
Appendix

1 Goal generation for executor training

The pseudo goal generation is introduced for training the executor without coordinator. Every 10 time
steps, we generate the goal, according to the distance between targets and sensors. To be specific, the
targets, whose distances to sensor i are less than the maximum coverage distance (ρij,t < ρmax), will
be selected as the goal ~gi,t for sensor i. Although the generated goals are not aligned to the policy of
the ideal coordination, some improper targets mixed in the ~gi,t can lead the executor to learn a more
robust policy to track the assigned stargets. Then, such a robust executor may adapt to the coordinator
trained in the next stage better.

2 Programmed strategy for the executors

we build a scripted policy to perform low-level tasks while training the coordinator, since directly
applying the learned executor will cause the frame rate to drop severely (only 25 FPS). The scripted
policy is allowed to access the grounded state, e.g. the absolute position (xj , yj) of each targets and
the pose of the sensor. Intuitively, one feasible solution to track a set of targets is to make the sensor
pointing to the cluster center of the targets. Thus, we calculate the center (xMmean, y

M
mean) of the

assigned targets Mi for sensor i, while the script policy is to take primitive actions to minimize the
relative angle to the center. Given the pose of sensor i is (xi, yi, αi) where (xi, yi) is the position
and αi is the orientation, the relative angle error βi is calculated as

arctan(
yMmean − yi
xMmean − xi

) ∗ 180

π
− αi (1)

And, the taken action ai,t = clip(βi//zδ,−1, 1). Here zδ = 5, because the action is deterministic
and the rotation unit is 5 degree. With this trick, the frame rate for training of the coordinator increases
to 75 FPS. Note that it is not the optimal policy for the executor, it will fail when two targets are far.

3 Integer Linear Programming

𝑆2 𝑆2,>

𝑆2,=

𝑆2,@

𝑆2,?

Figure 1: Optional direction partition

As one of the baselines, we formulate the problem as an
Integer Linear Programming (ILP) problem and solve it by
CBC1 (Coin-or branch and cut) optimizer. The inputs are
position, rotation, sensing range of sensors and position of
targets, while the outputs are the primitive actions taken
by every sensor, i.e. TurnRight, TurnLeft or Stay.

The notations used here are defined as follows.

• N : the number of the sensors
• P : the number of optional directions for a sensor
• S: the set of sensors
• si: the i-th sensor

1https://github.com/coin-or/Cbc

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

• si,j : the j-th direction of the i-th sensor

• Ri,j : the monitor region of si,j
• M : the number of the targets

• T : the set of targets

• tk: the k-th target

Consider a randomly deployed directed sensor network, there are N directed sensors S to monitor
the targets T , and each sensor has P optional directions. First of all, we set P as 4 shown in Fig1,
because the visual angle is 90◦. Si,1 is always the current direction of the sensor i. The other
optional directions are clockwise numbered as Si,j . And the primitive actions depends on the selected
directions solved from ILP.

The variables in the ILP are described as follows: the binary variable yk is 1 if and only if the target
tk is covered by an arbitrarily sensor, otherwise it is 0; the binary variable xi,j takes the value 1 if
and only if the i-th sensor is in the j-th direction, otherwise it takes 0.

For each directed sensor, define a matrix whose element aij,k indicates whether the target tk is in the
si,j sensing area:

aij,k =

{
1, tk ∈ Ri,j
0, otherwise

∀j = 1, · · · , P ;∀k = 1, · · · ,M (2)

Define a non-negative integer δk as the number of sensors that cover the target tk:

δk =

N∑
i=1

P∑
j=1

aij,kxi,j ,∀k = 1, · · · ,M (3)

So, the target coverage problem can be formulated as Integer Linear Problem as follows:

max z =

M∑
k=1

yk

s.t.


δk/N ≤ yk ≤ δk, ∀k = 1, · · · ,M∑P
j=1 xi,j ≤ 1, ∀i = 1, · · · , N

yk = 0 or 1, ∀k = 1, · · · ,M
xi,j = 0 or 1, ∀i = 1, · · · , N ;∀j = 1, · · ·P

The objective is to maximize the number of covered targets. The first constraint denotes whether tk is
covered. The second one denotes that a sensor can only work in one of the optional directions at the
same time.

After formulation, we can solve the target coverage problem as an ILP problem with CBC optimizer.
Then, the primitive actions for all the sensors can be derived from the results of ILP shown as Tab. 1.

Table 1: Derivation rules

xi,j primitive action

xi,1=1 Stay
xi,2=1 TurnRight
xi,3=1 TurnRight or TurnLeft
xi,4=1 TurnLeft

In the section 4.3, we can see that the performance of ILP is poor. The reasons are three folds.

2

• 1) Integer programming is better for static allocation, while targets is preferably within the
field of view radius. But, the targets are mobile in our settings. So, when targets are outside
the field of view, it needs prediction based on sequential history observations.

• 2) The objective function is to maximize the coverage rate, therefore the rotation can only
be taken when some target leaves the current field of view, which will lead to lower score.
Actually, sensors should be rotated in advance if possible in order to avoid targets loss.

• 3) There may be some solutions for the above two problems. For example, handcraft the
objective function with intuition, e.g. additionally considering the average relative angle
error to the targets. But manually design the constraints will be trivial and difficult.

