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Abstract

One fundamental problem in the empirical sciences is of reconstructing the causal
structure that underlies a phenomenon of interest through observation and ex-
perimentation. While there exists a plethora of methods capable of learning the
equivalence class of causal structures that are compatible with observations, it is
less well-understood how to systematically combine observations and experiments
to reconstruct the underlying structure. In this paper, we investigate the task of
structural learning in non-Markovian systems (i.e., when latent variables a↵ect
more than one observable) from a combination of observational and soft experi-
mental data when the interventional targets are unknown. Using causal invariances
found across the collection of observational and interventional distributions (not
only conditional independences), we define a property called �-Markov that con-
nects these distributions to a pair consisting of (1) a causal graphD and (2) a set
of interventional targets I . Building on this property, our main contributions are
two-fold: First, we provide a graphical characterization that allows one to test
whether two causal graphs with possibly di↵erent sets of interventional targets
belong to the same �-Markov equivalence class. Second, we develop an algorithm
capable of harnessing the collection of data to learn the corresponding equivalence
class. We then prove that this algorithm is sound and complete, in the sense that
it is the most informative in the sample limit, i.e., it discovers as many tails and
arrowheads as can be oriented within a �-Markov equivalence class.

1 Introduction

Learning cause-and-e↵ect relationships is one of the fundamental problems for various fields, in-
cluding biology [28, 6], epidemiology [26], and economics [12]. A prominent approach for causal
discovery models the underlying system as a causal graph represented by a directed acyclic graph
(DAG), where nodes denote random variables (measured or latent) and directed edges denote causal
e↵ects from tails to arrowheads [22, 29, 24]. Accordingly, the task of structural learning entails
piecing together the constraints found in the data (and implied by the underlying, unobserved causal
system) to infer the corresponding causal graph. In practice, however, these constraints are almost
never su�cient to determine the true causal graph, and a collection of compatible graphs ends up
being the target of the analysis, which forms what is known as an equivalence class (EC).
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The formal understanding and characterization of equivalence classes have been an important part of
the causal discovery literature for various reasons. For instance, one needs to understand how the
output of a learning algorithm relates to the true underlying system that they are trying to infer. Also,
ECs are defined with respect to certain constraints implied by the underlying structure in the data (e.g.,
conditional independences (CIs)), which need to be made explicit and fully understood if one wants
to learn from the data (including due to false positives, negatives). Whenever only observational
(non-experimental) data is available, the Markov equivalence class (for short, MEC) characterizes the
causal graphs that imply, by the d-separation criterion, the same set of conditional independences
(CIs) over the measured variables [32]. The availability of interventional (i.e., experimental) data
opens up new opportunities to reduce the size of the equivalence class down, possibly to recover the
true causal graph [10, 18, 8]. An intervention on a (measured) variable X modifies the mechanism by
which it is generated, inducing an interventional distribution over the measured variables V, denoted
as PX(V) or PX [22]. The works in [9, 34, 17] characterize the so called I-Markov equivalence class,
which uses distributional invariances within and across the available mixture of observational and
interventional distributions. For instance, the graphsD1 = {X ! Y, X  L! Y}, where L is latent,
and D2 = {X  Y} are indistinguishable from observational data alone as no CI is implied (i.e.,
X 6?? Y). Still, they are immediately distinguishable given hP, PXi by contrasting P(Y) and PX(Y).

In this paper, we investigate soft interventions such that the mechanism of an intervened node Vi
is modified without fully eliminating the e↵ect of its parents. This operation is also known as a
mechanism change [31] or a parameter change [5], and it presents in many settings a more realistic
model than hard or perfect interventions, where variables are forced to a fixed value (see also
[2, 3, 33, 22, Sec. 3.2.2]). Furthermore, we relax the interventional setting by assuming the targets
of the intervention to be unknown. For example, in molecular biology, the e↵ects of various added
chemicals to the cell are not set to one specific value nor they are precisely known [4].

