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Abstract

We propose a framework for solving high-dimensional Bayesian inference prob-
lems using structure-exploiting low-dimensional transport maps or flows. These
maps are confined to a low-dimensional subspace (hence, lazy), and the subspace
is identified by minimizing an upper bound on the Kullback–Leibler divergence
(hence, structured). Our framework provides a principled way of identifying and
exploiting low-dimensional structure in an inference problem. It focuses the ex-
pressiveness of a transport map along the directions of most significant discrepancy
from the posterior, and can be used to build deep compositions of lazy maps,
where low-dimensional projections of the parameters are iteratively transformed
to match the posterior. We prove weak convergence of the generated sequence of
distributions to the posterior, and we demonstrate the benefits of the framework
on challenging inference problems in machine learning and differential equations,
using inverse autoregressive flows and polynomial maps as examples of the under-
lying density estimators.

1 Introduction

Inference in the Bayesian setting typically requires the computation of integrals
∫
f dπ over an

intractable posterior distribution whose density2 π is known up to a normalizing constant. One
approach to this problem is to construct a deterministic nonlinear transformation, i.e., a transport map
[57], that induces a coupling of π with a tractable distribution ρ (e.g., a standard Gaussian). Formally,
we seek a map T that pushes forward ρ to π, written as T]ρ = π, such that the change of variables∫
f dπ =

∫
f ◦ T dρ makes integration tractable.

Many constructions for such maps have been developed in recent years. Normalizing flows (see
[34, 42, 46, 54] and references therein) build transport maps via a deep composition of functions
∗These authors contributed equally to this work.
2In this paper, we only consider distributions that are absolutely continuous with respect to the Lebesgue

measure on Rd, and thus will use the notation π to denote both the distribution and its associated density.
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parameterized by neural networks, with certain ansatzes to enable efficient computation. Many
recently proposed autoregressive flows (for example [17, 20, 27, 31, 43]) compose triangular maps,
which allow for efficient evaluation of Jacobian determinants. In general, triangular maps [9, 33,
47] are sufficiently general to couple any absolutely continuous pair of distributions (ρ, π), and
their numerical approximations have been investigated in [29, 38, 40, 52]. The flow map of a
neural ordinary differential equation [13, 21, 23] can also be seen as an infinite-layer limit of a
normalizing flow. Alternatively, Stein variational methods [18, 35, 36] provide a nonparametric way
of constructing T as a composition of functions lying in a chosen RKHS.

In general, it can be difficult to represent expressive maps in high dimensions. For example, trian-
gular maps on Rd must describe d-variate functions and thus immediately encounter the curse of
dimensionality. Similarly, kernel-based methods lose expressiveness in high dimensions [12, 18].
Flow-based methods often increase expressiveness by adding layers, but this is typically performed
in an ad hoc or unstructured way, which also requires tuning.

Here we propose a framework for inference that creates target-informed architectures around any
class of transport maps or normalizing flows. In particular, our framework uses rigorous a priori
error bounds to discover and exploit low-dimensional structure in a given target distribution. It also
provides a methodology for efficiently solving high-dimensional inference problems via greedily
constructed compositions of structured low-dimensional maps.

The impact of our approach rests on two observations. First, the coordinate basis in which one
expresses a transport map (i.e., T (x) versus UT (x), where U is a rotation on Rd) can strongly
affect the training behavior and final performance of the method. Our framework identifies an
ordered basis that best reveals a certain low-dimensional structure in the problem. Expressing the
transport map in this basis focuses the expressiveness of the underlying transport class and allows
for principled dimension reduction. This basis is identified by minimizing an upper bound on the
Kullback–Leibler (KL) divergence between π and its approximation, which follows from logarithmic
Sobolev inequalities (see [59]) relating the KL divergence to gradients of the target density.

Second, in the spirit of normalizing flows, we seek to increase the expressiveness of a transport
map using repeated compositions. Rather than specifying the length of the flow before training,
we increase the length of the flow sequentially. For each layer, we apply the framework above to
a residual distribution that captures the deviation between the target distribution and its current
approximation. We prove weak convergence of this greedy approach to the target distribution under
reasonable assumptions. This sequential framework enables efficient layer-wise training of high-
dimensional maps, which especially helps control the curse of dimensionality in certain transport
classes. As we shall demonstrate empirically, the greedy composition approach can further improve
accuracy at the end of training, compared to baseline methods.

