Estimating decision tree learnability
with polylogarithmic sample complexity

Guy Blanc Neha Gupta
Stanford University Stanford University
gblanc@cs.stanford.edu nehagupta@cs.stanford.edu
Jane Lange Li-Yang Tan
Massachusetts Institute of Technology Stanford University
jlange@mit.edu liyang@cs.stanford.edu
Abstract

We show that top-down decision tree learning heuristics (such as ID3, C4.5, and
CART) are amenable to highly efficient learnability estimation: for monotone target
functions, the error of the decision tree hypothesis constructed by these heuristics
can be estimated with polylogarithmically many labeled examples, exponentially
smaller than the number necessary to run these heuristics, and indeed, exponentially
smaller than information-theoretic minimum required to learn a good decision tree.
This adds to a small but growing list of fundamental learning algorithms that have
been shown to be amenable to learnability estimation.

En route to this result, we design and analyze sample-efficient minibatch versions
of top-down decision tree learning heuristics and show that they achieve the same
provable guarantees as the full-batch versions. We further give “active local”
versions of these heuristics: given a test point z*, we show how the label T'(z*)
of the decision tree hypothesis 7' can be computed with polylogarithmically many
labeled examples, exponentially smaller than the number necessary to learn 7'.

1 Introduction

We study the problem of estimating learnability, recently introduced by Kong and Valiant [KV 18]
and Blum and Hu [BHI1S]|. Consider a learning algorithm .4 and a dataset S of unlabeled examples.
Can we estimate the performance of A on S—that is, the error of the hypothesis that .4 would return
if we were to label the entire dataset .S and train .4 on it—by labeling only very few of the examples
in S? Are there learning tasks and algorithms for which an accurate estimate of learnability can be
obtained with far fewer labeled examples than the information-theoretic minimum required to learn a
good hypothesis?

Motivating applications. Across domains and applications, the labeling of datasets is often an
expensive process, requiring either significant computational resources or a large number of person-
hours. There are therefore numerous natural scenarios in which an efficient learnability estimation
procedure could serve as a useful exploratory precursor to learning. For example, suppose the error
estimate returned by this procedure is large. This tells us that if we were to label the entire dataset S
and run A on it, the error of the hypothesis h that .4 would return is large. With this information,
we may decide that A would not have been of much utility anyway, thereby saving ourselves the
resources and effort to label the entire dataset S (and to run .4). Alternatively, we may decide to
collect more data or to enlarge the feature space of S, in hopes of improving the performance of A.
The learnability estimation procedure could again serve as a guide in this process, telling us how

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

much the performance of .4 would improve with these decisions. Relatedly, such a procedure could
be useful for hyperparameter tuning, where the learning algorithm A takes as input a parameter p,
and its performance improves with p, but its time and sample complexity also increases with p. The
learnability estimation procedure enables us to efficiently determine the best choice of p for our
application at hand, and run A just a single time with this value of p. As a final example, such a
procedure could also be useful for dataset selection: given unlabeled training sets S, ..., Sp,, and
access to labeled examples from a test distribution D, we can efficiently determine the S; for which A
would produce a hypothesis that achieves the smallest error with respect to D.

Prior works on estimating learnability. While this notion is still relatively new, there are by now
a number of works studying it in a variety of settings, including robust linear regression [KV18]],
learning unions of intervals and k-Nearest-Neighbor algorithms [BH18]|, contextual bandits [KVB20],
learning Lipschitz functions, and the Nadaraya—Watson estimator in kernel regression [BBG20]. A
striking conceptual message has emerged from this line of work: it is often possible to estimate
learnability with far fewer labeled examples than the number required to run the corresponding
algorithm, and indeed, far fewer than the information-theoretic minimum required to learn a good
hypothesis.

1.1 Top-down decision tree learning

We study the problem of estimating learnability in the context of decision tree learning. Specifically,
we focus on top-down decision tree learning heuristics such as ID3 [Qui86[, C4.5 [Qui93|], and
CART [Brel7]. These classic and simple heuristics continue to be widely employed in everyday
machine learning applications and enjoy significant empirical success. They are also the core
subroutine in modern, state-of-the-art ensemble methods such as random forests [BreO1]] and gradient
boosted trees [[CG16].