The unknown interventional target setting requires a separate treatment than the known one since
it’s certainly less informative, i.e., the equivalence class of causal graphs is usually larger (never
smaller), and many of the proposed characterizations and algorithms do not immediately apply. For
concreteness, consider the two causal graphs mentioned above (D1, D2) that are distinguishable
under a known interventional target set I = h;, {X}i, where ; denotes the observational setting and
{X} denotes an intervention on the variable. However, they turn out to be indistinguishable when
D1 is associated with I1 = h;, {X}i but D2 is associated with I2 = h;, {X,Y}i. In other words, the
distributional invariances (to be formally defined in Section 3) accept both hypotheses that a pair of
distributions with unknown intervention targets hP1, P2i is generated by hD1,I1i or hD2,I2i, where
P1 = P(V) in both, P2 = PX(V) forD1, and P2 = PX,Y (V) forD2. Since the data is compatible with
both I1,I2 for di↵erent graphs, the EC is underdetermined relative to known interventional targets.

Various approaches have been proposed to learn the causal graph from interventional distributions with
unknown interventional targets. The works in [4, 23, 38, 30, 15] assume Markovianity (the absence
of latent confounders). Another approach described in [27] learns cyclic causal graphs assuming
linearity from unknown shift interventions, which is a specific type of soft interventions. Finally, [20]
presents a framework called JCI, which pools the various distributions together by constructing
context variables and then running traditional learning algorithms to identify the corresponding EC.1

In this work, we take a more fundamental approach and explicitly formalize the constraints that are
being tested among the mixture of observational (when available) and interventional distributions, as
well as provide a characterization of the equivalence class with respect to those constraints. Assuming
a tuple of distributions P = hPii

m
i=1 is generated by the same system, i.e., causal graph with latents,

we define a property called �-Markov that connects P to a pair consisting of (1) a causal graph
D and (2) a set of interventional targets I . Building on this property in Section 3, we provide a
graphical characterization that allows one to test whether two causal graphs with possibly di↵erent
sets of intervention targets belong to the same �-Markov equivalence class. We show that a graphical
characterization for the causally su�cient case follows as a special case of this result. In Section 4,
we develop �-FCI, a constraint-based algorithm capable of harnessing the distributional invariances
found across the combined data to learn the corresponding equivalence class. Finally, we prove
that this algorithm is sound and complete, in the sense that it is the most informative in the sample
limit. In other words, �-FCI discovers as many tails and arrowheads as can be oriented within the
corresponding �-Markov equivalence class. In summary, our contributions are as follow:

1We provide detailed discussion on how some of these works compare to ours in the full report [13, Appx. D].
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1. We formulate a graphical characterization to test whether two pairs of causal graphs and their
corresponding interventional target sets, hD1,I1i and hD2,I2i, are in the same �-Markov
equivalence class, i.e., they are indistinguishable with respect to the available datasets.

2. We develop a sound and complete algorithm to learn equivalence classes of causal graphs from a
collection of observational and experimental distributions with unknown interventional targets.

2 Preliminaries

We introduce in this section the necessary concepts and notation used throughout the paper. Upper
case letters denote random variables and lower case letters denote an assignment. Also, bold letters
denote sets. For X,Y,Z, the CI relation X is independent of Y conditioned on Z is written as
X ?? Y |Z . The d-separation statement X is d-separated from Y given Z in graph D is written as
(X ?? Y |Z )D. D

X
denotes the graph obtained from D where all the incoming edges to the nodes

in X are removed. Similarly, DX denotes the removal of outgoing edges. We assume there is no
selection bias. A star on edge endpoints is used as a wildcard to denote circle, arrowhead, or tail.

Causal Bayesian Network (CBN): Let P(V) be a probability distribution over a set of variables V,
and Px(V) denote the distribution resulting from the hard intervention do(X = x), which sets X ✓ V

to constants x. Let P
⇤ denote the set of all interventional distributions Px(V), for all X ✓ V, including

P(V). A directed acyclic graph (DAG) over V is said to be a causal Bayesian network compatible
with P

⇤ if and only if, for all X ✓ V, Px(v) =
Q
{i|Vi<X} P(vi|pai), for all v consistent with x, and where

Pai is the set of parents of Vi [22, 1, pp. 24]. Given that a subset of the variables are unmeasured or
latent,D(V [ L,E) will represent the causal graph where V and L denote the measured and latent
variables, respectively, and E denotes the edges. Following the convention in [22], for simplicity, a
dashed bi-directed edge is used instead of the corresponding latent variables. The CI relations can be
read from the graph using a graphical criterion known as d-separation [21].