Since Markov chain Monte Carlo (MCMC) methods are also a workhorse of inference, it is useful to
contrast them with the variational methods discussed above. In general, these two classes of methods
have different computational patterns. In variational inference, one might spend considerable effort
to construct the approximate posterior, but afterwards enjoys cheap access to samples and normalized
evaluations of the (approximate) target density. How well the approximation matches the true
posterior depends on the expressiveness of the approximation class and on one’s ability to optimize
within this class. MCMC, in contrast, requires continual computational effort (even after tuning),
but (asymptotically) generates samples from the exact posterior. Yet there is a line of work that uses
transport to improve the performance of MCMC methods ([26, 44])—such that even if one desires
exact samples, constructing a transport map can be beneficial. We will demonstrate this link in our
numerical experiments.

Preliminaries. We will consider target distributions with densities π on Rd that are differentiable
almost everywhere and that can be evaluated up to a normalizing constant. Such a target will often be
the posterior of a Bayesian inference problem, e.g., π(x) := p(x|y) ∝ Ly(x)π0(x), where Ly(x) :=
p(y|x) is the likelihood function and π0 is the prior. We denote the standard Gaussian density on
Rd as ρ. We will consider maps T : Rd → Rd that are diffeomorphisms,3 and with some abuse of

3In general T does not need to be a diffeomorphism, but only a particular invertible map; see Appendix B for
more details. The distributions we will consider in this paper, however, fulfill the necessary conditions for T to
be differentiable almost everywhere.
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notation, we will write the pushforward density of ρ under T as T]ρ(x) := ρ◦T−1(x)|∇T−1(x)|. We
will frequently also use the notion of a pullback distribution or density, written as T ]π := (T−1)]π.

In §2 we show how to build a single map in the low-dimensional “lazy” format described above,
and describe the class of posterior distributions that admit such structure. In §3 we develop a greedy
algorithm for building deep compositions of lazy maps, which effectively decomposes any inference
problem into a series of lower-dimensional problems. §4 presents numerical experiments highlighting
the benefits of the lazy framework. While our numerical experiments employ inverse autoregressive
flows [31] and polynomial transport maps [29, 40] as the underlying transport classes, we emphasize
that the lazy framework is applicable to any class of transport.

2 Lazy maps

Given a unitary matrix U ∈ Rd×d and an integer r ≤ d, let Tr(U) be the set that contains all the
maps T : Rd → Rd of the form

T (z) = U

[
τ(z1, . . . , zr)

z⊥

]
= Urτ(z1, . . . , zr) + U⊥z⊥ (1)

for some diffeomorphism τ : Rr → Rr. Here Ur ∈ Rd×r and U⊥ ∈ Rd×(d−r) are the matrices
containing respectively the r first and the d− r last columns of U , and z⊥ = (zr+1, . . . , zd). Any
map T ∈ Tr(U) is called a lazy map with rank bounded by r, as it is nonlinear only with respect to
the first r input variables z1, . . . , zr and the nonlinearity is contained in the low-dimensional subspace
range(Ur). The next proposition gives a characterization of all the densities T]ρ when T ∈ Tr(U).

Proposition 1 (Characterization of lazy maps). Let U ∈ Rd×d be a unitary matrix and let r ≤ d.
Then for any lazy map T ∈ Tr(U), there exists a strictly positive function f : Rr → R>0 such that

T]ρ(x) = f(U>r x)ρ(x), (2)

for all x ∈ Rd where ρ is the density of the standard normal distribution. Conversely, any probability
density function of the form f(U>r x)ρ(x) admits a representation as in (2) for some T ∈ Tr(U).

The proof is given in Appendix A.1. By Proposition 1, any posterior density π(x) ∝ Ly(x)π0(x)
with standard Gaussian prior π0 = ρ and with likelihood function given by Ly(x) ∝ f(U>r x) can be
written exactly as π = T]ρ for some lazy map T ∈ Tr(U). In particular, posteriors of generalized
linear models naturally fall into this class; see Appendix D for more details. Following [59, Section
2.1], the solution T ? ∈ Tr(U) to

DKL(π||T ?] ρ) = min
T∈Tr(U)

DKL(π||T]ρ),

is such that T ?] ρ(x) = f?(U>r x)ρ(x), where f? is the conditional expectation

f?(xr) = E
[
π(X)

ρ(X)
|U>r X = xr

]
with X ∼ ρ.

