
Private Learning of Halfspaces: Simplifying the
Construction & Reducing the Sample Complexity

Haim Kaplan
Tel Aviv University and Google Research

haimk@tau.ac.il

Yishay Mansour
Tel Aviv University and Google Research

mansour.yishay@gmail.com

Uri Stemmer
Ben-Gurion University and Google Research

u@uri.co.il

Eliad Tsfadia
Tel Aviv University and Google Research

eliadtsfadia@gmail.com

Abstract

We present a differentially private learner for halfspaces over a finite grid G in Rd
with sample complexity≈ d2.5 ·2log∗ |G|, which improves the state-of-the-art result
of [Beimel et al., COLT 2019] by a d2 factor. The building block for our learner is a
new differentially private algorithm for approximately solving the linear feasibility
problem: Given a feasible collection of m linear constraints of the form Ax ≥ b,
the task is to privately identify a solution x that satisfies most of the constraints.
Our algorithm is iterative, where each iteration determines the next coordinate of
the constructed solution x.

1 Introduction

Machine learning is an extremely beneficial technology, helping us improve upon nearly all aspects of
life. However, while the benefits of this technology are rather self-evident, it is not without risks. In
particular, machine learning models are often trained on sensitive personal information, a fact which
may pose serious privacy threats for the training data. These threats, together with the increasing
awareness and demand for user privacy, motivated a long line of work focused on developing private
learning algorithms that provide rigorous privacy guarantees for their training data.

We can think of a private learner as an algorithm that operates on a database containing labeled
individual information, and outputs a hypothesis that predicts the labels of unseen individuals. For
example, consider a medical database in which every row contains the medical history of one
individual together with a yes/no label indicating whether this individual suffers from some disease.
Given this database, a learning algorithm might try to predict whether a new patient suffers from
this disease given her medical history. The privacy requirement is that, informally, the output of the
learner (the chosen hypothesis) leaks very little information on any particular individual from the
database. Formally,
Definition 1.1 (Dwork et al. [2006]). Let A be a randomized algorithm that operates on databases.
Algorithm A is (ε, δ)-differentially private if for any two databases S,S ′ that differ in one row, and
any event T , we have Pr[A(S) ∈ T] ≤ eε · Pr[A(S ′) ∈ T] + δ. The definition is referred to as pure
differential privacy when δ = 0, and approximate differential privacy when δ > 0.

When constructing private learners, there is a strong tension between the privacy requirement and the
utility that can be achieved; one very important and natural measure for this tradeoff is the amount of
data required to achieve both goals simultaneously, a.k.a. the sample complexity. This measure is
crucial to the practice as it determines the amount of individual data that must be collected before
starting the analysis in the first place.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Recall that the sample complexity of non-private learning is fully characterized by the VC dimension
of the hypothesis class. For pure-private learners (i.e., learners that satisfy pure-differential privacy),
there is an analogous characterizations in terms of a measure called the representation dimension
[Beimel et al., 2013a]. However, the situation is far less understood for approximate private learning,
and there is currently no tight characterization for the sample complexity of approximate private
learners.1

In this work we investigate the sample complexity of private learning for one of the most basic and
important learning tasks – learning halfspaces. We begin by surveying the existing results.

1.1 Existing Results

Recall that the VC dimension of the class of all halfspaces over Rd is d, and hence a sample of size
O(d) suffices to learn halfspaces non-privately (we omit throughout the introduction the dependency
of the sample complexity in the accuracy, confidence, and privacy parameters). In contrast, it turns
out that with differential privacy, learning halfspaces over Rd is impossible, even with approximate
differential privacy, and even when d = 1 [Feldman and Xiao, 2015, Bun et al., 2015, Alon et al.,
2019].

In more details, let X ∈ N be a discretization parameter, let X = {x ∈ Z : |x| ≤ X}, and consider
the task of learning halfspaces over the finite grid X d ⊆ Rd. In other words, consider the task of
learning halfspaces under the promise that the underlying distribution is supported on (a subset of)
the finite grid X d. For pure-private learning, Feldman and Xiao [2015] showed a lower bound of
Ω
(
d2 · logX

)
on the sample complexity of this task. This lower bound is tight, as a pure-private

learner with sample complexity Θ
(
d2 · logX

)
can be obtained using the generic upper bound of

Kasiviswanathan et al. [2011]. This should be contrasted with the non-private sample complexity,
which is linear in d and independent of X .

For the case of d = 1, Beimel et al. [2013b] showed that the lower bound of Feldman and Xiao
[2015] can be circumvented by relaxing the privacy guarantees from pure to approximate differential
privacy. Specifically, they presented an approximate-private learner for 1-dimensional halfspaces
with sample complexity 2O(log∗X). The building block in their construction is a differentially private
algorithm, called ARecConcave, for approximately optimizing quasi-concave functions.2

Following the work of Beimel et al. [2013b], two additional algorithms for privately learning 1-
dimensional halfspaces with sample complexity 2O(log∗X) were given by Bun et al. [2015] and by
Bun et al. [2018]. Recently, an algorithm with sample complexity Õ

(
(log∗X)

1.5
)

was given by
Kaplan et al. [2020] (again for d = 1). In light of these positive results, it might be tempting to
guess that the sample complexity of privately learning halfspaces can be made independent of the
discretization parameter X . However, as Bun et al. [2015] and Alon et al. [2019] showed, this is
not the case, and every approximate-private learner for 1-dimensional halfspaces over X must have
sample complexity at least Ω(log∗X). Observe that, in particular, this means that learning halfspaces
over R is impossible with differential privacy (even for d = 1).