Soft Interventions: Under this type of interventions, the original conditional distributions of the
intervened variables X are replaced with new ones, without completely eliminating the causal
e↵ect of the parents. Accordingly, the interventional distribution PX(v) for X ✓ V is such that
P⇤(Xi|Pai) , P(Xi|Pai), 8Xi 2 X. We refer to the mixture of observational and interventional
distributions as interventional for simplicity, which factorizes as follow:

PX(v) =
X

L

Y

{i|Xi2X}

P⇤(xi|pai)
Y

{ j|T j<X}

P(t j|pa j) (1)

Ancestral Graphs: A mixed graph can contain directed and bi-directed edges. A is an ancestor of B
if there is a directed path from A to B. A is a spouse of B if A$ B is present. If A is both a spouse
and an ancestor of B, this creates an almost directed cycle. A path is a sequence of edges joining a
unique sequence of nodes. An inducing path relative to L is a path on which every non-endpoint node
X < L is a collider on the path (i.e., both edges incident to the node are into it) and every collider is
an ancestor of an endpoint of the path. A mixed graph is ancestral if it does not contain directed or
almost directed cycles. It is maximal if there is no inducing path (relative to the empty set) between
any two non-adjacent nodes. A Maximal Ancestral Graph (MAG) is a graph that is both ancestral
and maximal [25]. Given a causal graphD(V[L,E), a unique MAGMD over V can be constructed
such that both the independence and the ancestral relations among V are retained; see, [36, p. 6].

A triple hX,Y,Zi is an unshielded triple if X and Y are adjacent, Y and Z are adjacent, and X and Z
are not adjacent. If both edges are into Y , then the triple is referred to as unshielded collider. A path
between X and Y , p = hX, . . . ,W,Z,Yi, is discriminating for Z if every node between X and Z is a
collider on p and is a parent of Y . Two MAGs are Markov equivalent if and only if (1) they have the
same adjacencies; (2) the same unshielded colliders; and (3) if a path p is a discriminating path for Z
in both graphs, then Z is a collider on p in one graph if and only if it is a collider on p in the other.
A PAG represents an MEC of a MAG and is learnable from data. The output of the celebrated FCI
algorithm is a PAG, which is proven sound and complete for the corresponding MEC [37].

3 Interventional Equivalence with Unknown Targets

In this section, we formalize the notion of interventional equivalence class when the interventional
targets are unknown. Let V j

i denote an intervention on Vi with a unique mechanism identified by
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j. Hence, interventions denoted by V j
i and Vk

i force di↵erent mechanisms such that PV j
i
(Vi|Pai) ,

PVk
i
(Vi|Pai). Accordingly, each interventional target I = {V j

i }i2|V| is defined by a set of variables with
corresponding mechanism identifiers denoted by j 2 N. We drop the mechanism identifier whenever
it is not necessary. Next, we define an important operation between two interventional targets.

Definition 1 (Symmetrical Di↵erence �). Given two interventional targets I and J, let I�J denote
the symmetrical di↵erence set such that Vi 2 I�J if V j

i 2 I and V j
i < J or vice versa.

In words, the operation identifies the set of variables that have a unique interventional mechanism
across two interventional targets. For example, given I = {X1,Y,Z} and J = {X2,Y}, then I�J = {X,Z}.

Next, we generalize the interventional Markov property (I-Markov) [17] for the case when the
targets are unknown, which we call �-Markov. This property features prominently the di↵erent tests
that emerge when a combination of observational and experimental distributions is available.

Definition 2 (�-Markov Property). Let D = (V [ L,E) denote a causal graph, let P denote an
ordered tuple of distributions, and let I denote an ordered tuple of interventional targets such that
|P| = |I |. Tuple P satisfies the �-Markov property with respect to the pair hD,Ii if the following
holds for disjoint Y,Z,W ✓ V:

(a) For Ii 2 I: Pi(y|w, z) = Pi(y|w) if Y ?? Z |W inD

(b) For Ii, I j 2 I: Pi(y|w) = Pj(y|w) if Y ?? K |W \WK inD
WK,R(W),

where K B Ii�I j, WK CW \K, R B K\WK, and R(W) ✓ R are non-ancestors of W inD.

�I (D) denotes set of distribution tuples that satisfy the �-Markov property with respect to hD,Ii.

For concreteness and to illustrate this definition, we provide two examples with tuples of distributions
that satisfy and do not satisfy the corresponding �-Markov property, respectively.