We briefly describe how these top-down heuristics work, deferring the formal description to the
main body of this paper. Each such heuristic TOPDOWNg is defined by impurity function ¢ :
[0,1] — [0, 1] which determines its splitting criterionﬂ ToPDOWNg takes as input a labeled dataset
S C X x {0,1} and a size parameter ¢ € IN, and constructs a size-¢ decision tree for S in a greedy,
top-down fashion. It begins by querying 1[x; > 6] at the root of the tree, where z; and 6 are chosen
to maximize the purity gain with respect to ¢:

Y (Ely]) — (Prlz; > 0] 9(Ely | 2; > 0]) + Prlz; < 0]-9(Ely | z; <0])),

where the expectations and probabilities are with respect to (x, y) ~ S. More generally, TOPDOWNg
grows its current tree T by splitting a leaf ¢ € T° with a query to 1[z; > 6], where ¢, x;, and 0 are
chosen to maximize:

PurityGaing ¢(¢,4,0) := Pr[z reaches £] - LocalGaing 5(¢,1,6),
where
LocalGaing s(¢,1,0) .= 4 (E[y | « reaches {])
— (Pr[z; > 0] - 9(Ely | ® reaches ¢, z; > 0])

+ Prl@; < 0] - 9 (E[y | @ reaches ¢, z; < 6])).

Provable guarantees for monotone target functions [BLT20a]. Motivated by the tremendous
popularity and empirical successes of these top-down heuristics, there has been significant interest
and efforts in establishing provable guarantees on their performance [Kea96, DKM96, [KM99, [FP04|
Lee(09,IBDM19b, BDM19a, BLT20b, IBLT20a]. The starting point of our work is a recent result of
Blanc et al. [BLT20a], which provides a guarantee on their performance when run on monotone target
functions, with respect to the uniform distribution:

'Impurity functions & are restricted to be concave, symmetric around %, and to satisfy ¢(0) = ¢(1) = 0
and ¢(3) = 1. For example, ID3 and C4.5 use the binary entropy function ¢ (p) = H(p), and the associated
purity gain is commonly referred to as information gain; CART uses the Gini criterion ¢ (p) = 4p(1 — p);
Kearns and Mansour proposed and analyzed the function 4 (p) = 24/p(1 — p) [KM99]. The work of Dietterich,
Kearns, and Mansour [DKM96] provides a detailed discussion and experimental comparison of various impurity
functions.

Theorem (Theorem 2 of [BLT20al). Let f : {+1}? — {0,1} be a monotone target function

and 4 be any impurity function. For s € N and £,6 € (0,3), let t = s90es)/<* 4nd S be

a set of n labeled training examples (x, f(x)) where & ~ {£1}? is uniform random, and n =

O(t) - poly(log d, log(1/4)).

With probability at least 1 —§ over the randomness of S, the size-t decision tree hypothesis constructed
by TOPDOWNg (t, S) satisfies error;(T') == Pry(1134[T'(x) # f(x)] < opt, + &, where opt,
denotes the error of the best size-s decision tree for f.

We refer the reader to the introduction of [BLT20a] for a discussion of why assumptions on the
target function are necessary in order to establish provable guarantees. Briefly, as had been noted by
Kearns [Kea96], there are examples of simple non-monotone target functions f : {£1}¢ — {0, 1},
computable by decision trees of constant size, for which any impurity-based heuristic may build a
complete tree of size 2(2¢) before achieving any non-trivial accuracy. Monotonicity is a natural way
of excluding these adversarial functions, and for this reason it is one of the most common assumptions
in learning theory. Results for monotone functions tend to be good proxies for the performance of
learning algorithms on real-world datasets, which also do not exhibit these adversarial structures.

Our contributions. We give strengthened provable guarantees on the performance of top-down
decision tree learning heuristics, focusing on sample complexity. Our three main contributions are as
follows:

1. Minibatch top-down decision tree learning. We introduce and analyze MINIBATCHTOPDOWNg,
a minibatch version of TOPDOWNg where the purity gain associated with each split is estimated
with only polylogarithmically many samples within the dataset S rather than all of S. For
all impurity functions ¢, we show that MINIBATCHTOPDOWN¢ achieves the same provable
guarantees that those that [BLT20al| had established for the full-batch version TOPDOWNg .