Recently, Beimel et al. [2019] presented an approximate-private learner for d-dimensional halfspaces
(over X d) with sample complexity ≈ d4.5 · 2O(log∗X). Their algorithm is based on a reduction to the
task of privately finding a point in the convex hull of a given input dataset. Specifically, given a dataset
S containing points from the finite grid X d ⊆ Rd, consider the task of (privately) finding a point
y ∈ Rd that belongs to the convex hull of the points in S . Beimel et al. [2019] presented an iterative
algorithm for this task that is based on the following paradigm: Suppose that we have identified
values for the first i− 1 coordinates x∗1, . . . , x

∗
i−1 for which we know that there exists a completion

x̃i, . . . , x̃d such that (x∗1, . . . , x
∗
i−1, x̃i, . . . , x̃d) belongs to the convex hull of the input points. Then,

during the ith iteration of the algorithm, we aim to find the next coordinate x∗i such that (x∗1, . . . , x
∗
i)

can be completed to a point in the convex hull. To that end, Beimel et al. [2019] formulated the
task of identifying the next coordinate x∗i as a (1-dimensional) quasi-concave optimization problem,

1We remark that there is a loose characterization for private learning in terms of the Littlestone dimen-
sion [Alon et al., 2019, Bun et al., 2020]. Specifically, these results state that the sample complexity of privately
learning a class C is somewhere between Ω(log∗ L) and 2O(L), where L is the Littlestone dimension of C. In
our contaxt, for learning halfspaces, these results do not provide meaningful bounds on the sample complexity.

2A function Q is quasi-concave if for any x′ ≤ x ≤ x′′ it holds that Q(x) ≥ min {Q(x′), Q(x′′)}.

2

and used algorithm ARecConcave of Beimel et al. [2013b] for privately solving it. This strategy is
useful because algorithm ARecConcave is very efficient (in terms of sample complexity) in optimizing
1-dimensional quasi-concave functions (requires only ≈ 2O(log∗X) many samples). This paradigm
(together with a reduction from privately learning halfspaces to privately finding a point in the convex
hull) resulted in a private learner for halfspaces over X d with sample complexity ≈ d4.5 · 2O(log∗X).

For more related works, we refer to the supplementary material.

1.2 Our Results

In this work, we generalize the technique that Beimel et al. [2019] applied to the problem of finding a
point in the convex hull, which we refer to as the “RecConcave paradigm”, and reformulate it as a
general method for privately optimizing high dimensional functions. As a result, we obtain a private
PAC learner for halfspaces with an improved sample complexity of ≈ d2.5 · 2O(log∗X).
Theorem 1.2 (Learning Halfspaces, Informal). Let α, β, ε ≤ 1 and δ < 1/2 and let X ⊂ R. There
exists an (ε, δ)-differentially private (α, β)-PAC learner for halfspaces over examples from X d with

sample complexity s = d2.5 · 2O(log∗X) · 1
εα · polylog

(
d

αβεδ

)
.

To obtain Theorem 1.2, we show that the task of privately learning halfspaces reduces to the task
of privately solving the linear feasibility problem (as defined below) with essentially the same
parameters, and solve the linear feasibility problem using our generalized RecConcave paradigm.

The Linear Feasibility Problem. Let X = {x ∈ Z : |x| ≤ X} for some parameter X ∈ N. In the
linear feasibility problem, we are given a feasible collection of m linear constraints over d variables
x1, . . . , xd, and the goal is to find a solution in Rd that satisfies all constraints. Each constraint has
the form

∑d
i=1 aixi ≥ b for some a1, . . . , ad, b ∈ X .

Without privacy considerations, this well-known problem can be solved, e.g., using the Ellipsoid
Method or the Interior Point Method. In the private version of this problem, we would like to come up
with a solution to the system in a way that is insensitive to any (arbitrary) change of single constraint
(in the sense of differential privacy, see Definition 1.1). It is easy to see that with differential privacy,
one cannot hope for an exact solution to this problem (i.e., a solution that satisfies all constraints).
This is because changing a single constraint, which has basically no effect on the outcome of a
private algorithm, may completely change the feasibility area. Therefore, in the private version of
this problem we only aim to satisfy most of the constraints. Specifically, we say that an algorithm
(α, β)-solves the (X, d,m)-linear feasibility problem, if for every feasible collection of m linear
constraints over d variables with coefficients from X , with probability 1− β the algorithm finds a
solution x = (x1, . . . , xd) that satisfies at least (1− α)m constraints.
Question 1.3. What is the minimal number of constraints m, as a function of X, d, α, β, ε, δ, for
which there exists an (ε, δ)-differentially private algorithm that (α, β)-solves the (X, d,m)-linear
feasibility problem?