Now that we know the optimal lazy map in Tr(U), it remains to find a suitable matrix U and rank r.
In Appendix A.2 we show that

DKL(π||T ?] ρ) = DKL(π||ρ)−DKL((U>r )]πr||ρr), (3)

where ρr is the density of the standard normal distribution on Rr and (U>r )]π is the density of U>r X
with X ∼ π. Thus, for fixed r, minimizing DKL(π||T ?] ρ) over U is the same as finding the most
non-Gaussian marginal (U>r )]π. Such an optimal U can be difficult to find in practice. The next
proposition instead gives a computable bound on DKL(π||T ?] ρ), which we will use to construct a U
suitable for our algorithm. The proof is given in Appendix A.3.
Proposition 2. Let (λi, ui) ∈ R≥0×Rd be the i-th eigenpair of the eigenvalue problemHui = λiui
where H =

∫
(∇ log π

ρ )(∇ log π
ρ )>dπ. Let U = [u1, . . . , ud] ∈ Rd×d be the matrix containing the

eigenvectors of H . Then for any r ≤ d we have

DKL(π||T ?] ρ) ≤ 1

2
(λr+1 + . . .+ λd). (4)
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Proposition 2 suggests constructing U as the matrix of eigenvectors of H , and that a fast decay in the
spectrum of H allows a lazy map with low r to accurately represent the true posterior. Indeed, one
can guarantee DKL(π||T ?] ρ) < ε by choosing r to be the smallest integer such that the left-hand side
of (4) is below ε. In practice, since the complexity of representing and training a transport map may
strongly depend on r, we can bound r by some rmax ≤ d associated with a computational budget for
constructing T . This procedure is summarized in Algorithm 1.

The practical implementation of Algorithm 1 relies on the computation of H . Direct Monte Carlo
estimation of H , however, requires generating samples from π, which is not feasible in practice.
Instead one can use an importance sampling estimate, taking

H ≈ 1

K

K∑
k=1

ωk(∇ log
π

ρ
(Xk))(∇ log

π

ρ
(Xk))>,

where {Xk}Kk=1 are i.i.d. samples from ρ and ωk = π(Xk)
ρ(Xk) /(

∑K
k′=1

π(Xk′ )
ρ(Xk′ )

) are self-normalized
weights. This estimate can have significant variance when ρ is a poor approximation to the target π
(e.g., in the first stage of the greedy algorithm in §3). In this case it is preferable to impose ωk = 1,
which reduces variance but yields an biased estimator of H; instead, it is an unbiased estimator of
HB =

∫
(∇ log π

ρ )(∇ log π
ρ )>dρ. As shown via the error bounds in [59, Sec. 3.3.2] this matrix still

provides useful information regarding the construction of U . We consider the differences between
the two estimators in Appendix E. Also, since the effective sample size (ESS) of the importance
sampling estimate can be computed with little extra cost after collecting samples, one can use this
ESS to choose whether to use H or HB. Other variance reduction methods may also be applicable.
For example, simplifications or approximations to the expected outer product of score functions yield
natural candidates for control variates.

In constructing a lazy map T of the form (1), one needs to identify a map τ : Rr → Rr such that T]ρ
approximates the posterior. One can use any transport class to parameterize τ ; Appendices B and C
detail the particular maps used in our numerical experiments. In our setting we can only evaluate
π up to a normalizing constant, and thus it is expedient to minimize the reverse KL divergence
DKL(T]ρ||π) = DKL(ρ||T ]π), as is typical in variational Bayesian methods—which can be achieved
by maximizing a Monte Carlo or quadrature approximation of Eρ

[
log T ]π

]
. This is equivalent to

maximizing the evidence lower bound (ELBO) and using the reparameterization trick [32] to write
the expectation over the base distribution ρ. Details on the numerical implementation of Algorithm 1
are given in Appendix F. We note that the lazy framework works to control the KL divergence in
the inclusive direction, while optimizing the ELBO minimizes the KL divergence in the exclusive
direction. We show empirically that this computational strategy provides performance improvements
in both directions of the KL divergence between the true and approximate posterior, compared to a
baseline that does not utilize the lazy framework.