2. Active local learning. We then study MINIBATCHTOPDOWNg within the recently-introduced
active local learning framework of Backurs, Blum, and Gupta [BBG20J], and show that it admits
an efficient active local learner. Given active access to an unlabeled dataset S and a test point x*,
we show how T'(z*) can be computed by labeling only polylogarithmically many of the examples
in S, where T is the decision tree hypothesis that MINIBATCHTOPDOWNg would construct if
we were to label all of S and train MINIBATCHTOPDOWNg on it.

3. Estimating learnability. Building on both our results above, we show that
MINIBATCHTOPDOWN is amendable to highly-efficient learnability estimation. Given
active access to an unlabeled dataset S, we show that the error of 7" with respect to any test
distribution can be approximated by labeling only polylogarithmically many of the examples
in S, where 7T is the decision tree hypothesis that MINIBATCHTOPDOWNg would construct if
we were to label all of .S and train MINIBATCHTOPDOWNg on it.

1.2 Formal statements of our results

Feature space and distributional assumptions. We work in the setting of binary attributes and
binary classification, i.e. we focus on the task of learning a target function f : {+1}¢ — {0,1}. We
will assume the learning algorithm receives uniform random examples = ~ {41}, either labeled
or unlabeled. The error of a decision tree hypothesis 7' : {+1}¢ — {0,1} with respect to f is
defined to be error¢(T) = Pr[f(x) # T(x)] where * ~ {£1}? is uniform random. We write
opt,(f) to denote min{errory(T): T is a size-s decision tree}; when f is clear from context we
simply write opt,. We will also be interested in the error of T with respect to general test sets
(Pr(z,y)~8ie: [T () # y]) and general test distributions (Pr(g,4)~p,...[T(Z) # y]).

Notation and terminology. For any decision tree T, we say the size of 7" is the number of leaves
in T'. We refer to a decision tree with unlabeled leaves as a partial tree, and write T° to denote such
trees. For a leaf ¢ of a partial tree T°, we write || to denote its depth within 7°°, the number of
attributes queried along the path that leads to £. We say that an input x € {+1}¢ is consistent with
a leaf ¢ if x reaches ¢ within T°, and we write /1. (z) to denote the (unique) leaf ¢ of T° that x
is consistent with. A function f : {£1}¢ — {0, 1} is said to be monotone if for every coordinate
i € [d], it is either non-decreasing with respect to i (i.e. f(x) < f(y) for all z,y € {£1}? such

that z; < y;) or non-increasing with respect to i (i.e. f(x) > f(y) for all 2,y € {£1}% such that
z; < Yi).

We use boldface to denote random variables (e.g. © ~ {#+1}%), and unless otherwise stated, all
probabilities and expectations are with respect to the uniform distribution. For p € [0, 1], we write

round(p) to denote 1[p > 1]. We reserve S to denote a labeled dataset and S° to denote an unlabeled
dataset.

We are now ready to describe new algorithms and state our main results.

Definition 1 (Minibatch). Let S be a labeled dataset. A minibatch from S, denoted B ~ Batchy,(.5),
is a set of b uniform random points (x,y) chosen without replacement from S. More generally, for
a leaf ¢, a minibatch consistent with ¢ from S, denoted B ~ Batchy (S, £), is a set of b uniformly
random pairs chosen without replacement from among (x,y) € S such that x is consistent with £. (In
both cases, if there are fewer than b such points, we return all of them.) Minibatches from unlabeled
datasets S° are defined analogously.

Definition 2 (Minibatch completion of partial trees). Given a partial tree T°, we write Tgatchb(s)

to denote the tree obtained by labeling each leaf { € T° with round(IE(4, ¢(z))~B[f(x)]) where
B ~ Batchy (S, £).