Observe that this question is trivial without the privacy requirement (it can be solved easily when
m = 1). However, the picture is quite different with differential privacy. In particular, all the lower
bounds we mentioned before on the sample complexity of learning halfspaces yield lower bounds on
the number of constraints m needed to privately solve the linear feasibility problem. We prove the
following theorem.
Theorem 1.4 (Linear Feasibility Problem, Informal). Let α, β, ε ≤ 1 and δ < 1/2 and let X ∈
N. There exists an (ε, δ)-differentially private algorithm that (α, β)-solves the (X, d,m)-linear

feasibility problem, for every m ≥ d2.5 · 2O(log∗X) · 1
εα · polylog

(
d
βδ

)
.

A Generalized RecConcave Paradigm. Let f(S,x) be a low-sensitivity function that takes a
database S and a high dimensional point x, and returns a real number which is identified as the
“score” of the point x w.r.t. the database S .3 Now suppose that, given an input database S , we would
like to (privately) identify a point x such that f(S,x) is approximately maximized.

3The sensitivity of the function f is the maximal difference by which the value of f(S,x) can change when
modifying one element of the database S. See Section 2 for a formal definition.

3

Example 1.5. To solve the linear feasibility problem we can define the function f(S,x) as the
number of constraints in S that are satisfied by x, a quantity which we denote by depthS(x1, . . . , xd).
Note that an approximate maximizer for this f is a good solution to the linear feasibility problem, i.e.,
it satisfies most of the constraints.

A naive attempt for using the RecConcave paradigm in order to privately maximize f is to define the
following function Q (for every i ∈ [d] and every fixing of x∗1, . . . , x

∗
i−1).

Qx∗1 ,...,x∗i−1
(xi) = max

x̃i+1,...,x̃d
{f
(
S, x∗1, . . . , x∗i−1, xi, x̃i+1, . . . , x̃d

)
}.

Now, if it happens that Q is quasi-concave, then one can apply ARecConcave coordinate by coordinate
in order to privately find a solution x that approximately maximizes f(S,x). To see this, suppose
that we find (using ARecConcave) a value x∗1 for the first coordinate that approximately maximizes
Q(·). By the definition of Q, this guarantees that there exists a completion (x̃2, . . . , x̃d) such that
f(S, x∗1, x̃2, . . . , x̃d) is almost as high as maxx{f(S,x)}. Hence, by committing to x∗1 we do not
lose much in terms of the maximum attainable value of f . Similarly, in every iteration we identify a
value for the next coordinate without losing too much in the maximum attainable value of f .

The problem is that, in general, the above function Q is not necessarily quasi-concave. In particular,
in the linear feasibility problem where f(S,x) = depthS(x) (i.e., the number of constraints in S
that are satisfied by x), the resulting function Q is not quasi-concave.4

In order to overcome this issue, we present the following technique which we refer to as the
generalized RecConcave Paradigm.5 We define the “convexification” of a function f to be the
function fConv(S,x) that outputs the maximal y ∈ R for which the point x is a convex combination
of points z ∈ Rd with f(S, z) ≥ y. In other words, for any y ∈ R, we consider the set DS(y) ={
z ∈ Rd : f(S, z) ≥ y

}
, and denote CS(y) = ConvexHull(DS(y)). Then, fConv(S,x) := max{y :

x ∈ CS(y)}. We show that with this function fConv(S,x), the resulting function

Qx∗1 ,...,x∗i−1
(xi) = max

x̃i+1,...,x̃d
{fConv

(
S, x∗1, . . . , x∗i−1, xi, x̃i+1, . . . , x̃d

)
}

is indeed quasi-concave for any fixing of x∗1, . . . , x
∗
i−1 (no matter how the function f is defined).

The function fConv can, therefore, be approximately maximized (privately) coordinate by coordinate
using ARecConcave. Furthermore, if f has the property that points x with high fConv(S,x) also
have (somewhat) high f(S,x), then f can be privately maximized (approximately) by maximizing
the function fConv. Going back to the linear feasibility problem, we denote by cdepthS(x) =
fConv(S,x) the convexification of the function f(S,x) = depthS(x). We then show that every point
that has cdepth = (1− λ) |S| must have depth ≥ (1− (d+ 1)λ) |S|. Applying the aforementioned
method on the function depth results in a differentially private algorithm for solving the (X, d,m)-
linear feasibility problem whenever m & d2.5 · 2O(log∗X).