Example 1. Consider the causal graphD⇤ = {X ! Y, X  L! Y} where L is a latent node, and let
the pair of distributions hP1, P2i be the result of intervening on the targets I⇤ = h;, {X}i. It is easy to
check that P satisfies the �-Markov property with respect to hD⇤,I⇤i as no constraint of type (a) or
(b) is applicable. For example, if (Y ?? X)D⇤X , then the invariance P1(y|x) = P2(y|x) must hold. Since
the d-separation fails, the invariance is not required. Similarly, P satisfies the �-Markov property
with respect to hD,Ii whereD = {X  Y} and I = h;, {X,Y}i or I = h{X}, {Y}i.
Example 2. Consider the pair hD⇤,I⇤i and the corresponding tuple of distributions P from Ex. 1.
We check if P satisfies the �-Markov property with respect to hD⇤,Ii for I = h;, {Y}i. Now,
K = ;�{Y} = {Y} and we have (X ?? Y)DY

, so P1(X) = P2(X) should hold according to Constraint (b).
However, the invariance does not hold simply because P2, in truth, corresponds to the interventional
distribution on X. Therefore, P does not satisfy the �-Markov property with respect to hD⇤,Ii.

A few remarks are relevant about the �-Markov property at this point. First, an ordered tuple of
interventional distributions P with unknown interventional targets is said to satisfy the �-Markov
property if two qualitatively di↵erent types of constraints hold – (a) the “traditional” Markov property,
where separation in the causal graphD implies CI in the corresponding distribution (including the
interventional ones); (b) invariances across pairs of distributions given separation statements in the
mutilated graph. These mutilations depend on the symmetrical di↵erence set (K) of the interventional
targets. Intuitively, should Ii, I j correspond to the true interventional targets of Pi, Pj, respectively,
(b) verifies distributional invariances between PIi and PI j if the corresponding separation holds.

Second, the importance of the property stems from the fact that a tuple of interventional distributions
generated by a causal graphD satisfies the �-Markov property relative to it and the corresponding
true interventional targets. See [13, Thm. 4 in Appx. A] for an explicit statement. Third, we note
that if the interventional targets are known (i.e., I1 = I2), the �-Markov property still generalizes
I-Markov [17] by relaxing the assumption of controlled experiment setting. In practice, it may be
hard to ascertain that interventions over the same variable are performed exactly in the same way,
which makes this more refined characterization potentially interesting even to when the interventional
target is known. Finally, decoupling the distributions from the corresponding interventional targets is
instrumental to formulate interventional equivalence when the targets are unknown as shown below.
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I1 = h;, {X}i

X

Z

Y

W

(a) Pair hD1,I1i

I2 = h{X}, {W}i

X

Z

Y

W

(b) Pair hD2,I2i

I3 = h;, {X}i

X

Z

Y

W

(c) Pair hD3,I3i

F1
X

Z

Y

W

(d) MAG(AugI1D1))

F1
X

Z

Y

W

(e) MAG(AugI2D2))

F1
X

Z

Y

W

(f) MAG(AugI3D3))

Figure 1: Pairs of causal graphs and intervention-target sets and the corresponding I-MAGs.

Definition 3 (�-Markov Equivalence). Given the causal graphs D1 = (V [ L1,E1) and D2 =
(V [ L2,E2), and the corresponding interventional targets I1,I2, the pairs hD1,I1i and hD2,I2i
are said to be �-Markov equivalent if �I1 (D1) = �I2 (D2).

In words, two pairs of causal graphs and their corresponding sets of interventional targets hD1,I1i
and hD2,I2i are �-Markov equivalent if they can induce the same set of distribution tuples. In
practice, it may be challenging to evaluate whether the premises of the �-Markov property hold since
they entail di↵erent graph mutilations ofD. In order to ameliorate this task, we build on the graph
augmentation construction following [17].
Definition 4 (Augmented graph). Consider a causal graphD = (V[L,E) and a set of interventional
targets I . Let the multiset K be defined as such K = {K1,K2, . . . ,Kk} = {K|I, J 2 I ^ I�J = K}.
The augmented graph of D with respect to I , denoted as AugI(D), is the graph constructed as
follows: AugI (D) = (V [ L [ F ,E [ E) where F B {Fi}i2[k] and E = {(Fi, j)}i2[k], j2Ki .