MINIBATCHTOPDOWN(t, b, S):
Initialize T°° to be the empty tree.
Define D = logt + loglog t.
while (size(T°) < ¢) {
1. Score: For each leaf ¢ € T° of depth at most D, draw B ~ Batch, (S5, £). For each
coordinate i € [d], compute:
PurityGaing g(f,7) == 2714 LocalGaing p(f, i), where
Y(E[f(2)])
— (3YE[f(z) |z =—1]) + 3Y(E[f(z) | z; = 1])),
where the expectations are with respect to (z, f(x)) ~ B.

2. Split: Let (£*,7*) be the tuple that maximizes PurityGaing g(¢,i). Grow T° by
splitting £* with a query to x;«.

LocalGaing g(¢,1) :

Output Tgatchb (S)"

Figure 1: MINIBATCHTOPDOWNg takes as input a size parameter ¢, a minibatch size b,
and a labeled dataset S. It outputs a size-t decision tree hypothesis for f.

MINIBATCHTOPDOWNg is a minibatch version of TOPDOWN, which we described informally
in[Section 1.T|and include its full pseudocode in Section 5. MINIBATCHTOPDOWN¢ is more efficient
than TOPDOWNg in two respects: first, purity gains and completions are computed with respect to
a minibatch B of size b instead of all the entire dataset S; second, MINIBATCHTOPDOWN¢ never
splits a leaf of depth greater than D, and hence constructs a decision tree of small size and small
depth, rather than just small size. (Looking ahead, both optimizations will be crucial for the design of
our sample-efficient active local learning and learnability estimation procedures.)

Our first result shows that MINIBATCHTOPDOWNg achieves the same performance guarantees as
those that [BLT20al| had established for the full-batch version TOPDOWNg:

Theorem 1 (Provable guarantees for MINIBATCHTOPDOWN; informal version). Let f : {£1}¢ —
{0,1} be a monotone target function and fix an impurity function 4. For any s € N, £,6 € (0, 3),

lett = s©0°e%)/<* and S be a set of n labeled training examples (x, f(x)) where ~ {£1}% is
uniform random, and

n = O(t) - poly(log d, log(1/6)).

If the minibatch size is at least

b = polylog(t) - poly(log d, log(1/4)),

then with probability at least 1 — § over the randomness of S and the draws of minibatches from
within S, the size-t decision tree hypothesis constructed by MINIBATCHTOPDOWNg (¢, b, S) satis-
fies error¢(T') < opt, + ¢.

shows that it suffices for the minibatch size b of MINIBATCHTOPDOWNy to depend
polylogarithmically on ¢; in contrast, the full-batch version TOPDOWN¢ uses the entire set S to
compute purity gains and determine its splits, and |.S| = n has a superlinear dependence on t.

Our next algorithm is an implementation of MINIBATCHTOPDOWNg within the active local learning
framework of Backurs, Blum, and Gupta [BBG20]:

LOCALLEARNERg(%, b, S°, x*):
Initialize T°° to be the empty tree.
Define D := logt + loglog t.
Initialize e := 1 and let B,

S rands D€ b uniform random points from {£1}4.
while (e < 1) {

1. Score: For each leaf £ € {{r-(x): x € B U {z*}} of depth at most D, draw

strands
B° ~ Batch,(S°,), query f’s values on these points. For each coordinate ¢ € [d],
compute:
PurityGaing g (¢, 1) = 271 LocalGaing g (¢,), where
LocalGaing go (¢,1) = Y(E[f(z)])
~ (3YE[f(x) | z; = -1]) + 3 Y(E[f(z) | z; = 1])),
where the expectations are with respect to ~ B°.
2. Split: Let (£*,4*) be the tuple that maximizes PurityGaing g.(¢,7). Grow T by
splitting £* with a query to x;«.
3. Estimate size: Update our size estimate to

e= E [r@l.
} x~B¢

strands
Draw B° ~ Batch(S°, £1o(2*)) and query f’s values on these points.
Output round(Ez~ g [f(2)]).

Figure 2: LOCALLEARNERg takes as input a size parameter ¢, a minibatch size b, an unla-
beled dataset S°, and an input x*. It selectively queries f’s values on a few points within S°
and outputs T'(x*), where T is a tree of size approximately ¢ that MINIBATCHTOPDOWNg
would return if we were to label all of S° and train MINIBATCHTOPDOWNg on it.