2 Preliminaries

2.1 Preliminaries from Learning Theory

We next define the probably approximately correct (PAC) model of Valiant [1984]. A concept class C
over X is a set of concepts (predicates) mapping X to {0, 1}. A learning algorithm is given examples
sampled according to an unknown probability distribution µ over X , and labeled according to an
unknown target concept c ∈ C. The generalization error of a hypothesis h : X → {0, 1} is defined
as errorµ(c, h) = Prx∼µ[h(x) 6= c(x)]. Algorithm A is an (α, β)-PAC learner for C with sample
complexity m if for all concepts c ∈ C, all distributions µ on X , given an input of m samples
S = (z1, . . . , zm), where zi = (xi, c(xi)) and each xi is drawn i.i.d. from µ, algorithm A outputs
a hypothesis h satisfying Pr[errorµ(c, h) ≤ α] ≥ 1 − β, where the probability is taken over the
random choice of the examples in S according to µ and the random coins of the learner A. For a
labeled sample S = (xi, yi)

m
i=1, the empirical error of h is errorS(h) = 1

m |{i : h(xi) 6= yi}|.
4For instance, consider the 2-dimensional constraints x2 ≥ x1 and x2 ≤ −x1. Then under the fix-

ing x∗1 = 1, the depth of x2 = 0 is 0 while the depth of x2 ∈ {−1, 1} is 1, yielding that Qx∗1
(0) <

min
{
Qx∗1

(−1), Qx∗1
(1)

}
, and so Qx∗1

is not quasi-concave.
5We remark that the presentation here is oversimplified, and hides many of the challenges that arise in the

actual analysis.

4

2.1.1 Private Learning

An Algorithm A is an (ε, δ)-differential private (α, β)-PAC for C with sample complexity m if: (1)
A is (ε, δ)-differentially private (as in Definition 1.1), and (2) Algorithm A is an (α, β)-PAC learner
for C with sample complexity m.

2.2 A Private Algorithm for Optimizing Quasi-concave Functions – ARecConcave

We describe the properties of algorithm ARecConcave of Beimel et al. [2013b]. This algorithm is
given a quasi-concave function Q (defined below) and a database S and privately finds a point x such
that Q(S, x) is close to its maximum provided that the maximum of Q(S, ·) is large enough.
Definition 2.1. A function f is quasi-concave if f(`) ≥ min {f(i), f(j)} for every i < ` < j.
Definition 2.2 (Sensitivity). The sensitivity of a function f : X ∗ → R is the smallest k such that for
every neighboring databases S,S ′ ∈ X ∗ (i.e., differ in exactly one entry), we have |f(S)−f(S ′)| ≤ k.
A function g : X ∗ × X̃ → R is called a sensitivity-k function if for every x ∈ X̃ , the function g(·, x)
has sensitivity ≤ k.

Proposition 2.3 (Properties of AlgorithmARecConcave [Beimel et al., 2013b]). LetQ : X ∗×X̃ → R
be a sensitivity-1 function. Denote X̃ =

∣∣∣X̃ ∣∣∣ and let α ≤ 1
2 and β, ε, δ, r be parameters. There

exists an (ε, δ)-differentially private algorithm, called ARecConcave, such that the following holds. If
ARecConcave is executed on a database S ∈ X ∗ such that Q(S, ·) is quasi-concave and

max
i∈X̃
{Q(S, i)} ≥ r ≥ 8log∗ X̃ · 12 log∗ X̃

αε
log
(192(log∗ X̃)2

βδ

)
. (1)

then with probability 1− β the algorithm outputs an index j s.t. Q(S, j) ≥ (1− α)r.

Namely, when there exists a solution with a promised quality of at least r, then with probability 1− β
Algorithm ARecConcave finds a solution with quality at least (1− α)r. We next give a short summary
of how it works.

Beimel et al. [2013b] observed that a quasi-concave promise problem can be privately approximated
using a solution to a smaller instance of a quasi-concave promise problem. Specifically, they showed
that for any quasi-concave function Q : X ∗ × X̃ → R with a (large enough) promise r, there exists a
quasi-concave functionQ′ : X ∗×X̃ ′ → R with a promise r′ = Ω(αr) and with

∣∣∣X̃ ′∣∣∣ ≈ log
∣∣∣X̃ ∣∣∣, such

that the task of privately finding j ∈ X̃ with Q(S, j) ≥ (1− α)r is reduced to the task of privately
finding k ∈ X̃ ′ with Q′(S, k) ≥ (1− α)r′. This resulted in a recursive algorithm ARecConcave for
optimizing Q. For the sake of completeness, we give more details in the supplementary material.

2.3 Halfspaces and Convex Hull

We next define the geometric objects we use in this paper.
Definition 2.4 (Halfspaces and Hyperplanes). For a = (a1, . . . , ad) ∈ Rd \{(0, . . . , 0)} and w ∈ R,
let the halfspace defined by (a, w) be hsa,w :=

{
x ∈ Rd : 〈a,x〉 ≥ w

}
. For a domain D ⊆ Rd

define the concept class HALFSPACE(D) = {ca,w : D 7→ {−1, 1}}, letting ca,w be the function that
on input x ∈ D outputs 1 iff x ∈ hsa,w.

Definition 2.5 (Convex Hull). Let P ⊆ Rd be a set of points. The convex hull of P , denote by
ConvexHull(P), is the set of all points x ∈ Rd that are convex combination of elements of P . That
is, x ∈ ConvexHull(P) iff there exists a finite subset P ′ ⊆ P and numbers {λy}y∈P′ such that∑

y∈P′ λy = 1 and
∑

y∈P′ λyy = x.

Fact 2.6 (Caratheodory’s theorem). Let P ⊆ Rd be a set of points. Then any x ∈ ConvexHull(P)
is a convex combination of at most d+ 1 points in P .