Algorithm 1 Construction of a lazy map.

1: procedure LAZYMAP(π, ρ, ε, rmax)
2: Compute H =

∫
(∇ log π

ρ )(∇ log π
ρ )>dπ

3: Solve the eigenvalue problem Hui = λiui
4: Let r = rmax ∧min{r ≤ d : 1

2

∑
i>r λi ≤ ε} and assemble U = [u1, . . . , ud].

5: Find T by solving minT∈Tr(U)DKL(T]ρ||π)
6: return lazy map T
7: end procedure

3 Deeply lazy maps

The restriction r ≤ rmax in Algorithm 1 helps control the computational cost of constructing the lazy
map, but unless a problem admits sufficient lazy structure, T]ρ may not adequately approximate the
posterior. To extend the numerical benefits of the lazy framework to general problems, we consider
the “deeply lazy” map T`, a composition of ` lazy maps:

T` = T1 ◦ . . . ◦ T`, Tk ∈ Tr(Uk),
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Algorithm 2 Construction of a deeply lazy map

1: procedure LAYERSOFLAZYMAPS(π, ρ, ε, r, `max)
2: Set π0 = π and ` = 0
3: while ` ≤ `max and 1

2 Tr(H`) ≥ ε do
4: `← `+ 1
5: Compute T` = LAZYMAP(π`−1, ρ, 0, r) . Algorithm 1
6: Update T` = T`−1 ◦ T`
7: Compute π` = (T`)

]π
8: Compute H` =

∫
(∇ log π`

ρ )(∇ log π`

ρ )>dπ`
9: end while

10: return T` = T1 ◦ · · · ◦ T`
11: end procedure

where each Tk is a lazy map associated with a different unitary matrix Uk ∈ Rd×d. For simplicity
we consider the case where each lazy layer Tk has the same rank r, though it is trivial to allow the
ranks to vary from layer to layer. In general, the composition of lazy maps is not itself a lazy map.
For example, there exists U1 6= U2 such that T2 = T1 ◦ T2 can depend nonlinearly on each input
variable and so T2 cannot be written as in (1).

The diagnostic matrix H allows us to build deeply lazy maps in a greedy way. After `− 1 iterations,
the composition of maps T`−1 = T1 ◦ . . . ◦ T`−1 has been constructed. We seek a unitary matrix
U ` ∈ Rd×d and a lazy map T` ∈ Tr(U `) such that (T`−1 ◦ T`)]ρ best improves over (T`−1)]ρ as an
approximation to the posterior. To this end, we define the residual distribution

π`−1 = (T`−1)]π,

i.e., the pullback of π through the current transport map T`−1. Note that DKL(π||(T`−1 ◦ T`)]ρ) =
DKL(π`−1||(T`)]ρ). We thus build T` using Algorithm 1, replacing the posterior π by the residual
distribution π`−1. We then update the transport map to be T` = T`−1 ◦ T` and the residual density
π` = (T`)

]π.

We note that applying Proposition 2 to π` with r = 0 yields

DKL(π||(T`)]ρ) = DKL(π`||ρ) ≤ 1

2
(λ1 + · · ·+ λd) =

1

2
Tr(H`),

where we define the diagnostic matrix at iteration ` as,

H` =

∫ (
∇ log

π`
ρ

)(
∇ log

π`
ρ

)>
dπ`.

Our framework thus naturally exposes the error bound 1
2 Tr (H`) on the forward KL divergence,

which is of independent interest and applicable to any flow-based method. We refer to this bound as
the trace diagnostic.

This bound can also be used as a stopping criterion for the greedy algorithm; one can continue
adding layers until the bound falls below some desired threshold. This construction is summarized in
Algorithm 2, and details on its numerical implementation are given in Appendix F.

The next proposition gives a sufficient condition on U ` to guarantee the convergence of our greedy
algorithm. The proof is given in Appendix A.4.

