
A Omitted Derivations

A.1 Jacobian of θ̂ with respect to ψ

We begin with an observation: first-order optimality conditions for θ̂ necessitate that
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Then, the implicit function theorem tells us that for sufficiently small ∆ψ, there exists ∆θ as a
function of ∆ψ such that
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To first order, we have
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Thus, solving for ∆θ as a function of ∆ψ and taking the limit as ∆ψ → 0, we obtain
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A.2 Policy Hessian

Fix dynamics T , and let πθ(τ) denote the probability density of trajectory τ under policy πθ. Then
we have
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Thus we get the basic (REINFORCE) policy gradient
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Differentiating our earlier expression for ∂πθ(τ)
∂θ once more, and then reusing that same expression

again, we have
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Thus
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B Implementation detail

The section discusses how to compute Ax using standard automatic differentiation packages. We
first define the following function:

ηh(θ1, θ2, θ3, θ, T̂φ, ψ) = E
πθ,T̂φ

[(log πθ1(at|st) log πθ2(at|st) + log πθ3(at|st))Rψ(τ)] , (20)

where θ1, θ2, θ3 are parameter copies of θ. We then use Hessian-vector product to avoid directly
computing the second derivatives. Specifically, we compute the two parts in Eq. (7) respectively by
first differentiating ηh w.r.t θ1 and θ>2
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and then differentiate ηh w.r.t θ3 for twice
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and thus we have Ax = g1 + g2.

C Hyper-parameters

We experimented with the following task settings: Hopper-2D with x velocity and z height from
Ψ = [−2, 2] × [1.2, 2.0], Walker-2D with x velocity and z height from Ψ = [−2, 2] × [1.0, 1.8],
Ant-2D with x velocity and y velocity from Ψ = [−3, 3]×[−3, 3], Ant-3D with x velocity, y velocity
and z height from Ψ = [−3, 3]× [−3, 3]× [0.4, 0.6], Cheetah-Highdim with Ψ = [−1, 1]18. We
also list the coefficient of the parameterized reward functions in Table 1.

Table 1: Coefficient in parameterized reward functions

Hopper2D Walker2D Ant2D Ant3D
c1 1 1 1 1
c2 0 0 1 1
c3 5 5 0 30

The hyper-parameters of MAML and PEARL are mostly taken directly from the supplied imple-
mentation of [13] and [38]. We run MAML for 500 training iterations: for each iteration, MAML
uses a meta-batch size of 40 (the number of tasks sampled at each iteration) and a batch size of 20
(the number of rollouts used to compute the policy gradient updates). Overall, MAML requires 80
million samples during meta training. For PEARL, we first collect a batch of training tasks (150) by
uniformly sampling from Ψ. We run PEARL for 500 training iterations: for each iteration, PEARL
randomly sample 5 tasks and collects 1000 samples for each task from both prior (400) and posterior
(600) of the context variables; for each gradient update, PEARL uses a meta-batch size of 10 and
optimizes the parameters of actor, critic and context encoder by 4000 steps of gradient descent.
Overall, PEARL requires 2.5 million samples during meta training.

For AdMRL, we first do zero-shot adaptation for each task by 40 virtual steps (nzeroshot = 40). We
then perform SLBO [25] by interleaving data collection, dynamical model fitting and policy updates,
where we use 3 outer iterations (nslbo = 3) and 20 inner iterations (ninner = 20). Algorithm 2 shows
the pseudo code of the virtual training procedure. For each inner iteration, we update model for 100
steps (nmodel = 100), and update policy for 20 steps (npolicy = 20), each with 10000 virtual samples
(ntrpo = 10000). For the first task, we use nslbo = 10 (for Hopper2D, Walker2D) or nslbo = 20 (for
Ant2D, Ant3D, Cheetah-Highdim). For all tasks, we sweep the learning rate α in {1,2,4,8,16,32}
and we use α = 2 for Hopper2D, α = 8 for Walker2D, α = 4 for Ant2D and Ant3D, α = 16
for Cheetah-Highdim. To compute the gradient w.r.t the task parameters, we do 200 iterations of
conjugate gradient descent.

D Examples of high-dimensional tasks

Figure 7 shows some trajectories in the high-dimensional task Cheetah-Highdim.
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Algorithm 2 Virtual Training in AdMRL
1: procedure VirtualTraining(θ : policy, φ : model, ψ : task,D : data, n : virtual steps)
2: for n iterations do
3: Optimize virtual dynamics T̂φ over φ with data sampled from D by nmodel steps
4: for npolicy iterations do
5: D′ ← {collect ntrpo samples from the learned dynamics T̂φ}
6: Optimize πθ by running TRPO on D′

Figure 7: The high-dimensional tasks are surprisingly often semantically meaningful. Policies learned
in these tasks can have diverse behaviors, such as front flip (top row), back flip (middle row), jumping
(bottom row), etc.
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