3 Optimizing High-Dimensional Functions

In this section we present our general method for privately optimizing high dimensional functions.
In the following, let X be a domain and let f : X ∗ × Rd → R be a function that given a dataset

5

S ∈ X ∗, we would like to approximately maximize f(S, ·). Formally, given α, β, ε, δ ∈ (0, 1), our
goal is to design an (ε, δ)-differential private algorithm that with probability 1− β finds x∗ ∈ Rd
with f(S,x∗) ≥ (1 − α)MS for MS := maxx f(S,x). We do so by optimizing a different (but
related) function fConv, which we call the “convexification” of f .
Definition 3.1 (The convexification of f). For S ∈ X ∗ and y ∈ R, let DS(y) :={
z ∈ Rd : f(S, z) ≥ y

}
and CS(y) := ConvexHull (DS(y)). We define the convexification of

f as the function fConv : X ∗ × Rd → R defined by fConv(S,x) := max {y ∈ R : x ∈ CS(y)}.

Namely, fConv(S,x) = y if and only if y is the maximal value such that x is a convex combination
of points z with f(S, z) ≥ y. Note that by definition it is clear that f(S,x) ≤ fConv(S,x) for any
(S,x) ∈ X ∗ × Rd. Yet, observe that maxx fConv(S,x) = MS .

In the following, assume that points with high value of fConv also have somewhat high value of f .
Formally, assume there exists ∆ ≥ 1 that satisfies the following requirement:
Requirement 3.2. ∀(S,x) ∈ X ∗ × Rd : f(S,x) ≥ ∆ · fConv(S,x)− (∆− 1) ·MS

Requirement 3.2 can be interpreted as follows: For any (S,x) ∈ X ∗ × Rd, if fConv(S,x) =
(1 − λ)MS , then f(S,x) ≥ (1 − λ∆)MS . This reduces the task of finding a point x∗ with
f(S,x∗) ≥ (1− α)MS to the task of finding a point x∗ with fConv(S,x∗) ≥ (1− α/∆)MS .

Following the above assumption, the idea of our algorithm is to find a point x∗ = (x∗1, . . . , x
∗
d) with

large fConv coordinate after coordinate: we use ARecConcave to find a value x∗1 that can be extended
by some x̃2, . . . , x̃d so that fConv(x∗1, x̃2 . . . , x̃d) is close toMS , then we find a value x∗2 so that there
is a point (x∗1, x

∗
2, x̃3 . . . , x̃d) whose fConv is close to MS , and so forth until we find all coordinates.

The parameters in ARecConcave are set such that in each step we lose at most αMS/ (d∆) from the
value of fConv, resulting in a point (x∗1, . . . , x

∗
d) whose fConv is at least (1− α/∆)MS .

3.1 Defining a Quasi-Concave Function with Small Sensitivity

To apply the above approach, we need to prove that the functions considered in the algorithm
ARecConcave are quasi-concave and have small sensitivity of the dataset S.
Definition 3.3. For 1 ≤ i ≤ d and x∗1, . . . , x

∗
i−1 ∈ R, define

Qx∗1 ,...,x∗i−1
(S, xi) := max

x̃i+1,...,x̃d∈R
fConv(S, x∗1, . . . , x∗i−1, xi, x̃i+1, . . . , x̃d).

We first prove that the function Qx∗1 ,...,x∗i−1
(S, ·) is quasi-concave .

Claim 3.4. For every i ∈ [d] and x∗1, . . . , x
∗
i−1 ∈ R, the function Qx∗1 ,...,x∗i−1

(S, ·) is quasi-concave.

Proof. Fix i ∈ [d] and x∗1, . . . , x
∗
i−1 ∈ R, and fix values xi, x

′
i, x
′′
i ∈ R such that

x′i ≤ xi ≤ x′′i , and let y := min
{
Qx∗1 ,...,x∗i−1

(S, x′i), Qx∗1 ,...,x∗i−1
(S, x′′i)

}
. By definition,

∃x′i+1, . . . , x
′
d, x
′′
i+1, . . . , x

′′
d ∈ R such that both points x′ = (x∗1, . . . , x

∗
i−1, x

′
i, x
′
i+1, . . . , x

′
d)

and x′′ = (x∗1, . . . , x
∗
i−1, x

′′
i , x
′′
i+1, . . . , x

′′
d) belong to CS(y). In the following, let p ∈ [0, 1] be

the value such that xi = px′i + (1 − p)x′′i , and let x = (x∗1, . . . , x
∗
i−1, xi, xi+1, . . . , xd) where

xj = px′j + (1 − p)x′′j for j ∈ {i+ 1, . . . , d}. Since x lies on the line segment between x′

and x′′, it holds that x ∈ CS(y) (recall that CS(y) is a convex set). Therefore, we conclude that
Qx∗1 ,...,x∗i−1

(xi) ≥ y, as required.

We next prove that Qx∗1 ,...,x∗i−1
(·, xi) has low sensitivity.

Claim 3.5. Assume that f is a sensitivity-k function. Then for all i ∈ [d] and x∗1, . . . , x
∗
i−1 ∈ R,

Qx∗1 ,...,x∗i−1
is a sensitivity-k function.

