPT
p,k

X0 +Op,↵,w

✓
k
2
log

2
n · 2Op,↵(d)

✏
log

✓
n

�

◆◆

= w(1 + 0.1↵)OPT
p,k

X0 +Op,↵,w

✓
(k/�)

Op,↵(1)

✏
· poly log

✓
n

�

◆◆

(21)
= ⇤

p · w(1 + 0.1↵)OPT
p,k

X̃
+Op,↵,w

✓
(k/�)

Op,↵(1)

✏
· poly log

✓
n

�

◆◆

(20)
 ⇤

p · w(1 + 0.3↵)OPT
p,k

X̃
+Op,↵,w

✓
(k/�)

Op,↵(1)

✏
· poly log

✓
n

�

◆◆
, (22)

where the first equality follows from d
0
= Op,↵

⇣
log

⇣
k

�

⌘⌘
.

Let X0
1
, . . . ,X0

k
partition of X0 induced by c1, . . . , ck, and let X̃1, . . . , X̃k denote the corresponding

partition of X̃. From Theorem 51, the following holds with probability 1� �/4:

cost
p

(X1,...,Xk)

✓
d

d0

◆p/2

· (1 + 0.1↵) · costp
(X̃1,...,X̃k)

. (23)

37

By union bound (20), (21), (22) and (23) together occur with probability 1� 3�/4. When this is the
case, we have

cost
p

(X1,...,Xk)

(23)


✓
d

d0

◆p/2

· (1 + 0.1↵) · costp
(X̃1,...,X̃k)

(21)
=

1

⇤p
·
✓
d

d0

◆p/2

· (1 + 0.1↵) · costp
(X0

1,...,X
0
k
)

=
1

⇤p
·
✓
d

d0

◆p/2

· (1 + 0.1↵) · costpX0(c1, . . . , ck)

(22)


✓
d

d0

◆p/2

· w(1 + 0.5↵) ·OPT
p,k

X̃
+Op,↵,w

1

⇤p
·
✓
d

d0

◆p/2

· (k/�)
Op,↵(1)

✏
· poly log

✓
n

�

◆!

(20)
 w(1 + ↵) ·OPT

p,k

X +Op,↵,w

1

⇤p
·
✓
d

d0

◆p/2

·
✓
(k/�)

Op,↵(1)

✏
· poly log

✓
n

�

◆◆!

= w(1 + ↵) ·OPT
p,k

X +Op,↵,w

✓
(k/�)

Op,↵(1)

✏
· poly log

✓
n

�

◆◆
, (24)

where in the last inequality we use the fact that, by our choice of parameters, 1

⇤2 · d

d0 = O(log(1/�)).

Now, using the guarantee from Corollary (54) and the union bound over all j = 1, . . . , k, the
following holds simultaneously for all j = 1, . . . , k with probability 1� �/4:

cost
p

Xj
(cj)  OPT

p,1

Xj
+Op

✓
d

✏
· log

✓
k

�

◆◆
. (25)

When (24) and (25) both occur (with probability at least 1� �), we have

cost
p

X(c1, . . . , ck) 
kX

j=1

cost
p

Xj
(cj)

(25)


kX

j=1

✓
OPT

p,1

Xj
+Op

✓
d

✏
· log

✓
k

�

◆◆◆

= cost
p

(X1,...,Xk)
+Op

✓
kd

✏
· log

✓
k

�

◆◆

(24)
 w(1 + ↵) ·OPT

p,k

X +Op,↵,w

✓✓
kd+ (k/�)

Op,↵(1)

✏

◆
· poly log

✓
n

�

◆◆
,

which concludes our proof.

We will next state the proof for approximate-DP case, which is almost the same as that of the pure-
DP case.

Proof of Theorem 49. This proof is exactly the same as that of Theorem 48, except that we use
the (1, p)-Clustering algorithm from Corollary 55 instead of Corollary 54. Everything in the
proof remains the same except that the additive error on the right handside of (25) becomes
Op

⇣p
d

✏
· log

⇣
k

��

⌘⌘
(instead of Op

⇣
d

✏
· log

⇣
k

�

⌘⌘
as in Theorem 48), resulting in the new addi-

tive error bound.

We remark that Theorems 48 and 49 imply Theorem 13 in Section 4.

38

FPT Approximation Schemes. Finally, we state the results for FPT algorithms below. These are
almost exactly the same as above, except that we use the FPT algorithm from Theorem 39 to solve
the low-dimensional (k, p)-Clustering, leading to approximation ratio arbritrarily close to one.
Theorem 56. For every 0 < ✏  O(1), 0 < ↵,�  1 and p � 1, there exists an

✏-DP algorithm that runs in (1/�)
Op,↵(k log k)

poly(nd) time and, w.p. 1 � �, outputs an⇣
1 + ↵, Op,↵

⇣⇣
kd+k

2

✏

⌘
· poly log

⇣
n

�

⌘⌘⌘
-approximation for (k, p)-Clustering.

Proof. This proof is the same as the proof of Theorem 48, except that we use the algorithm from
Theorem 39 instead of that from Theorem 38. Note here that the bottleneck in the running time is
from the application of Theorem 39, which takes 2Op,↵(d

0
k+k log k) · poly(n) = (1/�)

Op,↵(k log k) ·
poly(n) time because d = Op,↵(log(k/�)).

Theorem 57. For every 0 < ✏  O(1), 0 < �,↵,�  1 and p � 1, there exists

an (✏, �)-DP algorithm that runs in (1/�)
Op,↵(k log k)

poly(nd) time and, with probability 1 �
�, outputs an

⇣
1 + ↵, Op,↵

⇣⇣
k
p
d

✏
· poly log

⇣
k

��

⌘⌘
+

⇣
k
2

✏
· poly log

⇣
n

�

⌘⌘⌘⌘
-approximation for

(k, p)-Clustering.

Proof. This is exactly the same as the proof of Theorem 49, except that we use the algorithm from
Theorem 39 instead of that from Theorem 38.

D.2 DensestBall

We refer to the variant of the DensestBall problem where we are promised that all points are within
a certain radius as the 1-Center problem:
Definition 58 (1-Center). The input of 1-Center consists of n points in the d-dimensional unit ball

and a positive real number r. It is also promised that all input points lie in some ball of radius r.

A (w, t)-approximation for 1-Center is a ball B of radius w · r that contains at least n � t input

points.

D.2.1 1-Center Algorithm in High Dimension

Once again, we will first show how to solve the 1-Center problem in high dimensions:
Lemma 59. For every ✏ > 0 and 0 < ↵,�  1, there exists an ✏-DP algorithm that runs in

time (nd)
O↵(1)

poly log(1/r) and, with probability 1��, outputs an

⇣
1 + ↵, O↵

⇣
d

✏
· log

⇣
d

�r

⌘⌘⌘
-

approximation for 1-Center.
Lemma 60. For every 0 < ✏  O(1) and 0 < ↵,�, �  1, there exists an (✏, �)-

DP algorithm that runs in time (nd)
O↵(1)

poly log(1/r) and, w.p. 1 � �, outputs an⇣
1 + ↵, O↵

⇣p
d

✏
· poly log

⇣
nd

✏��

⌘⌘⌘
-approximation for 1-Center.