For each pair of interventional targets I, J 2 I such that K = I�J, the augmented graph appends
the causal graphD with a utility F-node that is a parent to each node in K. The significance of this
construction follows from Proposition 1 where separation statements in the �-Markov definition are
tied (shown to be equivalent, formally speaking) to ones in the augmented graph, with no need to
perform any graphical mutilation.The result is illustrated in the following example.
Proposition 1. Consider a causal graphD = (V [ L,E), a set of interventional targets I , and the
augmented graph AugI(D), where F = {Fi}i2[k]. Let Ki be the set of nodes adjacent to Fi,8i 2 [k].
The following equivalence relations hold for disjoint Y,Z,W ✓ V, where WiBW\Ki,R B Ki\Wi.2

(Y ?? Z |W )D () (Y ?? Z

���W, F[k] )AugI (D) (2)

(Y ?? Ki |W \Wi )D
Wi ,R(W)

() (Y ?? Fi
���W, F[k]\{i} )AugI (D) (3)

Example 3. Consider D = {X ! Y  L ! Z} where L is latent and let I = h{X,Z1
}, {Z2

}i. The
corresponding augmented graph D0 is composed of D appended with X  F1 ! Z. By Prop. 1,
(X ?? Z)D can be tested by (X ?? Z |F1 )D0 . Also, (Y ?? {X,Z})DX,Z

can be tested as (F1 ?? Y |X )D0 .

Maximal Ancestral Graphs (MAGs) provide a convenient representation capable of preserving all the
tested constraints in augmented graphs represented by d-separations [25]; see also [36, p. 6]. This is
formalized in Definition 5 and the construct is referred to as an I-MAG; see Example 4 below.
Definition 5 (I-MAG). Given a causal graphD = (V [ L,E) and a set of interventional targets I ,
an I-MAG is the MAG constructed over V from AugI (D), i.e., MAG(AugI(D)).
Example 4. Consider D⇤ from Ex. 1. AugI(D⇤) = {F1 ! X ! Y, X  L ! Y} for I = h;, {X}i.
Then, the corresponding I-MAG is MAG(AugI (D⇤)) = {X  F1 ! Y, X ! Y}.

Putting these results together, we derive next a graphical characterization for two causal graphs with
corresponding sets of interventional targets to be �-Markov equivalent.

2All the proofs can be found in Appendices A & B of the full report [13].
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Theorem 1 (�-Markov Characterization). Given causal graphs D1 = (V [ L1,E2),D2 = (V [
L2,E2) and corresponding sets of interventional targets I1,I2, hD1,I1i and hD2,I2i are �-Markov
equivalent if and only if forM1 = MAG(AugI1 (D1)) andM2 = MAG(AugI2 (D2)):3

1. M1 andM2 have the same skeleton;

2. M1 andM2 have the same unshielded colliders;

3. If a path p is a discriminating path for a node Y in bothM1 andM2, then Y is a collider on
the path in one graph if and only if it is a collider on the path in the other.

Theorem 1 states that the pairs hD1,I1i and hD2,I2i are �-Markov equivalent if their corresponding
I-MAGs satisfy the corresponding three conditions, as illustrated in the example below.
Example 5. Consider the pairs hD1,I1i and hD2,I2i in Figs. 1a and 1b, respectively. The corre-
sponding I-MAGs are shown in Figs. 1d and 1e satisfy the three conditions in Thm. 1, hence the
pairs are �-Markov equivalent. Note K , according to Def. 4, is {{X}} for I1 and {{X,W}} for I2.
Hence, F1 is adjacent to {X} in AugI1 (D1) and F1 is adjacent to {X,W} in AugI2 (D2). However, F1
is adjacent to W in Fig. 1d due to the inducing path hF1, X,Wi in AugI1 (D1). On the other hand,
hD3,I3i in Fig. 1c is not �-Markov equivalent to either one of the other pairs as we violate all three
conditions of Thm. 1. For instance, the I-MAGs in Figs. 1e and 1f do not share the same skeleton,
hF1, X,Wi is an unshielded collider only in Fig. 1f, and p = hF1, X,Z,Yi is a discriminating path for
Z in both; however, Z is a collider along p in Fig. 1f while it is a non-collider in Fig. 1e.