Theorem 2 (Active local version of MINIBATCHTOPDOWN; informal version). Let f : {1} —
{0, 1} be a target function, & be an impurity function, and S° be an unlabeled training set.

Forallt € N, n,6 € (0,%), if the minibatch size is at least b = poly(logt,logd,1/n,log(1/6)),

then with probability at least 1 — & over the randomness of BZ,.. 4., we have that for all x* € {£1}4,
LOCALLEARNERg (t, b, S°, x*) labels

q = O(b*logt) = polylog(t) - poly(logd, 1/n,log(1/5))

points within S° and returns T(x*), where T is the size-t' decision tree hypothesis that
MINIBATCHTOPDOWNy (', b, S) would construct, t' € t(1 £ n), and S is the labeled dataset
obtained by labeling all of S° with f’s values.ﬂ

To ensure that LOCALLEARNER consistently labels all z* according to the same tree T', we run all
invocations of LOCALLEARNERg with the same outcomes of randomness for B ,,,,q4s and draws of minibatches.

yields, as a fairly straightforward consequence, our learnability estimation procedure
Est« that estimates the performance of MINIBATCHTOPDOWNg with respect to any test set Sgest:
Theorem 3 (Estimating learnability of MINIBATCHTOPDOWN; informal version). Let f : {1}¢ —
{0, 1} be a target function, 4 be an impurity function, S° be an unlabeled training set, and Stest be
a labeled test set.

Forallt € Nandn,d € (0, %) if the minibatch size b is as in then with probability at

least 1 — § over the randomness of the draws of minibatches from within S°, ESTg (t,b,5°, Stest)
labels

q = O(|Stest| - blogt + b*logt) = [Stest| - polylog(t) - poly(log d, 1/n,log(1/5))
points within S° and returns the error of T with respect t0 Siest,

errorg,,,, (T) = Pr_ [T(z) # yl,

(x,y)~Stest

where T is as in[Theorem 2)

We remark that[Theorem 1]requires the training set be composed of independent draws of (z, f(x))
where x is drawn uniformly from {£1}¢. On the other hand, in [Theorems 2| and [3, the high
probability guarantees hold for any fixed choice of training set S°. Similarly, in[Theorem 3| Siest
can be arbitrarily chosen. Indeed, as an example application of we can let Siest be
O(log(1/8)/e?) many labeled examples (x, y) drawn from an arbitrary test distribution Dyes; Over
{£1}¢ x {0,1}, where the marginal over {1} need not be uniform and the the labels need not
be consistent with f. With probability at least 1 — 4, the output of Esty will be within +¢ of
Pr(w7y)NDtest [T(.’I}) # y]

2 Proof overview for Theorem 1]

Our proof of builds upon and extends the analysis in [BLT20a]. (Recall that [BLT20al]
analyzed the full-batch version TOPDOWNg, which we have included in Section 5 of this paper, and
their guarantee concerning its performance is their Theorem 2, which we have stated in[Section I.1|of
this paper). In this section we give a high-level overview of both [BLT20a]’s and our proof strategy,
in tandem with a description of the technical challenges that arise as we try to strengthen [BLT20a]’s

Theorem 2 to our[Theorem 11

Let f : {#£1}¢ — {0,1} be a monotone function and fix an impurity function 4. Let T° be
a partial tree that is being built by either TOPDOWNg or MINIBATCHTOPDOWN. Recall that
TOPDOWNg and MINIBATCHTOPDOWNg compute, for each leaf £ € T° and coordinate i € [d],
PurityGaing ¢(¢,4) and PurityGaing g(, i) respectively. Both these quantities can be thought of
as estimates of the true purity gain:

PurityGaing ;(¢,1) = 271 . LocalGaing f(¢,7) where
LocalGaing ¢(¢,1) == 4 (E[f(x) | « reaches £])

— (3 9(E[f(z) | @ reaches £, x; = —1])

+ 3 9(E[f() | @ reaches {, z; = 1])),
where here and throughout this section, all expectations are with respect to a uniform random
x ~ {£1}%. The fact that MINIBATCHTOPDOWN s estimates of this true purity gain are based on
minibatches B of size exponentially smaller than that of the full sample set S—and hence could be ex-

ponentially less accurate—is a major source of technical challenges that arise in extending [BL120a]’s
guarantees for TOPDOWNg to MINIBATCHTOPDOWNg .