4 MARL baselines

We implement the MARL baselines by employing the codes from https://github.com/
hsvgbkhgbv/SQDDPG. To be specific, the policy and critic network both are two layers MLP
for MADDPG and COMA, as the same as the policy network and hyper network for mixing Q value
in the Q-mix. The common hyper-parameters are detailed in Tab. 2.

Table 2: Hyper-parameters for baselines

Hyper-parameters # Description

hidden units 128 the # of hidden units for all layers
training episodes 50k maximum training episodes
episode length 100 maximum time steps per episode
discount factor 0.9 discount factor for rewards, i.e. gamma
entropy weight 0.001 parameter for entropy regularization
learning rate 5e-4 learning rate for all networks
target update frequency 100 target network updates every # steps
target update rate 0.1 target network update rate
replay buffer 1e4 the size of replay buffer
batch size 64 the # of transitions for each update

5 Networks and Hyper-parameters for HiC-MAC

As for coordinator, the encoder consists of 2 fully connected(FC) layers and an attention module, the
actor consists of one FC layer and the critic based AMC consists of an attention module and one FC
layer. As for executor, the encoder is an attention module, the actor and the critic both consist of one
FC layer simply. The training framework is like A3C, and the hyper-parameters for our method are
detailed in Tab. 3.

Table 3: Hyper-parameters for both coordinator and executor.

Hyper-parameters # Description

hidden units 128 the # of hidden units for all layers
training episodes 50k maximum training episodes
episode length 100 maximum time steps per episode
discount factor 0.9 discount factor for rewards
entropy weight 0.01 parameter for entropy regularization
learning rate 5e-4 learning rate for all networks
workers 6 the # of workers in the A3C framework
update frequency 20 the master network updates every # steps in A3C

3

https://github.com/hsvgbkhgbv/SQDDPG
https://github.com/hsvgbkhgbv/SQDDPG

6 Discussion about AMC

6.1 Compare with Shapley Q value in SQDDPG

The marginal contribution of each coalition in SQDDPG is defined as Φi(C) = QπC∪{i}
(
s,aC∪{i}

)
−

QπC (s,aC). And they model a function to approximate the marginal contribution directly such that
Φ̂i
(
s,aC∪{i}

)
: S ×AC∪{i} 7→ R, where S is the state space; C is the ordered coalition that agent i

would like to join in; AC∪{i} = (Aj)j∈C∪{i} and the actions are ordered.

In SQDDPG, AMC is conducted on Q(s, a) value, which would introduce an extra assumption, i.e.
the actions taken in C should be the same as the ones in the coalition C ∪ {i}. In fact, the actions of
every agent in different coalitions are not necessarily the same. Here is an example. Given three agents
cooperating to complete a task, their optimal joint action is a = (a0, a1, a2). If the order of a coalition
is (0,2), then aC∪{1} = (a0, a2, a1). However, if there are just agent0 and agent2 that cooperate
in the environment, the optimal actions (â0, â2) for coalition (0,2) may be different from (a0, a2).
Actually, the marginal contribution should be Φi(C) = QπC∪{i} (s, (a0, a1, a2))−QπC (s, (â0, â2)).
So, it is infeasible to construct different sub-coalitions by just reordering actions. If someone wants
to apply Shapley Value or marginal contribution to Q value, the optimal actions for sub-coalitions
need to be available with a certain method. Instead, our AMC is conducted on state value vH that is
not directly related with specific actions, which is different from SQDDPG.

6.2 The effectiveness of AMC in different goal space

0k 20k 40k 60k 80k 100k
of Iterations

20.0

30.0

40.0

50.0

60.0

70.0

80.0

R
ew

ar
ds

HiT-MAC
w/o AMC

(a)

0k 20k 40k 60k 80k 100k
of Iterations

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

R
ew

ar
ds

HiT-MAC
w/o AMC

(b)

Figure 2: Figures prove that the effectiveness of AMC is reflected as the complexity of the
environment rises, i.e. more sensors and targets. The two figures from left to right are the experiments
when n = 2&m = 3and n = 4&m = 5, where n is the number of sensors and m is the number of
the targets.

The results from the paper show the contribution of AMC. However, whether is AMC critical all
the time? We study the situation that the contribution of Approximate Marginal Contribution(AMC)
are more apparent. The studies are conducted in n = 2&m = 3 and n = 4&m = 5. In the simple
setting 2(a), i.e. 2 sensors cover 3 targets, we find that the one without AMC can already obtain a
good performance. And the convergences are similar in this setting. But when the setting becomes
complex, our advantages appear. When there are 4 sensors and 5 targets in the environment in Figure
2(b), the one without AMC can even not converge to a local optimal solution sometimes, since its
policy entropy stay high and can not decrease. Sometimes, the one without AMC can obtain a good
score, while the convergence is slower than ours. The variance between several training sessions is
large. But, our method outperforms more stably. So, we conclude that global value estimation by
AMC is effective and necessary when the cooperative setting becomes complicated.

4

	Goal generation for executor training
	Programmed strategy for the executors
	Integer Linear Programming
	MARL baselines
	Networks and Hyper-parameters for HiC-MAC
	Discussion about AMC
	Compare with Shapley Q value in SQDDPG
	The effectiveness of AMC in different goal space