A natural way to solve the 1-Center problem in high dimensions is to use differentially private ERM
similarly to the case of (k, p)-Clustering, but with a hinge loss such as `(c, x) = 1

r
max{0, r�kc�

xk}. In other words, the loss is zero if c is within the ball of radius r aroun the center c, whereas
the loss is at least one when it is say at a distance 2r from c. The main issue with this approach is
that the Lipchitz constant of this function is as large as 1/r. However, since the expected error in
the loss has to grow linearly with the Lipchitz constant [BST14], this will give us an additive error
that is linear in 1/r, which is undesirable.

Due to this obstacle, we will instead take a different path: use a dimensionality reduction argu-
ment again! More specifically, we randomly rotate each vector and think of blocks each of roughly
O(log(nd)) coordinates as a single vector. We then run our low-dimensional DensestBall algo-
rithm from Section B on each block. Combining these solutions together immediately gives us the
desired solution in the high-dimensional space. The full pseudo-code of the procedure is given be-
low; here b is the parameter of the algorithm, DENSESTBALLLOWDIMENSION is the algorithm for
solving DensestBall in low dimensions, and we use the notation y|i,...,j to denote a vector resulting
from the restriction of y to the coordinates i, . . . , j.

39

Algorithm 11 1-Center Algorithm.

1: procedure 1-CENTERb(x1, . . . , xn; r,↵)

2: R Random (d⇥ d) rotation matrix
3: for i 2 {1, . . . , n} do
4: for j 2 {1, . . . , b} do
5: x

j

i
 (Rxi)|1+b

(j�1)d
b

c,...,b
jd

b
c

6: for j 2 {1, . . . , b} do
7: d

j b jd
b
c � b (j�1)d

b
c

8: r
j (1 + 0.1↵) ·

p
dj/d · r

9: c
j DENSESTBALLLOWDIMENSION(xj

1
, . . . , x

j
n
; r

j
, 0.1↵).

10: c̃ concatenation of c1, . . . , ct
11: return R

�1
(c̃)

To prove the correctness of our algorithm, we will need the Johnson–Lindenstrauss (JL)
lemma [JL84]. The version we use below follows from the proof in [DG03].
Theorem 61 ([DG03]). Let v be any d-dimensional vector. Let S denote a random d-dimensional

subspace of Rd
and let ⇧S denote the projection from Rd

onto S. Then, for any ⇣ 2 (0, 1) we have

Pr

h
kvk2 ⇡1+⇣

p
d/d0 · k⇧vk2

i
� 1� 2 exp

✓
�d

0
⇣
2

100

◆
.

We are now ready to prove our results for 1-Center, starting with the pure-DP algorithm
(Lemma 59).

Proof of Lemma 59. We simply run Algorithm 11 with b = max

n
1, b d

108 log(nd/�)/↵2 c
o

and with
DENSESTBALLLOWDIMENSION on Line 9 being the algorithm A from Theorem 26 that is (✏/b)-
DP, has approximation ratio w = 1+0.1↵ and failure probability �

2d
. Since algorithm A is (✏/b)-DP

and we apply the algorithm b times, the trivial composition implies that the entire algorithm is ✏-DP.
Furthermore, it is obvious that every step except the application of A runs in polynomial time. From
Theorem 26, the jth application of A takes time

(1 + 1/↵)
O↵(d/b)

poly log(1/r
0
) = (1 + 1/↵)

O↵(log(nd�))
poly log(

p
d/dj · r)

= (nd)
O↵(1)

poly log(1/r).

As a result, the entire algorithm runs in time (nd)
O↵(1)

poly log(1/r) as desired.

The remainder of this proof is dedicated to proving the accuracy of the algorithm. To do this, let
cOPT denote the solution, i.e., the center such that x1, . . . , xn 2 B(cOPT, r). Moreover, for every
j 2 {1, . . . , b}, let cj

OPT
be R(cOPT) restricted to the coordinates 1 + b (j�1)d

b
c, . . . , b jd

b
c.

Notice that dj � d

106 log(nd�)/↵2 for every j 2 {1, . . . , b}. As a result, by applying Theorem 61
and the union bound, the following bounds hold simultaneously for all j 2 {1, . . . , b} and i, i

0 2
{1, . . . , n} with probability 1� �/2:

kxj

i
� c

j

OPT
k  (1 + 0.1↵) ·

r
dj

d
· kxi � cOPTk  r

j
, (26)

kxj

i
� x

j

i0k  (1 + 0.1↵) ·
r

dj

d
· kxi � xi0k  2r

j
, (27)

where the last inequality follows from the triangle inequality (through cOPT).

Observe that, when (26) holds, xj

1
, . . . , x

j
n
2 B(cj

OPT
, r

j
). As a result, the accuracy guarantee

from Theorem 26 and the union bound implies that the following holds for all j 2 {1, . . . , b}, with
probability 1� �/2, we have

|{xj

1
, . . . , x

j

n
} \ B(c, (1 + 0.1↵)r

j
)|  t

j
, (28)

40

where t
j

= O↵

⇣
d
j

(✏/b)
log

⇣
1

(�/2b)rj

⌘⌘
= O↵

⇣
d

✏
· log

⇣
d

�r

⌘⌘
. For convenience, let t

max
=

maxj2{1,...,b} t
j
= O↵

⇣
d

✏
· log

⇣
d

�r

⌘⌘
.

We may assume that n > t
max as otherwise the desired accuracy guarantee holds trivially. When this

is the case, we have that {xj

1
, . . . , x

j
n
} \ B(c, (1 + 0.1↵)r

j
) is not empty. From this and from (27),

we have

kxj

i
� c

jk  (3 + 0.1↵)r
j  3.1r

j
, (29)

for all j 2 {1, . . . , b} and i 2 {1, . . . , n}.

To summarize, we have so far shown that (26), (27), (28), and (29) hold simultaneously for all
j 2 {1, . . . , b} and i, i

0 2 {1, . . . , n} with probability at least 1��. We will henceforth assume that
this “good” event occurs and show that we have the desired additive error bound, i.e., |{x1, . . . , xn}\
B(c, (1 + ↵)r)|  O↵

⇣
d

✏
· log

⇣
d

�r

⌘⌘
.

To prove such a bound, let Xfar = {x1, . . . , xn} \ B(c, (1 + ↵)r) and, for every j 2 {1, . . . , b}, let
Xj

far = {xj

1
, . . . , x

j
n
} \ B(c, (1 + 0.1↵)r

j
). Notice that, for every input point xi, we have

kxi � ck2 = kRxi � c̃k2

=

X

j2{1,...,b}

kxj

i
� c

jk2

=

X

j2{1,...,b}
xi /2X

j

far

kxj

i
� c

jk2 +
X

j2{1,...,b}
xi2X

j

far

kxj

i
� c

jk2

(29)


X

j2{1,...,b}
xi /2X

j

far

(1 + 0.1↵)
2
(r

j
)
2
+

X

j2{1,...,b}
xi2X

j

far

(3.1r
j
)
2

 (1 + 0.1↵)
4
r
2
+

X

j2{1,...,b}
xi2X

j

far

(3.1r
j
)
2
, (30)

where the last inequality follows from the identity (r
1
)
2
+ · · ·+(r

b
)
2
= (1+0.1↵)

2
r
2. Notice also

that, since dj is within a factor of 2 of each other, this implies that rj  (4(1+ 0.1↵)
2
r
2
)/b  16r

2

b

for all j 2 {1, . . . , b}. Plugging this back to (30), we have

kxi � ck2  (1 + 0.1↵)
4
r
2
+

160r
2

b
· |{j 2 {1, . . . , b} | xi 2 Xj

far}|

Recall that xi 2 Xfar iff kxi � c̃k � (1 + ↵)r. Hence, for such xi, we must have

|{j 2 {1, . . . , b} | xi 2 Xj

far}| �
b

160r2
·
�
(1 + ↵)

2
r
2 � (1 + 0.1↵)

4
r
2
�

� b↵

160
.