In a setting where the observational distribution is available and identified among the available
distributions, it becomes necessary to fix ; across I1,I2, which is a special case of Thm. 1. Further,
note that the graphical characterization introduced in [17] for causal graphs with known interventional
targets is a special case of Thm. 1 whenever I1 = I2 with the controlled experiment setting.

3.1 Markovian Case

One special class of causal graphs that is of high interest in the literature is known as Markovian,
where there is no latent variable a↵ecting more than one observable node (i.e., no bidirected arrows).
It follows from Theorem 1 the following graphical characterization for this class of models.
Corollary 1. Given causal graphs without latents,D1 = (V,E2),D2 = (V,E2), and the correspond-
ing interventional targets I1,I2, the pairs hD1,I1i and hD2,I2i are �-Markov equivalent if and
only if AugI1 (D1) and AugI2 (D2) have (1) the same skeleton and (2) the same unshielded colliders.

Note that under known interventional targets (i.e., I1 = I2), Corol. 1 recovers and generalizes the
characterization in [34, Thm. 3.9] by encoding di↵erent interventional mechanisms and thus identify-
ing a smaller equivalence class. For a more detailed comparison, we refer readers to Appendix D.1.

4 Learning Algorithm: Soundness and Completeness

We investigate in this section the problem of how to learn the �-Markov EC (Def. 3) from a tuple of
interventional distributions generated by some unknown pair hD,Ii. The characterization provided
in Thm. 1 together with PAGs motivate the following definition of �-PAG.
Definition 6 (�-PAG). Given a pair of causal graph and interventional target, hD,Ii, letM =
MAG(AugI (D)), and let [M] be the set of I-MAGs corresponding to all the pairs hD0,I 0i that are
�-Markov equivalent to hD,Ii. The �-PAG for hD,Ii, denoted P, is a graph such that:

1. P has the same adjacencies asM, and any member of [M] does; and

2. every non-circle mark (tail or arrowhead) in P is an invariant mark in [M].

Some remarks follow immediately from this definition. First, �-PAG generalizes PAGs, as used
in the observational case. Second, even though the augmented F-nodes are part of the �-PAG,
which is the very target of the learning process, they never transpire as random variables, and are

3We assume the symmetrical di↵erence sets K1, corresponding to I1, and K2, corresponding to I2, are
indexed following the same pattern such that K1 3 Kk = Ii�I j where Ii, I j 2 I1 i↵ K2 3 Kk = Ii�I j where
Ii, I j 2 I2. This is required to maintain the correspondence between the F-nodes inM1 andM2.
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Algorithm 1 �-FCI: Algorithm for Learning a �-PAG
Input: Tuple of distributions P = hP1, . . . , Pmi

Output: �-PAG P
1: F  ;, k  0,� : N! N ⇥ N
2: for all pairs Pi, Pj 2 P do k  k + 1, F  F [ {Fk}, �(k)! (i, j)
3: Phase I: Skeleton

4: Form a complete graph P over V [ F with ��� edges between every pair of nodes.
5: for every pair X,Y 2 V [ F do

6: if X 2 F ^ Y 2 F then SepSet(X,Y) ;, SepFlag True
7: else (SepSet(X,Y), SepFlag) InvToSep(P, X,Y,V,F ,�)
8: if SepFlag = True then Remove the edge between X,Y in P.
9: Phase II: Unshielded Colliders

10: R0: For every unshielded triple hX,Z,Yi in P, orient it as X⇤! Z  ⇤Y i↵ Z < SepSet(X,Y)
11: Phase III: Orientation Rules

12: Rule R+: For any Fk 2 F , orient adjacent edges out of Fk.
13: Apply the seven FCI rules in [37] (R1 � R4,R8 � R10) until none applies.