Proposition 3. Let U1, U2, . . . be a sequence of unitary matrices. For any ` ≥ 1, we let T` ∈ Tr(U `)
be a lazy map that minimizes DKL(π`−1||(T`)]ρ), where π`−1 = (T1 ◦ . . . ◦ T`−1)]π. If there exists
0 < t ≤ 1 such that for any ` ≥ 1

DKL((U `>r )]π`−1||ρr) ≥ t sup
U∈Rd×d

s.t. UU>=Id

DKL((U>r )]π`−1||ρr), (5)

then (T1 ◦ . . . ◦ T`)]ρ converges weakly to π.
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Figure 1: Convergence of the algorithm for the approximation of the rotated banana distribution. (a)
Decay of the bound 1

2 Tr(HB
` ) on the KL-divergence DKL(π‖(T`)]ρ) and the variance diagnostic

1
2Vρ[log ρ/T]`π]. (b) The target density π. (c–g) The target distribution is progressively Gaussianized
by the maps T`.

Let us comment on the condition (5). Recall that the unitary matrix U that maximizes
DKL((U>r )]π`−1||ρr) is optimal; see (3). By (5), the case t = 1 means that U ` is optimal at
each iteration. This corresponds to an ideal greedy algorithm. The case 0 < t < 1 allows suboptimal
choices for U ` without losing the convergence property of the algorithm. Such a greedy algorithm
converges even with a potentially crude selection of U ` that corresponds to a t close to zero. This
also is why an approximation to H` is expected to be sufficient; see Section 4. We emphasize that
condition (5) must apply simultaneously to all layers for a given 0 < t ≤ 1. Following [55], one could
relax this condition by replacing t with a sequence (t`) that goes to zero sufficiently slowly. This
development is left for future work. Finally, note that Proposition 3 does not require any constraints
on r, so we have convergence even with r = 1, where each layer only acts on a single direction at a
time.

4 Numerical examples

We present numerical demonstrations of the lazy framework as follows. We first illustrate Algorithm 2
on a 2-dimensional toy example, where we show the progressive Gaussianization of the posterior using
a sequence of 1-dimensional lazy maps. We then demonstrate the benefits of the lazy framework
(Algorithms 1 and 2) in several challenging inference problems. We consider Bayesian logistic
regression and a Bayesian neural network, and compare the performance of a baseline transport map
to lazy maps using the same underlying transport class. We measure performance improvements
in four ways: (1) the final ELBO achieved by the transport maps after training; (2 and 3): the
final trace diagnostics 1

2 Tr(HB
` ) and 1

2 Tr(H`), which bound the error DKL(π||(T`)]ρ); and (4) the
variance diagnostic 1

2Vρ[log ρ/T]`π], which is an asymptotic approximation of DKL((T`)]ρ||π) as
(T`)]ρ → π (see [40]). Finally, we highlight the advantages of greedily training lazy maps in a
nonlinear problem defined by a high-dimensional elliptic partial differential equation (PDE), often
used for testing high-dimensional inference methods [4, 16, 53]. Here, the lazy framework is needed
to make variational inference tractable by controlling the total number of map parameters. We also
illustrate the utility of such flows in preconditioning Markov chain Monte Carlo (MCMC) samplers
[26, 44], or equivalently as a way of de-biasing the variational approximation on these three problems.

Numerical examples are implemented 4 both in the TransportMaps framework [7] and using the
TensorFlow probability library [19]. The PDE considered in 4.4 is discretized and solved using the
FEniCS [37] and dolfin-adjoint [22] packages.

4Code for the numerical examples can be found at https://github.com/MichaelCBrennan/lazymaps
and http://bit.ly/2QlelXF. Data for §4.4, G.4, and G.5 can be downloaded at http://bit.ly/2X09Ns8,
http://bit.ly/2HytQc0 and http://bit.ly/2Eug5ZR.
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4.1 Illustrative toy example

We first apply the algorithm on the standard problem of approximating the rotated banana distribution
Q]πX1,X2

defined by X1 ∼ N (0.5, 0.8) and X2|X1 ∼ N (X2
1 , 0.2), and where Q is a random

rotation. We restrict ourselves to using a composition of rank-1 lazy maps. We consider degree 3
polynomial maps as the underlying transport class. We use Gauss quadrature rules of order 10 for
the discretization of the KL divergence and the approximation of HB

` (m = 121 in Algorithm 3 and
5). Figure 1b shows the target distribution π := πX1,X2

. Figure 1a shows the convergence of the
algorithm both in terms of the trace diagnostic 1

2 Tr(HB
` ) and in terms of the variance diagnostic.

After two iterations the algorithm has explored all directions of R2, leading to a fast improvement.
The convergence stagnates once the trade-off between the complexity of the underlying transport
class and the accuracy of the quadrature has been saturated. Figures 1c–g show the progressive
Gaussianization of the residual distributions T]`π for different iterations `.