Summing the above inequality over all xi 2 Xfar, we have
X

j2{1,...,b}

|Xj

far| �
b↵

160
· |Xfar|.

Recall from (28) that |Xj

far|  t
max. Together with the above, we have

|Xfar| 
160

b↵
· b · tmax

= O↵

✓
d

✏
· log

✓
d

�r

◆◆
,

which concludes our proof.

The proof of Lemma 60 is similar, except we use the approximate-DP algorithm for DensestBall
(from Theorem 27) as well as advanced composition (Theorem 25).

41

Proof of Lemma 60. We simply run Algorithm 11 with b = max

n
1, b d

106 log(nd/�)/↵2 c
o

, and with

A being the algorithm from Theorem 27 that is (✏
0
, �

0
)-DP with ✏0 = min

⇢
1,

✏

100

p
b ln(2/�)

�
and

�
0
= 0.5�/b, has approximation ratio w = 1 + 0.1↵ and failure probability �

2d
. Since algorithm A

is (✏0, �0)-DP and we apply the algorithm b times, the advanced composition theorem (Theorem 25)
implies20 that the entire algorithm is (✏, �)-DP. The running time analysis is exactly the same as that
of Lemma 59.

Finally, the proof of the additive error bound is almost identical to that of Lemma 59, except that
here, using Theorem 27 instead of Theorem 26, we have

t
j
= O↵

✓
d
j

✏0
log

✓
n

✏0�0 · (0.5�/b)

◆◆

= O↵

(d/b)

✏/
p
b log(1/�)

log

n

min{(✏/
p
b log(1/�)), 1} · (�/b) · (0.5�/b)

!!

 O↵

dp
b
·
p

log(1/�)

✏
· log

✓
nd

✏��

◆!

= O↵

p

d log(nd/�) ·
p

log(1/�)

✏
· log

✓
nd

✏��

◆!

= O↵

 p
d

✏
· poly log

✓
nd

✏��

◆!
,

which results in a similar bound on the additive error for the overall algorithm.

D.2.2 From 1-Center to DensestBall via Dimensionality Reduction

We are now ready to prove the main theorems regarding DensestBall (Theorems 62 and 63).
Theorem 62. For every ✏ > 0 and 0 < ↵,�  1, there exists an ✏-DP algorithm that runs in

(nd)
O↵(1)

poly log(1/r) time and, with probability 1��, outputs an

⇣
1 + ↵, O↵

⇣
d

✏
· log

⇣
d

�r

⌘⌘⌘
-

approximation for DensestBall.
Theorem 63. For every 0 < ✏  O(1) and 0 < �,↵,�  1, there exists an (✏, �)-DP algorithm that

runs in (nd)
O↵(1)

poly log(1/r) time and, with probability 1 � �, solves the DensestBall problem

with approximation ratio 1 + ↵ and additive error O↵

⇣p
d

✏
· poly log

⇣
nd

✏��

⌘⌘
.

Note here that Theorems 62 and 63 imply Theorems 6 in Section 3.

With the 1-Center algorithm in the previous subsection, the algorithm for DensestBall in high
dimension follows the same footprint as its counterpart for (k, p)-Clustering. The pseudo-code is
given below.

Algorithm 12 DensestBall Algorithm (High Dimension).

1: procedure DENSESTBALLHIGHDIMENSIONd0(x1, . . . , xn; r,↵)

2: S Random d
0-dimensional subspace of Rd

3: for i 2 {1, . . . , n} do
4: x

0

i
 projection of xi onto S

5: r
0 (1 + 0.1↵) ·

p
d0/d · r

6: c
0 DENSESTBALLLOWDIMENSION(x0

1
, . . . , x

0
n
; r

0
, 0.1↵)

7: Xcluster = {xi | x0

i
2 B(c0, (1 + 0.1↵)r

0
)}

8: return 1-CENTER(Xcluster; (1 + 0.1↵)
3
r, 0.1↵)

20Here we use that fact that, since ✏0  1, we have e
✏
0
� 1 < 10✏0.

42

To prove Theorems 62 and 63, we will also need the following well-known theorem. Its use in our
proof below has appeared before in similar context of clustering (see, e.g., [MMR19]).

Theorem 64 (Kirszbraun Theorem [Kir34]). Suppose that there exists an L-Lipchitz map from

X ✓ Rd
to Rd

0
. Then, there exists an L-Lipchitz extension

21
 ̃ of from Rd

to Rd
0
.

Proof of Theorem 62. We simply run Algorithm 12 where d
0
= min

�
d, d106 log(nd/�)/↵2e

,

DENSESTBALLLOWDIMENSION is the algorithm from Theorem 26 that is (✏/2)-DP, has approx-
imation ratio w = 1 + 0.1↵ and the failure probability �

3
, and the 1-Center algorithm on Line 8

is the algorithm from Lemma 59 that is (✏/2)-DP, has approximation ratio w = 1 + 0.1↵ and the
failure probability �

3
. Basic composition immediately implies that the entire algorithm is ✏-DP. Fur-

thermore, similar to the proof of Lemma 59, it is also simple to check that the entire algorithm runs
in (nd)

O↵(1)
poly log(1/r) time as desired.

We will now argue the accuracy of the algorithm. To do this, let cOPT be the solution, i.e., the center
such that |{x1, . . . , xn} \ B(cOPT, r)| is maximized; we let T = |{x1, . . . , xn} \ B(cOPT, r)| .
Moreover, let c0

OPT
denote the projection of cOPT onto S.

By applying Theorem 61 and the union bound, the following holds simultaneously for all j 2
{1, . . . , t} and i, i

0 2 {1, . . . , n} with probability 1� �/3:

kxj

i
� c

0

OPT
k  (1 + 0.1↵) ·

r
d0

d
· kxi � cOPTk  r

0
, (31)

kx0

i
� x

0

i0k ⇡1+0.1↵

r
d0

d
· kxi � xi0k. (32)

When (31) holds, x0
1
, . . . , x

0
n
2 B(c0

OPT
, r

0
). As a result, from the accuracy guarantee from Theo-

rem 26, with probability 1� �/3, we have

|Xcluster| � T �O↵

✓
d
0

(✏/2)
log

✓
1

(�/2)r0

◆◆
� T �O↵

✓
d

✏
· log

✓
d

�r

◆◆
. (33)

Now, consider the map : {x0
1
, . . . , x

0
n
} ! Rd where (x0

i
) = xi. From (32), this map is L-

Lipchitz for L = (1 + 0.1↵)

q
d

d0 . Thus, from the Kirszbraun Theorem (Theorem 64), there exists

an L-Lipchitz extension ̃ of . Consider ̃(c0). By the L-Lipchitzness of ̃, we have

kxi � ̃(c0)k  L · kx0

i
� c

0k  (1 + 0.1↵)

r
d

d0
· (1 + 0.1↵)r

0
= (1 + 0.1↵)

3
r. (34)

for all xi 2 Xcluster.

When (34) holds, the accuracy guarantee of Lemma 59 implies that with probability 1 � �/3 the
output center c from 1-CENTER, satisfies

|B(c, (1 + 0.1↵)
4
r)| � |Xcluster|�O↵

✓
d

✏
· log

✓
d

�r

◆◆
. (35)

Finally, observe that (1+0.1↵)
4  (1+↵). Hence, by combining (33) and (35), the algorithm solves

the DensestBall problem with approximation ratio 1 + ↵ and size error O↵
⇣

d

✏
· log

⇣
d

�r

⌘⌘
.