Proof. Fix two neighboring datasets S,S ′ ∈ X ∗. By assumption, it holds that f(S,x) ≥ f(S ′,x)−k
for every x ∈ Rd. This yields that CS′(y) ⊆ CS(y − k) for every y ∈ R. Hence, we deduce by the
definition of Qx∗1 ,...,x∗i−1

that Qx∗1 ,...,x∗i−1
(S, xi) ≥ Qx∗1 ,...,x∗i−1

(S ′, xi)− k for every xi ∈ R.

In order to apply algorithm ARecConcave, for every 1 ≤ i ≤ d it is required to determine a fi-
nite domain X̃i = X̃i(x∗1, . . . , x∗i−1) which contains a value x∗i that reaches the maximum of

6

Qx∗1 ,...,x∗i−1
(S, ·) under R.6 Namely, we need to determined an iterative sequence of domains{

X̃i(·)
}d
i=1

that satisfies the following requirement:

Requirement 3.6. For every S ∈ X ∗ and every x∗1, . . . , x
∗
i−1 ∈ R, it holds that

∃xi ∈ X̃i : Qx∗1 ,...,x∗i−1
(S, xi) = max

x̃i∈R
Qx∗1 ,...,x∗i−1

(S, x̃i).

3.2 The Algorithm

In Figure 1, we present an (ε, δ)-differentially private algorithm AOptimizeHighDimFunc that finds
with probability at least 1− β a point x∗ ∈ Rd with f(S,x∗) ≥ (1− α)MS .

Algorithm AOptimizeHighDimFunc

(i) Let α, β, ε, δ ∈ (0, 1) be the utility/privacy parameters, let S ∈ X ∗ be an input dataset,

let
{
X̃i(·)

}d
i=1

be an iterative sequence of finite domains, and let ∆ ≥ 1.

(ii) For i = 1 to d do:
(a) Let Qx∗1 ,...,x∗i−1

be the function from Definition 3.3.

(b) Let X̃i = X̃i(x∗1, . . . , x∗i−1).

(c) Execute ARecConcave with the function Qx∗1 ,...,x∗i−1
, domain X̃i, and parameters:

r = (1− α
2d∆)i−1MS , α̃ = α

2d∆ , β̃ = β
d , ε̃ = ε

2
√

2d ln(2/δ)
, δ̃ = δ

2d .

Let x∗i be its output.
(iii) Return x∗ = (x∗1, . . . , x

∗
d).

Figure 1: Algorithm for finding a point x∗ ∈ Rd with f(S,x∗) ≥ (1− α)MS .

The following theorem summarizes the properties of AOptimizeHighDimFunc.

Theorem 3.7. Let X be a domain and f : X ∗ ×Rd → R be a sensitivity-1 function. Let ∆ ≥ 1 be a

value that satisfies Requirement 3.2, and let
{
X̃i(·)

}d
i=1

be an iterative sequence of finite domains that

satisfies Requirement 3.6 (all with respect to f). In addition, let α, β, ε ≤ 1, δ < 1/2, and let S ∈ X ∗

be a dataset with MS := maxx∈Rd f(S,x) ≥ Ω

(
∆ · d1.5 · 2O(log∗ X̃) · log1.5

(
1
δ

)
log
(
d
β

)
εα

)
, where

X̃ := maxi,x∗1 ,...,x∗i−1

∣∣∣X̃i(x∗1, . . . , x∗i−1)
∣∣∣. Then, AOptimizeHighDimFunc is an (ε, δ)-differentially

private algorithm that with probability 1− β returns a point x∗ ∈ Rd with f(S,x∗) ≥ (1− α)MS .

By Claims 3.4 and 3.5, the proof of Theorem 3.7 follows similarly to Theorem 20 of Beimel et al.
[2019] using the properties of ARecConcave. See the full version for more details.

4 The Linear Feasibility Problem

In this section we show how the method from Section 3 can be used for privately approximating the lin-
ear feasibility problem. In this problem, we are given a finite gridX = [[±X]] := {x ∈ Z : |x| ≤ X}
for some X ∈ N and a dataset S ∈ (X d × X)∗ such that each (a, w) ∈ S represents the lin-
ear constraint 〈a,x〉 ≥ w which defines the halfspace hsa,w in Rd. In the following, we let
depthS(x) := |{(a, w) ∈ S : x ∈ hsa,w}| (that is, the number of halfspaces in S that contain the
point x). Our goal is to describe, given α, β, ε, δ ∈ (0, 1), an (ε, δ)-differential private algorithm that

6We remark that this step might be involved for some d-dimensional functions, but is inherent for privately
optimizing them (at least if the optimization is done coordinate by coordinate). Yet, once we determine such
domains with some finite bound X̃ on their sizes, it usually not blows up the resulting sample complexity of our
algorithm since it only depends on 2O(log∗ X̃) (see Theorem 3.7).