14: function InvToSep(P, X,Y,V,F ,�)
15: SepSet ;, SepFlag False
16: if X < F ^ Y < F then Pick Pi 2 P arbitrarily.
17: for W ✓ V \ F do

18: if Pi(y|w, x) = Pi(y|w) then SepSet W [ F , SepFlag True, break

19: else Suppose X 2 F ,Y < F , and let Fk denote X.
20: (i, j) �(k)
21: for W ✓ V \ {Y} do

22: if Pi(y|w) = Pj(y|w) then SepSet W [ F \ {Fk}, SepFlag True, break

return (SepSet, SepFlag)

merely graphical instruments used to represent the equivalence class. In fact, the real invariance
tests across distributions are stated in the �-Markov property (Def. 2). Third, as expected in any
learning setting, some type of faithfulness assumption is needed to infer graphical properties from the
corresponding distributional constraints [37, 34, 17, 30]. Hence, we assume that the given collection
of interventional distributions is c-faithful to the true generating causal graphD as defined next.
Definition 7 (c-faithfulness). Consider a causal graphD. A tuple of distributions hPIiI2I 2 �I (D)
is called c-faithful toD if the converse of each of the �-Markov conditions (Def. 2) holds.

The new algorithm is called �-FCI and is shown in Alg. 1. �-FCI starts by mapping every pair of
distributions in P to a constructed F-node (line 2). In Phase I, �-FCI learns the skeleton of the �-PAG
P. It starts by creating a complete graph of circle edges (���) over V [ F , and then uses the function
InvToSep(·) at line 7, which we discuss next, to infer a separation set for every pair of nodes, if such
a set exists. Line 6 handles a special case in which both nodes are F-nodes and are separable by the
empty set, by construction. Phase II recovers the unshielded colliders hX,Z,Yi by checking that Z
does not belong to the corresponding separation set SepSet(X,Y). Finally, the algorithm orients all
the edges incident on F-nodes out of them in R+ followed by a subset of the FCI rules until none
applies anymore. Note that we drop three of the FCI rules (R5 � R7) as they are only applicable in
the presence of selection bias which we do not consider.

InvToSep(·) can be considered as the most fundamental part of �-FCI. This function infers separation
sets for pairs of nodes in P from the invariances found across the distributions.4 The separation sets
are key in �-FCI to learn the skeleton and orient the edges of P. If both X and Y are not F-nodes,
then we pick an arbitrary distribution Pi 2 P and check if there exists a subset of the variables W

such that (X ?? Y |W ) in Pi (lines 3-5). The reason we choose an arbitrary distribution in P is that the
set of conditional independences that can be read from an observational or interventional distribution
is the same under soft interventions. For the next step, recall that every F-node is mapped to a unique
pair of distributions in P. If one of the two nodes is an F-node, denoted Fk, then we search for a
subset of variables W such that Pi(y|w) = Pj(y|w) where (i, j) �(k). If such an invariance exists,

4There are di↵erent ways of implementing hypothesis testing for the distributional invariances, as required
in line 22 of �-FCI. In fact, these tests can be seen as evaluating statements in the form |P̂i(y|w) � P̂ j(y|w)|  ✏,
where the hat represents the empirical distribution. �-FCI is agnostic to the particular implementation of the test,
which is in general chosen based on the specific details of the setting.
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Figure 2: Di↵erent phases of �-FCI to learn �-PAG P given a tuple of distributions hP1, P2i that is
generated by the unknown pair hD,Ii, shown in Fig. 1a.

we mark W [ F \ {Fk} as a separating set between Fk and Y . The validity of this function follows
from the constraints of the �-Markov property (Def. 2) and the equivalences in Proposition 1 coupled
with the c-faithfulness assumption in Def. 7. We illustrate the use of �-FCI in the example below.
Example 6. Consider a tuple of distributions hP1, P2i and let the pair hD,Ii in Fig. 1a be the true
and unknown causal graph and set of corresponding interventional targets. I-MAGM is shown in
Fig. 1d and the aim is to recover the corresponding �-PAG P. Fig. 2a shows the output of Phase
I. For instance, F1 and Y are separable by {X,Z}, which is inferred by the distributional invariance
P1(Y |X,Z) = P2(Y |X,Z). Phase II recovers the unshielded colliders as shown in Fig. 2b. For example,
hF1,W,Yi is oriented as a collider since W < SepSet(F1,Y) = {X,Z}. Finally, Phase III applies the
orientation rules which gives the graph in Fig. 2c. The edges incident on F1 are oriented out of it by
R
+, X ! Y by R1, the arrowhead on X�! W by R2, and Z ! Y by R4.

Putting these observations together, finally, the next theorem ascertains the soundness of �-FCI.
Theorem 2 (�-FCI Soundness). Assuming tuple P is generated by unknown pair hD,Ii, then �-FCI
is sound in the sample limit, i.e., MAG(AugI(D)) has the same skeleton as P�-FCI, the �-PAG
learned by �-FCI, and shares all its tail and arrowhead orientations.