Proof of Theorem 63. This proof is exactly the same as that of Theorem 62, except that we use
(✏/2, �/2)-DP algorithms as subroutines (instead of ✏/2-DP algorithms as before). The size error
bounds from Theorem 27 and Lemma 60 can then be used in placed of those from Theorem 26 and
Lemma 59, resulting in the new O↵

⇣p
d

✏
· poly log

⇣
nd

✏��

⌘⌘
bound.

21Recall that ̃ is an extension of iff ̃(x) = (x) for all x 2 X .

43

E From DensestBall to 1-Cluster

In this section, we prove Theorem 17. We start by formally defining the 1-Cluster problem.
Definition 65 (1-Cluster, e.g., [NSV16]). Let n, T and t be non-negative integers and let w � 1 be

a real number. The input to 1-Cluster consists of a subset S of n � T points in Bd


, the discretized

d-dimensional unit ball with a minimum discretization step of  per dimension. An algorithm is said

to solve the 1-Cluster problem with multiplicative approximation w, additive error t and probability

1 � � if it outputs a center c and a radius r such that, with probability at least 1 � �, the ball of

radius r centered at c contains at least T � t points in S and r  w · ropt where ropt is the radius

of the smallest ball containing at least T points in S.

Moreover, we denote by 1-Cluster rlow,rhigh the corresponding promise problem where ropt is guar-

anteed to be between rlow and rhigh for given 0 < rlow < rhigh < 1.

Note that for rlow =  and rhigh = 1 in Definition 65, the 1-Cluster rlow,rhigh problem coincides
with the 1-Cluster problem without promise.

The following lemma allows us to use our DP algorithm for DensestBall in order to obtain a DP
algorithm for 1-Cluster.
Lemma 66 (DP Reduction from 1-Cluster rlow,rhigh to DensestBall). Let ✏, � > 0. If there is an

(✏, �)-DP algorithm for DensestBall with approximation ratio w, additive error t(n, d, w, r, ✏, �,�)

and running time ⌧(n, d, w, r, ✏, �,�), then there is an (O(✏ · logw(rhigh/rlow)), O(� ·
logw(rhigh/rlow)))-DP algorithm that, with probability at least 1 � O(� logw(rhigh/rlow)) solves

1-Cluster rlow,rhigh with approximation ratio w
2
, additive error

max
i=0,1,...,blog

w
(rhigh/rlow)c

t(n, d, w, r/w
i
, ✏, �,�) +O

✓
logw(rhigh/rlow) log(1/�)

✏

◆

and running time

max
i=0,1,...,blog

w
(rhigh/rlow)c

⌧(n, d, w, r/w
i
, ✏, �,�) ·O(logw(rhigh/rlow)) +O(log(1/✏)).

The following theorem follows directly by combining Lemma 66 (with rhigh = 1 and rlow = )
with our pure DP algorithm for DensestBall from Theorem 62.
Theorem 67. For every 0 < ✏  O(1) and 0 < ↵,� < 1, there is an ✏-DP algorithm that

runs in time (nd)
O↵(1)

poly log(1/) and with probability at least 1 � �, solves 1-Cluster with

approximation ratio 1 + ↵ and additive error O↵

⇣
d

✏
log

⇣
d

�

⌘⌘
.

We now prove Lemma 66.

Algorithm 13 1-Cluster from DensestBall
1: procedure 1-CLUSTER(X) WITH PARAMETERS ✏, � � 0, ,� > 0, w > 1, �, rlow, rhigh > 0

AND 0 < t
0  T

2: r rhigh.
3: while r � rlow do
4: c1 center output by DensestBall ✏,�,�(X; r)

5: s1 |X \ B(c1, r)|+DLap(�)

6: if s1  T � t
0 then

7: return ?
8: c2 center output by DensestBall ✏,�,�(X; r/w)

9: s2 |X \ B(c2, r/w)|+DLap(�)

10: if s2  T � t
0 then

11: return (c1, wr)

12: else
13: r r/w

14: return (c1, r)

44

Proof of Lemma 66. We apply the reduction in Algorithm 13 with rlow, rhigh, w, and T set the
the values given in the statement of Lemma 66. We also set � =

1

✏
and t

0
= t(n, d, w, ✏, �,�) +

O(
log

w
(rhigh/rlow) log(1/�)

✏
). We now analyze the properties of the resulting algorithm for 1-Cluster.

On a high level, this algorithm performs differentially private binary search on the possible values
of the ball’s radius. In fact, in every iteration of the while loop in Algorithm 13, we either return
or decrease the radius r by a factor of w. Thus, the total number of iterations executed is at most
blogw(rhigh/rlow)c.

Privacy. The DP property directly follows from the setting of �, the privacy properties of the
DensestBall algorithm, and Basic Composition (i.e., Theorem 24).

Accuracy. Denote t := t(n, d, w, ✏, �,�). The standard tail bound for Discrete Laplace random
variables implies that the probability that a DLap(�) random variable has absolute value larger
than some ⌘ > 0 is at most e�⌦(⌘/�). By a union bound, we have that with probability at least
1 � O(� logw(rhigh/rlow)), all the runs of DensestBall succeed and each of the added DLap(�)

random variables has absolute value at most O
✓

log
w
(rhigh/rlow) log(1/�)

✏

◆
in Algorithm 13. We

henceforth condition on this event. In this case, the following holds in each iteration of the while
loop:

• If there is a ball of radius r that contains at least T of the points in X, then the ball centered
at c1 output in line 4 and of radius wr would contain at least T � t points in X. Moreover,
the setting of s1 in line 5 will not pass the if statement in line 6.

• If there is a ball of radius r/w that contains at least T of the points in X, then the ball
centered at c2 output in line 8 and of radius r would contain at least T � t points in X.
Moreover, the setting of s2 in line 9 will not pass the if statement in line 10.

Put together, these properties imply that the radius output by Algorithm 13 line 14 is at most w2 ·ropt
where ropt is the radius of the smallest ball containing at least T points in S. Moreover, the ball of
the output radius around the output center is guaranteed to contain T � t

0 points in X.

Running Time. The running time bound stated in Lemma 66 directly follows from the bound on
the number iterations and the facts that in each iteration at most 2 calls to the DensestBall algorithm
are made (each with a radius parameter of the form r/w

i for some i = 0, 1, . . . , blogw(rhigh/rlow)c),
and that the running time for sampling a Discrete Laplace random variable with parameter � is
O(1 + log(�)) [BF13].

We next show that in the case of approximate DP, there is an algorithm with an additive error with
better dependence on both the dimension d and the discretization step  per dimension.
Theorem 68. For every ↵, ✏, �,� > 0,  2 (0, 1) and positive integers n and d, there is an (✏, �)-DP

algorithm that runs in time (nd)
O↵(1)

poly log(1/) and solves the 1-Cluster problem with approx-

imation ratio 1 + ↵ and additive error O↵

⇣p
d

✏
· poly log

⇣
nd

✏��

⌘⌘
+O

⇣
1

✏
· log(1

��
) · 9log⇤

(d/)

⌘
.