4.2 Bayesian logistic regression

We now consider a high-dimensional Bayesian logistic regression problem using the UCI Parkinson’s
disease classification data [1], studied in [49]. We consider the first 500 provided attributes consisting
mainly of patient audio extensions. This results in a d = 500 dimensional inference problem. We
choose a relatively uninformative prior of N (0, 102Id). Here we consider inverse autoregressive
flows (IAFs) [31] for the underlying transport class. Details on the IAF structure, our choice of
hyper-parameters, and training procedure are in Appendix C.

As noted in §2 and shown in Appendix D, generalized linear models can admit an exactly lazy
structure, where the lazy rank r of the posterior is bounded by the number of observations. We
demonstrate this by first considering a small subset of 20 observations. Given a sufficiently expressive
underlying transport class, a single lazy map of rank r = 20 can exactly capture the posterior. We
compare four transport maps: a baseline IAF map; U -IAF, which is a 1-layer lazy map with rank
r = d = 500 expressed in the computed basis U ; Ur-IAF and Ur-IAF-500, which are 1-layer lazy
maps of rank r = 20. The baseline IAF, U -IAF and Ur-IAF each use autoregressive networks with
a hidden dimension equal to the input dimension of the flow (d = 500 in the case of the baseline
IAF and U -IAF, 20 in the case of Ur-IAF). For Ur-IAF-500, we use a hidden dimension of 500,
resulting in a map with approximately the same number of flow parameters as the baseline and U -IAF
maps. Results are summarized in Table 1. We see improved performance in each of the lazy maps
compared to the baseline. We also note that Ur-IAF outperforms U -IAF in each metric median, even
though the U -IAF map has more flow parameters than the Ur-IAF map (4008000 vs 6720). The
Ur-IAF-500 map performs the best in each metric. This map has the highest ratio of map parameters
to active dimensions. This highlights a key benefit of the lazy framework: the ability to focus the
expressiveness of a transport map along particular subspaces important to the capturing the posterior.

0 20 40 60 80 100
Eigenvalue index

101

102

103

104

105

106

107

108 Eig(HB)

Eig(HB
1 )

Eig(HB
2 )

Eig(HB
3 )

Figure 2: Leading eigenvalues of the di-
agnostic matrices HB

` for the G3-IAF map
applied to the full rank logistic regression
problem. The spectrum flattens and falls as
the approximation to the posterior improves.

Next we consider a full rank Bayesian logistic regres-
sion problem using 605 observations. Here we compare
a baseline IAF; U -IAF defined as before; and a 3-layer
lazy map trained via the greedy Algorithm 2, denoted
G3-IAF. In G3-IAF, each layer has rank r = 200. Re-
sults are summarized in Table 1, and again we see
improvements in each of the performance metrics com-
pared to the baseline IAF. Recall that the basis U re-
lates to a bound on the inclusive KL direction, while
the objective function for map training within a layer
optimizes the exclusive KL direction. Empirically we
see benefits in metrics relating to both directions. Inter-
estingly, we observe that U -IAF achieves the greatest
ELBO while G3-IAF achieves the lowest trace diagnos-
tics. This suggests that using a larger number of lazy
layers tends to lead to improvements to the inclusive
KL divergence. Also, though we chose to use the same
number of training iterations in each case, we observe
that training of the lazy maps converges more quickly;
see Appendix G.1 for addition details.
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Table 1: Result summaries for the Bayesian logistic regression and Bayesian neural network examples.
Values reported are the median and (interquartile range) across 10 trials with randomized initialization.
Best performance is bolded. ∆ ELBO computed using the median of the baseline.