4.1 �-FCI Completeness

One common question for any learning algorithm is how close it can get to the underlying causal
structure. In the limit, one would like to discover all the invariant features of the corresponding
�-Markov EC, a property called completeness. Concretely, for every circle mark on an edge end
in P�-FCI, we need to establish the following. There exist two pairs hD1,I1i and hD2,I2i that are
�-Markov equivalent to the true pair hD,Ii such that the corresponding I-MAGsM1 andM2 have
di↵erent marks for that end (i.e., one has a tail while the other has an arrowhead), as illustrated next.
Example 7. Consider �-PAG P in Fig. 2c from Ex. 6. I-MAGs in Figs. 1d and 1e are both in the
corresponding equivalence class represented by P. Notice that for every circle mark in P, the mark
is a tail in one of the I-MAGs while it is an arrowhead in the other. Hence, the orientations are
complete. If the observational distribution is known, then consider the graph D2 in Fig. 1b with
I⇤2 = h;, {X,W}i. The corresponding I-MAG is the one in Fig. 1e, so we obtain the same result.

To understand the challenge of establishing �-FCI’s completeness, denote byM0 a complete orienta-
tion of P�-FCI. Note that even thoughM0 may satisfy the three conditions of Thm. 1 with respect to
the true I-MAGM, it is not implied thatM0 is a valid I-MAG. Following the further requirements
of Def. 5, we show next that there exists a pair hD0,I 0i such that MAG(AugI0 (D0)) =M0.
Lemma 1. LetD(V [ L,E) denote a causal graph, I denote a set of interventional targets,M =
MAG(AugI (D)), andM0 denote an arbitrary MAG over V [ F . If the following holds:

1. All the edges incident on F inM0 are out of F ; and,

2. M andM0 share the same separation statements over V [ F ,

then there exists a pair hD0,I 0i, including when ; 2 I and is fixed, such that MAG(AugI0 (D0)) =M0.
In other words,M0 is an I-MAG and the pair hD0,I 0i is �-Markov equivalent to hD,Ii.

Based on this result, completeness can be finally proved as shown next.
Theorem 3 (�-FCI Completeness). Assuming tuple P is generated by unknown pair hD,Ii, then
�-FCI is complete, i.e., P contains all the common edge marks in the �-Markov equivalence class.
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A few compelling connections emerge from this proposition. Leveraging Corollary 1, one can show
that a variant of �-FCI constrained to Meek’s rules (which we called �-PC) is also complete in the
Markovian case for both known and unknown interventional targets. On the other hand, perhaps
surprisingly, it can also be shown that the same result does not hold when su�ciency cannot be
ascertained. For a more detailed discussion on these subtleties, see [13, Appendix C].

5 Conclusion

In this work, we investigated the problem of learning causal graphs with latent variables from a
mixture of observational and interventional distributions with unknown interventional targets. We
started by defining the �-Markov property that connects a tuple of distributions with unknown targets
to a pair of causal graph D and a corresponding possible interventional target set I . Accordingly,
two pairs hD1,I1i and hD2,I2i are said to be �-Markov equivalent if they license the same tuples
of distributions. Based on this refined equivalence relation, we derived a graphical characterization to
evaluate whether two pairs are in the same �-Markov equivalence class. Finally, we developed a sound
and complete algorithm that recovers a �-Markov equivalence class given a tuple of distributions.
This work grounds the theoretical aspects of learning from unknown soft-interventions, thus, as we
envision, paving the way for a new family of more robust and scalable methods that can address issues
of computational and sample complexity, including score-based and approximation algorithms.

Broader Impact

Learning cause-and-e↵ect relationships is one of the fundamental problems for various fields, includ-
ing biology [28, 6], epidemiology [26], and economics [12]. The introduced characterization and
algorithm provide a clear understanding on how to accomplish this task while leveraging interven-
tional data, even when the interventional targets are unknown. Moreover, the proposed approach can
be instrumental towards explainability in artificial intelligence, which has been a topic of increas-
ing importance recently. On the other hand, performing experiments to obtain interventional data
poses some ethical challenges, such as randomizing the smoking factor which would require forcing
individuals to smoke. Therefore, such limitations and concerns should be taken into consideration.
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