On a high level, the improved dependence of the dimension d will follow from the use of our ap-
proximate DP algorithm for DensestBall from Theorem 63 (instead of our pure DP algorithm for
DensestBall from Theorem 62). On the other hand, the improved dependence of  will be obtained
by applying the following algorithm of Nissim et al. [NSV16].
Theorem 69 ([NSV16]). For every ✏, �,� > 0,  2 (0, 1) and positive integers n and d, there is an

(✏, �)-DP algorithm, GOODRADIUS, that runs in time poly(n, d, log(1/)) and solves the 1-Cluster
problem with approximation ratio w = 4 and additive error t = O

⇣
1

✏
· log(1

��
) · 9log⇤

(d/)

⌘
.

We are now ready to prove Theorem 68.

Proof of Theorem 68. We proceed by first running the GOODRADIUS algorithm from Theorem 69
to get a radius rapprox. If rapprox = 0, we run our approximate DP algorithm for DensestBall from

45

Theorem 63 with r = 0, round the resulting center to the closest point in Bd


, which we then output
along with a radius of 0. Otherwise, we apply Lemma 66 with rlow = rapprox/4 and rhigh = rapprox

and with our approximate DP algorithm for DensestBall from Theorem 63.

The privacy of the combined algorithm can be guaranteed by dividing the (✏, �)-DP budget, e.g.,
equally among the call to GOODRADIUS and that to Lemma 66 (and ultimately to Theorem 63), and
applying Basic Composition (i.e., Theorem 24).

The accuracy follows from the approximation ratio and additive error guarantees of Theorem 69,
Lemma 66 and Theorem 63, and by dividing the failure probability �, e.g., equally among the two
algorithms, and then applying the union bound.

The running time is simply the sum of the running times of the two procedures, and can thus be
directly bounded using the running time bounds in Theorem 69, Lemma 66 and Theorem 63.

F Sample and Aggregate

This section is devoted to establishing Theorem 18. As mentioned in Section 5.2, one of the basic
techniques in DP is the Sample and Aggregate framework of [NRS07]. Consider a universe U and
functions f : U⇤ ! Bd


mapping databases to points in Bd


. Intuitively, the premise of the Sample

and Aggregate framework is that, for sufficiently large databases S 2 U⇤, evaluating the function
f on a random subsample of S can yield a good approximation to the point f(S). The following
definition quantifies how good such approximations are.
Definition 70 ([NSV16]). Let  2 (0, 1). Consider a function f : U⇤ ! Bd


and a database

S 2 U
⇤
. A point c 2 Bd


is said to be an (m, r, ⇣)-stable point of f on S if for S

0
a database

consisting of m i.i.d. samples S, it holds that Pr[kf(S0
)� ck2  r] � ⇣. If such a point c exists, the

function f is said to be (m, r, ⇣)-stable on S, and r is said to be a radius of the stable point c.

Nissim et al. [NSV16] obtained the following DP reduction from the problem of finding a stable
point of small radius to 1-Cluster.
Lemma 71 ([NSV16]). Let d and n � m be positive integers, and ✏ > 0 and 0 < ⇣,�, � < 1 be

real numbers satisfying ✏  ⇣/72 and �  �✏

3
. If there is an (✏, �)-DP algorithm for 1-Cluster on

k points in d dimensions with approximation ratio w, additive error t, error probability �/3, and

running time ⌧(k, d, w, ✏, �,�/3), then there is an (✏, �)-DP algorithm that takes as input a function

f : U⇤ ! Bd


along with the parameters m, ⇣, ✏, and �, runs in time ⌧(n/(9m), d, w, ✏, �,�/3)

plus O(n/m) times the running time for evaluating f on a dataset of size m, and whenever f is

(m, r, ⇣)-stable on S, with probability 1� �, the algorithm outputs an (m,wr,
⇣

8
)-stable point of f

on S, provided that n � m ·O
✓

t

⇣
+

1

⇣2
log

✓
12

�

◆◆
.

By combining Lemma 71 and our Theorem 68, we obtain the following algorithm.
Theorem 72. Let d and n � m be positive integers, and ✏ > 0 and 0 < ⇣,↵,�, �, < 1 be real

numbers satisfying ✏  ⇣/72 and �  �✏

3
. There is an (✏, �)-DP algorithm that takes as input a func-

tion f : U⇤ ! Bd


as well as the parameters m, ⇣, ✏ and �, runs in time (nd/m)
O↵(1)

poly log(1/)

plus O(n/m) times the running time for evaluating f on a dataset of size m, and whenever f is

(m, r, ⇣)-stable on S, with probability 1��, the algorithm outputs an (m, (1+↵)r,
⇣

8
)-stable point

of f on S, provided that n � m ·O↵
⇣p

d

✏
· poly log

⇣
nd

✏��

⌘
+

1

✏
· log(1

��
) · 9log⇤

(d/)

⌘
.

We point out that our Theorem 72 obtains a 1 + ↵ approximation to the radius (where ↵ is an
arbitrarily small positive constant) whereas [NSV16] obtained an approximation ratio of O(

p
log n),

the prior work of [NRS07] had obtained an approximation ratio of O(
p
d), and a constant factor is

subsequently implied by [NS18].

G Agnostic Learning of Halfspaces with a Margin

In this section, we prove Theorem 20. We start with some definitions.

46

Halfspaces. Let sgn(x) be equal to +1 if x � 0, and to �1 otherwise. A halfspace (aka hyper-

plane or linear threshold function) is a function hu,✓(x) = sgn(u · x� ✓) where u 2 Rd and ✓ 2 R,
and where u · x = hu, xi denotes the dot product of the vectors u and x. Without loss of generality,
we henceforth focus on the case where ✓ = 0.22 A halfspace hu correctly classifies the labeled point
(x, y) 2 Rd ⇥ {±1} if hu(x) = y.

Margins. The margin of a point x with respect to a hypothesis h is defined as the largest distance
r such that any point of x at distance r is classified in the same class as x by hypothesis h. In the
special case of a halfspace hu(x) = sgn(u · x), the margin of point x is equal to |hu,xi|

kuk·kxk
.

Error rates. For a distribution D on Rd ⇥ {±1},

• the error rate of a halfspace hu on D is defined as errD(u) := Pr(x,y)⇠D[h(x) 6= y],

• for any µ > 0, the µ-margin error rate of a halfspace hu on D is defined as

err
D

µ
(u) := Pr

(x,y)⇠D


y
hu, xi
kuk · kxk  µ

�
.

Furthermore, let OPT
D

µ
:= minu2Rd err

D
µ
(u). For the ease of notation, we may write err

S
(u)

where S ✓ Rd ⇥ {±1} to denote the error rate on the uniform distribution of S; errS
µ
(u) is defined

similarly.

We study the problem of learning halfspaces with a margin in the agnostic PAC model [Hau92,
KSS94], as stated below.
Definition 73 (Proper Agnostic PAC Learning of Halfspaces with Margin). Let d 2 N, � 2 (0, 1),

and µ, t 2 R+
. An algorithm properly agnostically PAC learns halfspaces with margin µ, error t,

failure probability � and sample complexity m, if given as input a training set S = {(x(i)
, y

(i)
)}m

i=1

of i.i.d. samples drawn from an unknown distribution D on B(0, 1) ⇥ {±1}, it outputs a halfspace

hu : Rd ! {±1} satisfying err
D
(u)  OPT

D

µ
+t with probability 1� �.

When not explicitly stated, we assume that � = 0.01, it is simple to decrease this failure probability
by running the algorithm log(1/�) times and picking the best.