[BLT?20a] considers the potential function:
G-impurity (T°) == > 271G (E[f]).
leaves £ € T°

The following fact about this potential function ¢-impurity ; is straightforward to verify (and is
proved in [BLT20al):

Similarly, if one then wished to actually construct this tree 7', they would run MINIBATCHTOPDOWN¢ with
these same outcomes of randomness.

Fact 2.1. For any partial tree T°, leaf { € T°, and coordinate i € [d], let T° be the tree obtained
Sfrom T° by splitting { with a query to x;. Then,

¢-impurity (T°) = ¢-impurity ;(1°) — PurityGaing (¢, 1).

A key ingredient in [BLT20al]’s analysis is a proof that as long as error;(Tg) > opt, + ¢ (where
T denotes the completion of T° with respect to the full batch S; see Section 5), there must be a
leaf ¢ € T° and coordinate i with high true purity gain, PurityGaing ((£,7) > poly(/t). Since
TOPDOWNg’s estimates PurityGaing ¢ of PurityGaing , are with respect to a sample of size
|S| > poly(t/e), it follows that TOPDOWNg will make a split for which the true purity gain is
indeed poly(e/t). By such a split constitutes good progress with respect to the potential
function ¥-impurity ;. Summarizing, [BLT20a] that shows until error(7g) < opt, + € is achieved,
every split that TOPDOWN¢ makes has high true purity gain, and hence constitutes good progress
with respect to the potential function &-impurity ;.

The key technical difficulty in analyzing MINIBATCHTOPDOWNy instead of TOPDOWN is that
MINIBATCHTOPDOWNg is not guaranteed to choose a split with high true purity gain: it could make
splits for which its estimate PurityGaing g(¢, 7) is high, but the true purity gain PurityGaing (¢,)
is actually tiny. In fact, unless we use batches of size b > poly(t), exponentially larger than the
b = polylog(t) of MINIBATCHTOPDOWNg could make splits that result in zero true
purity gain, and hence constitute zero progress with respect to the potential function &-impurity ;.

To overcome this challenge, we instead show that most splits MINIBATCHTOPDOWNg makes have
high true purity gain. We first show that with high probability over the draws of minibatches B, if
MINIBATCHTOPDOWN splits a leaf that is neither too shallow nor too deep within 7°°, then this
split has high true purity gain (Lemma 6.5). We then show the following two lemmas:

1. Lemma B.6: If MINIBATCHTOPDOWN splits a leaf of T°° that is sufficiently deep, then it must
be the case that error (T3, , chy (S)) < opt, + ¢, i.e. the current tree already achieves sufficiently
small error. With this Lemma, we are able to define MINIBATCHTOPDOWNg to never split a
leaf that is too deep, while retaining guarantees on its performance.

2. Lemma B.7: This lemma shows that only a small fraction of splits made by
MINIBATCHTOPDOWNg can be too shallow.

Combining the above Lemmas, we are able to prove [Theorem 1] We defer the proof to Appendix 6.

3 Proof overviews for and

We begin with a proof overview for Let T be the decision tree hypothesis that
MINIBATCHTOPDOWNg would construct if we were to all of S° and train MINIBATCHTOPD OWN
on it. Our goal is to efficiently compute T'(z*) for a given 2* by selectively labeling only ¢ points
within S°, where ¢ is exponentially smaller than the sample complexity of learning and construct-
ing T

Intuitively, we would like LOCALLEARNERg to only grow the single “strand” within 7" required to
compute T'(z*) instead of the entire tree T—this “strand” is simply the root-to-leaf path of T" that z*
follows. The key challenge that arises in implementing this plan is: how does LOCALLEARNERg
know when to terminate this strand (i.e. how does it know when it has reached a leaf of 17)?
MINIBATCHTOPDOWNg, the “global” algorithm that LOCALLEARNERg is trying the simulate,
terminates when the tree is of size t. As LOCALLEARNERgy grows the strand corresponding to x*,
how could it estimate the size of the overall tree without actually growing it? In other words, it is not
clear how one would define the stopping criterion of the while loop in the following pseudocode:

Roughly speaking, we want “stopping criterion” to answer the following question: if we grew a
size-t tree using MINIBATCHTOPDOWNg (on the labeled version of 5°), would ¢ be a leaf of the
resulting tree, or would it be an internal node? Nearly equivalently, with access to just a single strand
of a tree, we wish to estimate the size of that tree. If that size is ¢, then we stop the while loop.

It is not possible to accurately estimate the size of a tree using just a single strand. However, by com-
puting a small number of random strands, we can get an accurate size estimator. In Section 7, we show
that for @1, . . ., @,, chosen uniformly at random from {+1}, the estimator e := L > | 2lér ()]

1=

Initialize ¢ to be the leaf of the empty tree.
while (stopping criterion) {

1. Draw B° ~ Batch,(S5°,¥) and query f’s values on these points. Let i* be the
coordinate that maximizes PurityGaing g. (¢, i) among all i € [d].

2. Extend ¢ according to the value of z7..

}
Draw B° ~ Batchy (.5, £) and query f’s values on these points.

Output round(E~ o [f(x)]).

accurately estimates the size of T, as long as the depth of T is not too large. Therefore, rather than
growing only the root-to-leaf path for z*, LOCALLEARNERy samples random additional inputs,
Ti,...,T,. Then, it simultaneously grows the strands for the root-to-leaf paths of x* as well as
T1,...,Tym. These strands do not all grow at the same “rate”, as we want LOCALLEARNERg to
make splits in the same order as MINIBATCHTOPDOWNg does. As long as it does this, we can use
the size estimator to, at any step, accurately estimate the size of tree MINIBATCHTOPDOWNg would
need to build for all the current strands to end at leaves. LOCALLEARNERy terminates when its
estimate of this size is ¢.

o O o O @) @)

Figure 3: Rather than growing the entire tree 7" (depcited on the LHS) as MINIBATCHTOPDOWNg
does, LOCALLEARNERy only grows m + 1 strands within 7" (depicted on the RHS), corresponding
to the given input z* and m additional random inputs x1, ..., Z,, ~ {£1}%.

We back the above intuition for LOCALLEARNERy with proofs. In Section 8, we show that the
output of LOCALLEARNERg for size parameter ¢ is T'(z*), where T is size-t’ tree produced by
MINIBATCHTOPDOWNgy where t € /(1 & 7). We also show that LOCALLEARNERg needs to only
label polylogarithmic many points within S° to compute T'(z*). This completes our proof overview

for[Theorem 2] and [Theorem J]is a straightforward consequence of

4 Conclusion

We have given strengthened provable guarantees on the performance of popular and empirically
successful top-down decision tree learning heuristics such as ID3, C4.5, and CART, focusing
on sample complexity. First, we designed and analyzed minibatch versions of these heuristics,
MINIBATCHTOPDOWNg, and proved that they achieve the same performance guarantees as the
full-batch versions. We then gave an implementation of MINIBATCHTOPDOWNy within the recently-
introduced active local learning framework of [BBG20]]. Building on these results, we showed that
MINIBATCHTOPDOWNg is amenable to highly efficient learnability estimation [KV 18, BH18]: its
performance can be estimated accurately by selectively labeling very few examples.

As discussed in [KV 18, IBH18], this new notion of learnability estimation opens up a whole host of
theoretical and empirical directions for future work. We discuss several concrete ones that are most
relevant to our work. Our algorithm Esty efficiently and accurately estimates the quality, relative to
a test set Stegt, Of the hypothesis that MINIBATCHTOPDOWNy would produce if trained on a set S°.
Could Esty be more broadly useful in assessing the quality of the training data S° itself, relative to
Stest? Could its estimates provide guarantees on the performance of other algorithms when trained
in S° and tested on Sies? It would also be interesting to explore applications of our algorithms to
the design of training sets. Given training sets S1, ..., S;,, Estg allows us to efficiently determine

the S; for which MINIBATCHTOPDOWNy would produce a hypothesis that achieves the smallest
error with respect to Siest. Could Estg or extensions of it be useful in efficiently creating an S™,
comprising data from each .S;, that is of higher quality than any S; individually? Finally, while we
have focused on top-down heuristics for learning a single decision tree in this work, a natural next
step would be to design and analyze learnability estimation procedures for ensemble methods such as
random forests and gradient boosted trees.