7

satisfies the following utility guarantee: Given a realizable dataset of halfspaces (i.e., there exists
a point x ∈ Rd with depthS(x) = |S|), then with probability 1− β the algorithm should output a
point x∗ with depthS(x∗) ≥ (1− α) |S|.
In the following, let cdepth be the convexification of the function depth (according to Definition 3.1).
That is, cdepthS(x) = fConv(S,x) for the function f(S,x) = depthS(x). As a first step towards
applying Theorem 3.7 for maximizing depth, we need to determine a value ∆ ≥ 1 that satisfies
Requirement 3.2. Namely, we need to lower bound depthS(x) in terms of cdepthS(x) and MS =
|S|. The following claim proves that ∆ = d+ 1 satisfies Requirement 3.2 for the function depth.

Claim 4.1. For any S ∈ (Rd × R)∗ and x ∈ Rd, it holds that

depthS(x) ≥ (d+ 1) · cdepthS(x)− d |S| .

Proof. Fix S ∈ (Rd × R)∗ and x ∈ Rd, and let k = cdepth(x). By definition it holds that
x ∈ ConvexHull(DS(k)) for DS(k) = {x′ : depthS(x′) ≥ k}. Therefore, by Caratheodory’s
theorem (Fact 2.6) it holds that x is a convex combination of at most d+ 1 points x1, . . . ,xd+1 ∈
DS(k). In the following, for x′ ∈ Rd let Tx′ := {(a, w) ∈ S : x′ /∈ hsa,w} and observe that
depthS(x′) = |S| − |Tx′ |. Therefore, because for all i ∈ [d + 1] we have depth(xi) ≥ k, it
holds that |Txi | ≤ |S| − k. Furthermore, note that Tx ⊆

⋃d
i=1 Txi (holds since each halfspace

that contains a set of points also contains any convex combination of them). We conclude that
depthS(x) ≥ |S| −

∑d+1
i=1 |Txi | ≥ |S| − (d+ 1)(|S| − k) = (d+ 1)k − d |S|.

The second step towards applying Theorem 3.7 is to determine an iterative sequence of finite

domains
{
X̃i(·)

}d
i=1

that satisfies Requirement 3.6. Namely, our goal is to determine a finite grid

X̃i = X̃i(x∗1, . . . , x∗i−1) such that there exists x∗i ∈ X̃i that reaches the maximum of Qx∗1 ,...,x∗i−1
(S, ·)

under R, where Qx∗1 ,...,x∗i−1
(S, xi) := maxx̃i+1,...,x̃d∈R cdepthS(x∗1, . . . , x

∗
i−1, x̃i, . . . , x̃d). The

following claim specifies these grids. We prove it in the supplementary material.

Claim 4.2. There exists a sequence
{
X̃i(·)

}d
i=1

with maxi,x∗1 ,...,x∗i−1

∣∣∣X̃i(x∗1, . . . , x∗i−1)
∣∣∣ ≤ (dX)

2d2

such that for all i ∈ [d] and x∗1, . . . , x
∗
i−1 ∈ R, ∃x∗i ∈ R with Qx∗1 ,...,x∗i−1

(S, x∗i) =

maxxi∈R

{
Qx∗1 ,...,x∗i−1

(S, xi)
}

.

Using Claims 4.1 and 4.2 along with the fact that depth is a sensitivity-1 function, we now can apply
Theorem 3.7 to obtain our main result about the linear feasibility problem. See the supplementary
material for the running time analysis.
Theorem 4.3 (Restatement of Theorem 1.4). Let α, β, ε ≤ 1, δ < 1/2, X ∈ N, X = [[±X]] and

let S ∈
(
X d ×X

)∗
be a realizable dataset with |S| = O

(
d2.5 · 2O(log∗X+log∗ d) log1.5

(
1
δ

)
log
(
d
β

)
εα

)
.

Let AFindDeepPoint be the algorithm that executes AOptimizeHighDimFunc on the function f(S, ·) =

depthS(·), with parameters α, β, ε, δ, ∆ = d + 1 and the sequence of grids
{
X̃i(·)

}d
i=1

from

Claim 4.2. Then, AFindDeepPoint is an (ε, δ)-differentially private algorithm that with probability
1 − β returns a point x∗ ∈ Rd with depth(x∗) ≥ (1 − α) |S|. The algorithm runs in time

T = poly(d) · |S| ·
(
|S|d · logX + polylog(1/α, 1/β, 1/ε, 1/δ,X)

)
.

5 Learning Halfspaces

In this section we describe our private empirical risk minimization (ERM) learner of halfspaces, and
at the end we state our (almost) immediate corollary about private PAC learning.

In the considered problem, we are given a finite grid X = [[±X]] := {x ∈ Z : |x| ≤ X} for some
X ∈ N and a dataset of labeled points S ∈ (X d × {−1, 1})∗. We say that S is a realizable dataset of
points if there exists (a, w) ∈ Rd × R with errorS(ca,w) := |{(x, y) ∈ S : ca,w(x) 6= y}| / |S| = 0,
where ca,w : X d 7→ {−1, 1} is the concept function that outputs 1 iff x ∈ hsa,w. Our goal is to
describe, given α, β, ε, δ ∈ (0, 1), an (ε, δ)-differential private algorithm that satisfies the following

8

utility guarantee: Given a realizable dataset of points S , the algorithm should output with probability
1− β a pair (a∗, w∗) with errorS(ca∗,w∗) ≤ α.