Map ∆ ELBO* (↑) Variance diagnostic (↓) Tr(HB
` )/2 (↓) Tr(H`)/2 (↓)

Low rank Bayesian logistic regression
Baseline IAF – 26.5 (3.88) 104 (9.19) 31.3 (15.6)
U -IAF 6.72 (0.469) 7.48 (1.37) 37.4 (2.83) 20.2 (7.91)
Ur-IAF 8.27 (0.249) 5.68 (0.935) 33.8 (4.29) 19.1 (7.68)

Ur-IAF-500 10.9 (0.227) 1.66 (0.496) 8.89 (6.63) 6.19 (0.896)
Full rank Bayesian logistic regression

Baseline IAF – 209 (21.4) 956 (68.6) 350 (178)
U -IAF 26.4 (1.19) 130 (12.3) 623 (19.5) 287 (96.1)
G3-IAF 1.68 (1.56) 109 (8.25) 510 (21.6) 219 (110)

Bayesian neural network
Baseline Affine – 1.6e4 (5.8e4) 3.5e5 (6.9e5) 960 (1.0e3)

G3-Affine 47.7 (2.33) 97.5 (6.47) 1.06e3 (56.2) 606 (201)

As discussed in the introduction, a powerful use case for transport maps is the ability to precondition
an MCMC method as described in [26, 44, 45], i.e., using the computed map to improve the
posterior geometry. Applying Hamiltonian Monte Carlo [41] to the full rank Bayesian logistic
regression problem (in particular, sampling the pullback T]`π where T` is the learned U -IAF map),
we achieve worst, best, and average component-wise effective sample sizes of 0.39%, 1.8%, and
0.99%, compared to 0.056%, 0.12%, and 0.065% without a transport map (sampling the target π
directly). Note that applying T` to MCMC samples from the pullback yields asymptotically exact
samples from π. Three leapfrog steps were used in the HMC proposal, and the step sizes were chosen
adaptively during the burn-in period of the chains to obtain acceptance rates between 70% and 90%
[3, 5, 6].

4.3 Bayesian neural network

We now consider a Bayesian neural network, also in [18, 36], trained on the UCI yacht hydrodynamics
data set [2]. Our inference problem is 581-dimensional, given a network input dimension of 6, one
hidden layer of dimension 20, and an output layer of dimension 1. We use sigmoid activations in the
input and hidden layer, and a linear output layer. Model parameters are endowed with independent
Gaussian priors with zero mean and variance 100. Further details are in Appendix G.2.

Here we consider affine maps as the underlying class of transport. This yields Gaussian approxima-
tions to the posterior distribution in both the lazy and baseline cases. We compare a baseline affine
map and G3-affine, denoting a 3-layer lazy map where each layer has rank r = 200. The diagnostic
matrices HB

` are computed using 581 standard normal samples. We note improvements in each of the
performance metrics using the lazy framework, summarized in Table 1. We also note a 64% decrease
in the number of trained flow parameters in G3-affine, relative to the baseline case (from 338142 to
120600).

Similarly to §4.2, we compare the performance of HMC applied with and without transport map
preconditioning. We achieve worst, best, and average component-wise ESS of 0.073%, 1.2%, and
0.56% using the learnedG3-Affine map, compared to 0.047%, 0.14%, and 0.06% without a transport
map. Here five leapfrog steps were used in the HMC proposal, and the step sizes in each case were
picked adaptively as before.

4.4 High-dimensional elliptic PDE inverse problem

We consider the problem of estimating the diffusion coefficient eκ(x) of an elliptic PDE from sparse
observations of the field u(x) solving{

∇ · (eκ(x)∇u(x)) = 0, for x ∈ D := [0, 1]2 ,

u(x) = 0 for x1 = 0, u(x) = 1 for x1 = 1, ∂u(x)
∂n = 0 for x2 ∈ {0, 1} .

(6)
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Figure 3: Application of Algorithm 2 to an elliptic PDE with unknown diffusion coefficient. (a) The
data-generating field κ. (b) Convergence of the trace error bound and variance diagnostic with greedy
iterations. (c) Draws from the 2601-dimensional posterior distribution.

This PDE is discretized using finite elements over a uniform mesh of 51 × 51 nodes, leading to
d = 2601 degrees of freedom. We denote by κ the discretized version of the log-diffusion coefficient
over this mesh. Let F be the map from the parameter κ to n = 81 values of u collected at the
locations shown in Figure 3a. Observations follow the model y = F(κ) + ε, where ε ∼ N (0,Σobs)
and Σobs := 10−3Id. The coefficient κ is endowed with a Gaussian prior N (0,Σ) where Σ is the
covariance of an Ornstein–Uhlenbeck process. For the observations y? associated to the parameter
κ? shown in Figure 3a, our target distribution is π(z) ∝ Ly?(z)ρ(z), where κ = Σ1/2z.