Related Work. In the non-private setting, the problem has a long history [BS00, BM02, McA03,
SSS09, BS12, DKM19, DKM20]; in fact, the perceptron algorithm [Ros58] is known to PAC learns
halfspaces with margin µ in the realizable case (where OPT

D

µ
= 0) with sample complexity

Ot(1/�
2
) [Nov62]. In the agnostic setting (where OPT

D

µ
might not be zero), Ben-David and Si-

mon [BS00] gave an algorithm that uses O
⇣

1

t2�2

⌘
samples and runs in time poly(d) · (1/t)O(1/�

2
).

This is in contrast with the perceptron algorithm, which runs in poly (d/t) time. It turns out that this
is not a coincidence: the agnostic setting is NP-hard even for constant t > 0 [BEL03, BS00].
Subsequent works [SSS09, DKM19, DKM20] managed to improve this running time, albeit at
certain costs. For example, the algorithm in [SSS09] is improper, meaning that it may out-
put a hypothesis that is not a halfspace, and those in [DKM19, DKM20] only guarantee that
err

D
(hu)  (1 + ⌘) ·OPT

D

µ
+t for an arbritrarily small constant ⌘ > 0.

Nguyen et al. [NUZ20] were the first to study the problem of learning halfspaces with a margin in
conjunction with differential privacy. In the realizable setting, they give an ✏-DP (resp. (✏, �)-DP)
algorithm with running time (1/t)

O(1/�
2
) · poly

⇣
d log(1/�)

✏t

⌘
(resp. poly

⇣
d log(1/�)

✏t

⌘
) and sample

complexity O

⇣
poly

⇣
1

✏t�

⌘
· poly log

⇣
1

✏t�

⌘⌘
(resp. O

⇣
poly

⇣
1

✏t�

⌘
· poly log

⇣
1

✏t��

⌘⌘
). Due to

the aforementioned NP-hardness of the problem, their efficient (✏, �)-DP algorithm cannot be ex-
tended to the agnostic setting. On the other hand, while not explicitly analyzed in the paper, their
✏-DP algorithm also works in the agnostic setting with similar running time and sample complexity.

22As a non-homogeneous halfspace (i.e., one with ✓ 6= 0) can always be thought of as a homogeneous
halfspace (i.e., with ✓ = 0) with an additional coordinate whose value is ✓.

47

Here, we provide an alternative proof of the agnostic learning result, as stated below. This will be
shown via our DensestBall algorithm together with a known connection between DensestBall and
learning halfspaces with a margin [BS00, BES02].
Theorem 74. For every 0 < ✏  O(1) and 0 < �, µ, t < 1, there is an ✏-DP algorithm that runs

in time

⇣
log(1/�)

✏t

⌘Oµ(1)

+ poly
�
Oµ

�
d

✏t

��
, and properly agnostically PAC learns halfspaces with

margin µ, error t, failure probability � and sample complexity Oµ

⇣
1

✏t2
· poly log

⇣
1

✏�t

⌘⌘
.

To prove Theorem 74, we will use the following reduction23:
Lemma 75 ([BS00, BES02]). Let µ 2 (0, 1) and ↵, t > 0 such that 1 + ↵ < 1/

p
1� µ2.

There is a polynomial-time transformation that, given as input a set S = {(x(i)
, y

(i)
)}m

i=1
of la-

beled points, separately transforms each (x
(i)
, y

(i)
) into a point z

(i)
in the unit ball such that a

solution to DensestBall on the set {z(i)}m
i=1

with radius

p
1� µ2, approximation ratio 1 + ↵

and additive error t yields a halfspace with µ
0
-margin error rate on S at most OPT

S

µ
+

t

m
where

µ
0
=
p

1� (1� µ2)(1 + ↵)2.

By combining Lemma 75 and our Theorem 62, we immediately obtain the following:
Lemma 76. For every ✏,� > 0 and 0 < µ < 1, there exists an ✏-DP algorithm that runs in

time (md)
Oµ(1), takes as input a set S = {(x(i)

, y
(i)
)}m

i=1
of labeled points, and with prob-

ability 1 � �, outputs a halfspace with µ
0
-margin error rate on S at most OPT

S

µ
+

t

m
where

µ
0
=
p

1� (1� µ2)(1 + ↵)2 and t = O↵

⇣
d

✏
· log

⇣
d

�

⌘⌘
.

As is usual in PAC learning results, we will need a generalization bound:
Lemma 77 (Generalization Bound for Halfspaces with Margin [BM02, McA03]). Let S =

{(x(i)
, y

(i)
)}m

i=1
be a multiset of i.i.d. samples from a distribution D on Rd ⇥ {±1}, where

m = ⌦(log(1/�)/(t
2
µ
2
)). Then, with probability 1�� over S, for all vectors u 2 Rd

, it holds that

err
D
(u)  err

U(S)

µ (u) + t.

The above lemmas do not yet imply Theorem 74; applying them directly will lead to a sample
complexity that depends on d. To prove Theorem 74, we will also need the following dimensionality-
reduction lemma from [NUZ20] which allows us to focus on the low-dimensional case.
Lemma 78 (Properties of JL Lemma [NUZ20]). Let A 2 Rd

0
⇥d

be a random matrix such that

d
0
= ⇥

⇣
log(1/�JL)

µ2

⌘
and Ai,j =

(
+

1
p
d0 w.p.

1

2

� 1
p
d0 w.p.

1

2

independently over (i, j).

Let u 2 Rd
be a fixed vector. Then, for any (x, y) 2 Rd ⇥ {±1} such that y · hu,xi

kuk·kxk
� µ, we have

Pr
A


y · hAu,Axi
kAuk · kAxk > 0.9µ

�
� 1� 4�JL.

Proof of Theorem 74. Our algorithm works as follows. We first draw a set S of m training samples,
and, then apply the JL lemma (with a matrix A sampled as in Lemma 78) in order to project to d

0

dimensions, where m, d
0 are to be specified below. Let SA be the projected training set (i.e., SA is

the multiset of all pairs (Ax, y) where (x, y) 2 S). We then use the algorithm from Lemma 76 with
↵ = 0.01µ

2 to obtain a halfspace u
0 2 Rd

0
. Finally, we output AT

u
0.

We will now prove the algorithm’s correctness. Consider any u
⇤ 2 argminu2Rd err

D
µ
(u). Let D0

denote the distribution of (x, y) ⇠ D conditioned on (x, y) being correctly classified by u
⇤ with

margin at least µ. (Note that errD
0

µ
(u) = 0.) Furthermore, let DA denote the distribution of (Ax, y)

where (x, y) ⇠ D, and D
0

A
denote the distribution of (Ax, y) where (x, y) ⇠ D

0.

Let �JL = 0.01t� and d
0
= ⇥

⇣
log(1/�JL)

µ2

⌘
= ⇥

⇣
log(1/(t�))

µ2

⌘
be as in Lemma 78, which implies

that EA[err
D

0
A

0.9µ
(Au

⇤
)]  0.04t�. Hence, by Markov’s inequality, we have PrA[err

D
0
A

0.9µ
(Au

⇤
) >

23This reduction is implicit in Claim 2.6 and Lemma 4.1 of [BES02].