Broader Impact

This work does not present any foreseeable societal consequence.

Acknowledgements and Disclosure of Funding

Guy, Jane, and Li-Yang were supported by NSF award CCF-192179 and NSF CAREER award CCF-
1942123. Neha was supported by NSF award 1704417 and Moses Charikar’s Simons Investigator
grant.

References

[BBG20] Arturs Backurs, Avrim Blum, and Neha Gupta. Active local learning. In Proceedings
of the 33rd Conference On Learning Theory (COLT), pages 363-390. Proceedings of
Machine Learning Research, 2020.

[BDM19a] Alon Brutzkus, Amit Daniely, and Eran Malach. ID3 Learns Juntas for Smoothed
Product Distributions. ArXiv, abs/1906.08654, 2019.

[BDM19b] Alon Brutzkus, Amit Daniely, and Eran Malach. On the Optimality of Trees Generated
by ID3. ArXiv, abs/1907.05444, 2019.

[BH18] Avrim Blum and Lunjia Hu. Active tolerant testing. In Proceedings of the 31st Conference
On Learning Theory (COLT), volume 75, pages 474-497. Proceedings of Machine
Learning Research, 2018.

[BLT20a] Guy Blanc, Jane Lange, and Li-Yang Tan. Provable guarantees for decision tree induction:
the agnostic setting. In Proceedings of the 37th International Conference on Machine
Learning (ICML), 2020. Available at https://arxiv.org/abs/2006.00743.

[BLT20b] Guy Blanc, Jane Lange, and Li-Yang Tan. Top-down induction of decision trees: rigorous
guarantees and inherent limitations. In Proceedings of the 11th Innovations in Theoretical
Computer Science Conference (ITCS), volume 151, pages 1-44, 2020.

[BreO1] Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
[Brel7] Leo Breiman. Classification and regression trees. Routledge, 2017.

[CG16] Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 785-794, 2016.

[DKM96] Tom Dietterich, Michael Kearns, and Yishay Mansour. Applying the weak learning
framework to understand and improve C4.5. In Proceedings of the 13th International
Conference on Machine Learning (ICML), pages 96—104, 1996.

[FP04] Amos Fiat and Dmitry Pechyony. Decision trees: More theoretical justification for
practical algorithms. In Proceedings of the 15th International Conference on Algorithmic
Learning Theory (ALT), pages 156—170, 2004.

[Kea%6] Michael Kearns. Boosting theory towards practice: recent developments in decision tree
induction and the weak learning framework (invited talk). In Proceedings of the 13th
National Conference on Artificial intelligence (AAAI), pages 1337-1339, 1996.

[KM99] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree
learning algorithms. Journal of Computer and System Sciences, 58(1):109-128, 1999.

[KV18] Weihao Kong and Gregory Valiant. Estimating learnability in the sublinear data regime.
In 31st Annual Conference on Neural Information Processing Systems (NeurIPS), pages
5460-5469, 2018.

https://arxiv.org/abs/2006.00743

[KVB20]

[Lee09]

[Qui86]
[Qui93]

Weihao Kong, Gregory Valiant, and Emma Brunskill. Sublinear optimal policy value
estimation in contextual bandits. In Proceedings of the 23rd International Conference
on Artificial Intelligence and Statistics (AISTATS), 2020.

Homin Lee. On the learnability of monotone functions. PhD thesis, Columbia University,
2009.

Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81-106, 1986.

Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

10

	Introduction
	Top-down decision tree learning
	Formal statements of our results

	Proof overview for thm:upper bound mini batch
	Proof overviews for thm:local learner,thm:estimate-learn
	Conclusion