We greedily train a deeply lazy map using Algorithm 2, using triangular polynomial maps as the
underlying transport (see Appendix B). Expectations appearing in the algorithm are discretized with
m = 500 Monte Carlo samples. To not waste work in the early iterations, we use affine maps of
rank r = 4 for iterations ` = 1, . . . , 5. Then we switch to polynomial maps of degree 2 and rank
r = 2 for the remaining iterations. This reflects the flexibility of the lazy framework; changes to the
underlying transport class and the lazy rank of each layer are simple to implement. The algorithm is
terminated when it stagnates after exhausting the expressiveness of the underlying transport class,
and the precision of approximating the objective using m samples; see Figure 3b. Randomly drawn
realizations of κ in Figure 3c resemble the generating field.

This elliptic PDE is a challenging benchmark problem for high-dimensional inference [4, 16, 53].
We note that the final map is a sparse degree-32 polynomial that acts nonlinearly on all 2061 degrees
of freedom. Without imposing structure, the curse of dimensionality would render the solution of this
problem using polynomial transport maps completely intractable [56]. For instance, a naïve total-
degree parameterization of just the final component of the map would contain

(
2061+32

32

)
≈ 5.5×1070

parameters. We can confirm the quality of the posterior approximation and demonstrate a further
application of transport by using MCMC to sample the pullback T]`π. We do so using preconditioned
Crank-Nicolson (pCN) MCMC [15] (a state-of-the-art algorithm for PDE problems, with dimension-
independent convergence rate) with a step size parameter β = 0.5. The acceptance rate is 28.2% with
the worst, best, and average effective sample sizes [58] being 0.2%, 2.6%, and 1.5% of the complete
chain. For comparison, a direct application of pCN with the same β leads to an acceptance rate under
0.4% and an effective sample size that cannot be reliably computed. More details are in Appendix
G.3.

5 Conclusions

We have presented a framework for creating target-informed architectures for transport-based vari-
ational inference. Our approach uses a rigorous error bound to identify low-dimensional structure
in the target distribution and focus the expressiveness of the transport map or flow on an important
subspace. We also introduce and analyze a greedy algorithm for building deep compositions of
low-dimensional maps that can iteratively approximate general high-dimensional target distributions.
Empirically, these methods improve the accuracy of inference, accelerate training, and control the
complexity of flows to improve tractability. Ongoing work will consider constructive tests for further
varieties of underlying structure in inference problems, and their implications on the structure of
flows.

9



Broader Impact

Who may benefit from this research? We believe users and developers of approximate inference
methods will benefit from our work. Our framework works as an “outer wrapper” that can improve
the effectiveness of any flow-based variational inference method by guiding its structure. We hope to
make expressive flow-based variational inference more tractable, efficient, and broadly applicable,
particularly in high dimensions, by developing automated tests for low-dimensional structure and
flexible ways to exploit it. The trace diagnostic developed in our work rigorously assesses the quality
of transport/flow-based inference, and may be of independent interest.

Who may be put at disadvantage from this research? We don’t believe anyone is put at disad-
vantage due to this research.

What are the consequences of failure of the system? We specifically point out that one contribu-
tion of this work is identifying when a poor posterior approximation has occurred. A potential failure
mode of our framework would be inaccurate estimation of the diagnostic matrix H or its spectrum,
suggesting that the approximate posterior is more accurate than it truly is. However, computing
the eigenvalues or trace of a symmetric matrix, even one estimated from samples, is a well studied
problem. And numerical software guards against poor eigenvalue estimation or at least warns if this
occurs. We believe the theoretical underpinnings of this work make it robust to undetected failure.

Does the task/method leverage biases in the data? We don’t believe our method leverages data
bias. As a method for variational inference, our goal is to accurately approximate a posterior
distribution. It is very possible to encode biases for/against a particular result in a Bayesian inference
problem, but that occurs at the level of modeling (choosing the prior, defining the likelihood) and
collecting data, not at the level of approximating the posterior.
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