48

0.2t]  0.2�. Combining this with the definitions of u⇤ and D
0, we have

Pr
A

h
err

DA

0.9µ
(Au

⇤
) > OPT

D

µ
+0.2t

i
 0.2�. (36)

When m � ⌦(log(1/�)/(t
2
µ
2
)), the Chernoff bound implies that

Pr
S

h
err

SA

0.9µ
(Au

⇤
) > err

DA

0.9µ
(Au

⇤
) + 0.2t

i
 0.2�. (37)

Combining (36) and (37), we have

Pr
A,S

h
err

SA

0.9µ
(Au

⇤
)  OPT

D

µ
+0.4t

i
� 1� 0.4�. (38)

Lemma 76 then ensures that, with probability 1� 0.2�, we obtain a halfspace u
0 2 Rd

0
satisfying

err
SA

0.5µ
(u

0
)  err

SA

0.9µ
(Au

⇤
) + t

0
, (39)

where t
0

= Oµ

⇣
d
0

✏m
· log

⇣
d
0

�

⌘⌘
. When we select m = ⇥µ

⇣
d
0

✏t
· log

⇣
d
0

�

⌘⌘
=

⇥µ

⇣
1

✏t2
· poly log

⇣
1

✏�t

⌘⌘
, we have t

0  0.1t.

Next, we may apply the generalization bound from Lemma 77, which implies that

Pr
S

[err
DA(u

0
)  err

SA

0.5µ
(u

0
) + 0.1t] � 1� 0.2�. (40)

Using the union bound over (38), (39) and (40), the following holds with probability at least 1� �:

err
D
(A

T
u
0
) = err

DA(u
0
)  OPT

D

µ
+t,

which concludes the correctness proof. The claimed running time follows from Lemma 76.

H ClosestPair

In this section, we give our history-independent data structure for ClosestPair (Theorem 22). Be-
fore we do so, let us briefly discuss related previous work.

Related Work. ClosestPair is among the first problems studied in computational geome-
try [SH75, BS76, Rab76] and there have been numerous works on lower and upper bounds for the
problem since then. Dynamic ClosestPair has also long been studied [Sal91, Smi92, LS92, KS96,
Bes98]. To the best of our knowledge, each of these data structures is either history-dependent or
has update time 2

!(d) · poly log n. We will not discuss these results in detail. As alluded to in the
main body of the paper, the best known history-independent data structure in the “small dimension”
regime is that of Aaronson et al. [ACL+20] whose running time is dO(d)

poly log n. Our result im-
proves the running time to 2

O(d)
poly log n. We also remark that, due to a result of [KM19], the

update time cannot24 be improved to 2
o(d)

poly log n assuming the strong exponential time hypoth-
esis (SETH); in other words, our update time is essentially the best possible.

We finally note that, in the literature, ClosestPair is sometimes referred to the optimization variant,
in which we wish to determine min1i<jn kxi�xjk22. In the offline setting, the two versions have
the same running time complexity to within a factor of poly(L) (both in the quantum and classical
settings) because, to solve the optimization variant, we may use binary search on ⇠ and apply the
algorithm for the decision variant. However, our dynamic data structure (Section H.1) does not
naturally extend to the optimization variant and it remains an interesting open question to extend the
algorithm to this case.

24Specifically, [KM19] shows, assuming SETH, that (offline) ClosestPair cannot be solved in O(n1.499)
time even for d = O(log n). If one had a data structure for dynamic ClosestPair with update time
2o(d)poly log n, then one would be able to solve (offline) ClosestPair in n · 2o(d)poly log n = n

1+o(1) time
for d = O(log n).

49

Proof Overview. We will now briefly give an outline of the proof of Theorem 22. Our proof in fact
closely follows that of Aaronson et al. [ACL+20]. As such, we will start with the common outline
before pointing out the differences. At a high-level, both algorithms partition the space Rd into small
cells C1, C2, . . . , each cell having a diameter at most

p
⇠. Two cells C,C 0 are said to be adjacent if

there are x 2 C, x
0 2 C

0 for which kx � x
0k2

2
 ⇠. The main observations here are that (i) if there

are two points from the same cell, then clearly the answer to ClosestPair is YES and (ii) if no two
points are from the same cell, it suffices to check points from adjacent cells. Thus, the algorithm
maintains a map from each present cell to the set of points in the cell, and the counter p⇠ of the
number of points from different cells that are within

p
⇠ in Euclidean distance. A data structure to

maintain such a map is known [Amb07, BJLM13] (see Theorem 79). As for p⇠, adding/removing
a point only requires one to check the cell to which the point belongs, together with the adjacent
cells. Thus, the update will be fast, as long as the number of adjacent cells (to each cell) is small.

The first and most important difference between the two algorithms is the choice of the cells.
[ACL+20] lets each cell be a d-dimensional box of length

p
⇠/d, which results in the number

of adjacent cells being d
O(d). On the other hand, we use a (0.5

p
⇠)-cover from Lemma 29 and let

the cells be the Voronoi cells of the cover. It follows from the list size bound at distance (1.5
p
⇠)

that the number of adjacent cells is at most 2O(d). This indeed corresponds to the speedup seen in
our data structure.

A second modification is that, instead of keeping all points in each cell, we just keep their (bit-wise)
XOR. The reason behind this is the observation (i) above, which implies that, when there are more
than one point in a cell, it does not matter anymore what exactly these points are. This helps simplify
our proof; in particular, [ACL+20] needs a different data structure to handle the case where there is
more than one solution; however, our data structure works naturally for this case.

There are several details that we have glossed over; the full proof is given in the next section.

H.1 History-Independent Dynamic Data Structure

As stated in the proof overview above, we will use a history-independent data structure for main-
taining a map M : {0, 1}`k ! {0, 1}`v , where `k, `v are positive integers. In this setting, the
map starts of as the trivial map k 7! 0 . . . 0. Each update is of the form: set M [k] to v, for some
k 2 {0, 1}`k , v 2 {0, 1}`v . The data structure should support a lookup of M [k] for a given k.

Similarly to before, we say that a randomized data structure is history-independent if, for any two
sequences of updates that result in the same map, the distributions of the states are the same.

Ambainis [Amb07] gives a history-independent data structure for maintaining a map, based on skip
lists. However, this results in probabilistic guarantees on running time. As a result, we will use a
different data structure due to [BJLM13] based on radix trees, which has a deterministic guarantee
on the running time. (See also [Jef14] for a more detailed description of the data structure.)

Theorem 79. [BJLM13] Let `k, `v be positive integers. There is a history-independent data struc-

ture for maintaining a map M : {0, 1}`k ! {0, 1}`v for up to n updates, such that each update and

lookup takes poly(`k, `v) time and the required memory is O(n · poly(`k, `v)).

With the above in mind, we are now ready to prove our main result of this section.

Proof of Theorem 22. Let C := C
0.5

p
⇠
✓ Rd be the lattice cover from Lemma 29 with � = 0.5

p
⇠.

It follows from the construction of Micciancio [Mic04] that every point c 2 C satisfies 3
d+1
p
⇠
c 2 Zn

(i.e., every coordinate of c is an integer multiple of
p
⇠

3d+1). As a result, we have that every point
c 2 C

⇤
:= C \ B(0, 10

p
d2L) can be represented as an `k = poly(L, d) bit integer.

Our data structure maintains a triple p
total
⇠

, q
marked-cell and H, where p

total
⇠

, q
marked-cell are integers be-

tween 0 and n (inclusive) and H is the data structure from Theorem 79 for maintaining a map M

with `k as above and `v = 2dlog ne + dL. Each key of M is thought of as an encoding of a point
c in the cover C⇤. Furthermore, each value is a triplet (ncount, p⇠, x�) where ncount is an integer
between 0 and n (inclusive), p⇠ is an integer between 0 and n (inclusive), and x� is a dL-bit string.

50

Let : (Z\[0, 2L])d ! C denote the mapping from x to argminc2C kx�ck2 where ties are broken
arbitrarily, and let Vc :=

�1
(c) denote the Voronoi cell of c (with respect to C). Observe that

can be computed in time 2
O(d) · poly(L) using the CVP algorithm from Theorem 32. Furthermore,

since C is a 0.5
p
⇠ cover, we have that k (x)� xk2  0.5

p
⇠, which implies that (x) 2 C

⇤.

For a set S of input points and c 2 C
⇤, if |Vc \S| = 1, we use x(c, S) to denote the unique element

of Vc \ S. When S is clear from the context, we simply write x(c) as a shorthand for x(c, S).

We will maintain the following invariants for the entire run of the algorithm (where S is the current
set of points):

• First, for all c 2 C
⇤, M [c] = (ncount, p⇠, x�) where the values of ncount, p⇠, x� are as

follows:

– ncount = |Vc \ S|,
– x� =

L
x2Vc\S

x where each x 2 Vc \ S is thought of as a dL-bit string resulting
from concatenating each bit representation of the coordinate,

– p⇠ depends on whether |Vc \ S| = 1. If |Vc \ S| 6= 1, p⇠ = 0. Otherwise, i.e., if
|Vc \ S| = 1, then p⇠ = |{c0 2 C \ {c} | |Vc0 \ S| = 1, kx(c)� x(c

0
)k2

2
 ⇠}|, i.e.,

the number of other cells c0 with unique input point x(c0) such that x(c) and x(c
0
) are

within
p
⇠ in Euclidean distance.

• q
marked-cell is equal to |{c 2 C

⇤ | |Vc \ S| � 2}|.

• p
total
⇠

is equal to |{c, c0 2 C
⇤ | c 6= c

0
, |Vc \ S| = |Vc0 \ S| = 1, kx(c) � x(c

0
)k2

2
 ⇠}|,

i.e., the number of pairs of cells with unique input points such that the corresponding pair
of input points are within

p
⇠ in Euclidean distance.

We now describe the operations on the data structure. Throughout, we use the following notation:

⇤((ncount, p⇠, x�), (n
0

count
, p

0

⇠
, x

0

�
)) :=

⇢
1 if ncount = n

0
count

= 1 and kx� � x
0
�
k2
2
 ⇠,

0 otherwise.

Note that, when these two states correspond to cells c and c
0, this is the contribution of c, c

0 to
p

total
⇠

. Notice also that ⇤ does not depend on p⇠ and p
0

⇠
, but we leave them in the expression for

simplicity.

Lookup. To determine whether the current point set S contains two distinct points that are at mostp
⇠ apart, we simply check whether qmarked-cell � 1 or ptotal

⇠
� 1.

Insert. To insert a point x into the data structure, we perform the following:

1. Use the algorithm for Closest Vector Problem (Theorem 32) to compute c = (x).

2. Let (nold
count

, p
old

⇠
, x

old
�

) = M [c].

3. Let nnew
count

= n
old
count

+ 1, p
new

⇠
= 0 and x

new
�

= x
old
�
� x.

4. Using the list-decoding algorithm (from Lemma 29), compute the set Cclose of all c0 2 C

within distance 2
p
⇠ of c. Then, for each c

0 2 Cclose, do the following:

(a) Compute ⇤
old

= ⇤(M [c
0
], (n

old
count

, p
old

⇠
, x

old
�

)).
(b) Compute ⇤

new
= ⇤(M [c

0
], (n

new
count

, p
new

⇠
, x

new
�

)).

(c) If ⇤old � ⇤
new 6= 0, increase p⇠ of M [c

0
] by ⇤

old � ⇤
new.

(d) Increase p
new

⇠
by ⇤

new.

5. Update M [c] to (n
new
count

, p
new

⇠
, x

new
�

)

6. If nnew
count

= 2, increase q
marked-cell by one.

51

Delete. To remove a point x from the data structure, we perform the following:

1. Use the algorithm for the Closest Vector Problem (Theorem 32) to compute c = (x).

2. Let (nold
count

, p
old

⇠
, x

old
�

) = M [c].

3. Let nnew
count

= n
old
count

� 1, p
new

⇠
= 0 and x

new
�

= x
old
�
� x.

4. Using the list-decoding algorithm (from Lemma 29), compute the set Cclose of all c0 2 C

within distance 2
p
⇠ of c. Then, for each c

0 2 Cclose, do the following:

(a) Compute ⇤
old

= ⇤(M [c
0
], (n

old
count

, p
old

⇠
, x

old
�

)).
(b) Compute ⇤

new
= ⇤(M [c

0
], (n

new
count

, p
new

⇠
, x

new
�

)).
(c) If ⇤old � ⇤

new 6= 0, increase p⇠ of M [c
0
] by ⇤

old � ⇤
new.

(d) Increase p
new

⇠
by ⇤

new.

5. Update M [c] to (n
new
count

, p
new

⇠
, x

new
�

)

6. If nnew
count

= 1, decrease q
marked-cell by one.

Time and memory usage. It is obvious that a lookup takes poly(d, L, log n) time. For an in-
sertion or a deletion, recall that the CVP algorithm and the list-decoding algorithm run in time
2
O(d)

poly(L, log n). Furthermore, from the list size bound, Cclose is of size at most 2O(d), which
means that we only invoke at most 2O(d) lookups and updates of the map M . As a result, from the
running time guarantee in Theorem 79, we can conclude that the total runtime for each update is
only 2

O(d)
poly(L, log n).

Correctness. It is simple to verify that the claimed invariants hold. Notice also that these invariants
completely determine p

total
⇠

, q
marked-cell and M based on the current point set S alone (regardless of

the history). As a result, from the history-independence of H, we can conclude that our data structure
is also history-independent.

52

	Introduction
	Preliminaries
	Private DensestBall
	A Private Algorithm in Low Dimensions
	Efficiently List-Decodable Covers
	SparseSelection
	Putting Things Together

	Private k-means and k-median
	Finding a Coarse Centroid Set via DensestBall
	Turning a Coarse Centroid Set into a Coreset
	Finishing Steps

	Applications
	1-Cluster
	Sample and Aggregate
	Agnostic Learning of Halfspaces with a Margin
	ClosestPair

	Conclusion and Open Questions
	Additional Preliminaries
	Composition Theorems

	DensestBall in Low Dimensions
	List-Decodable Covers of the Unit Ball
	Additional Preliminaries on Lattices
	Almost Perfect Lattices and Proof of Lemma 29
	Near-Uniform Sampler: Proof of Lemma 30

	SparseSelection
	Approximate-DP Algorithm
	Pure-DP Algorithm

	Putting Things Together

	k-means and k-median in Low Dimensions
	Coarse Centroid Set via Repeated Invocations of DensestBall
	Centroid Set Refinement via Exponential Covers
	Approximation Algorithm I: Achieving Non-Private Approximation Ratio via Private Coresets
	Private Coreset Construction
	From Coreset to Approximation Algorithm

	Approximation Algorithms II: Private Discrete (k, p)-Clustering Algorithm
	Centroid Set Guarantee of RefinedCentroidSet
	Approximation Algorithm from Private Discrete (k, p)-Cluster

	Dimensional Reduction: There and Back Again
	(k, p)-Clustering
	DensestBall
	1-Center Algorithm in High Dimension
	From 1-Center to DensestBall via Dimensionality Reduction

	From DensestBall to 1-Cluster
	Sample and Aggregate
	Agnostic Learning of Halfspaces with a Margin
	ClosestPair
	History-Independent Dynamic Data Structure