5.1 A Reduction to the Linear Feasibility Problem

We reduce the problem of learning a halfspace to the linear feasibility problem by using geometric
duality between points and halfspaces. Formally, we translate a halfspace hsa,w to the point (a, w) ∈
Rd+1, and translate a labeled point (x, y) ∈ S to the (d+1)-dimensional halfspace hs(y·x,−y),0 which
equals to

{
(a, w) ∈ Rd+1 : 〈a,x〉 ≥ w

}
if y = 1, and to

{
(a, w) ∈ Rd+1 : 〈a,x〉 ≤ w

}
if y = −1.

By definition, for any realizable dataset of points S , the multiset S ′ = {((y · x,−y) , 0) : (x, y) ∈ S}
is a realizable dataset of halfspaces. Therefore, by applying AFindDeepPoint on S ′ we obtain a deep
point (a∗, w∗) ∈ Rd+1 for S ′, meaning that 〈a∗, y · x〉 ≥ y ·w∗ for most of the (x, y) ∈ S , which is
(almost) what we need. The problem is that the pairs (x,−1) ∈ S with 〈a∗,x〉 = w∗ do not count as
points in hsa∗,w∗ while they do count for the depth of (a∗, w∗) in S ′. Yet, assuming the points in
S are in general position (an assumption that can be eliminated), then there can be at most d such
points. Since d < α |S| /2 in our case, then errorS(ca,w) remains small.

Following the above discussion, we now state our result in the general position case.

Theorem 5.1. Let α, β, ε ≤ 1, δ < 1/2, X ∈ N, X = [[±X]] and let S ∈
(
X d × {−1, 1}

)∗
be a realizable dataset of points with |S| = O

(
d2.5 · 2O(log∗X+log∗ d) log1.5

(
1
δ

)
log
(
d
β

)
εα

)
.

Let ALearnHalfSpace be the algorithm the executes AFindDeepPoint on the multiset S ′ :=
{((y · x,−y) , 0) : (x, y) ∈ S} and parameters α/2, β, ε, δ, and outputs the resulting point
(a∗, w∗) ∈ Rd+1. Then ALearnHalfSpace is (ε, δ)-differentially private. Moreover, assuming the
points in S are in general position,7 then with probability 1− β it holds that errorS(ca∗,w∗) ≤ α.

In the supplementary material we show how to remove the assumption that the points in S are in
general position. Hence, since the VC dimension of HALFSPACE(Rd) is only d+ 1, we immediately
obtain a private PAC learner from our private ERM learner, which is the main result of this paper.

Theorem 5.2 (Restatement of Theorem 1.2). Let α, β, ε, δ,X,X as in Theorem 5.1. Then there
exists an (ε, δ)-differentially private (α, β)-PAC learner for the class HALFSPACE(X d) with sample

complexity s = O

(
d2.5 · 2O(log∗X+log∗ d+log∗(1

αβεδ)) · log1.5
(

1
δ

)
log
(
d
αβ

)
εα

)
.

6 Open Questions

It still remains open what is the minimal sample complexity that is required for learning halfspaces
with an (approximate) differential privacy. Our work provides a new upper bound of≈ d2.5 ·2O(log∗X)

which improves the state-of-the-art result of Beimel et al. [2019] by a d2 factor, and improves the
generic upper bound of Kasiviswanathan et al. [2011] whenever (roughly) d < log2X .8 Yet, there is
still a gap from the best known lower bound of Ω(d · log∗X) for proper learning (Bun et al. [2015])
and Ω(d+ log∗X) for improper learning. In particular, it still remains open whether we can avoid
the exponential dependency in log∗X for d > 1. One option for answering it is by finding a different
1-dimensional quasi-concave optimization that only requires polynomial dependency in log∗X , since
RecConcave, the optimization that we are using, requires exponential dependency. Indeed, a recent
work of Kaplan et al. [2020] shows an (almost) linear dependency in log∗X for 1-dimensional
thresholds, which is a special case of a quasi-concave optimization, and it still remains open whether
this result can be extended to the quasi-concave optimization case.

7For us, a set of points in Rd are in general position if there are no d+1 points that lie on the same hyperplane.
8We remark that even when d > log2 X , we offer significant improvements over the generic learner in terms

of runtime. In particular, our algorithm runs in time (roughly) nd, where n is the number of samples, while the
generic learner has a runtime of at least Xd2 .

9

Broader Impact

In this work we develop algorithms that maintain the differential privacy of the samples. When the
samples represent individuals, our work helps to maintain the privacy of those individuals.

Acknowledgments and Disclosure of Funding

Haim Kaplan is partially supported by Israel Science Foundation (grant 1595/19), German-Israeli
Foundation (grant 1367/2017), and the Blavatnik Family Foundation.

Yishay Mansour has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 882396), and by the
Israel Science Foundation (grant number 993/17).

Uri Stemmer is supported in part by the Israel Science Foundation (grant 1871/19), and by the Cyber
Security Research Center at Ben-Gurion University of the Negev.

References
N. Alon, R. Livni, M. Malliaris, and S. Moran. Private PAC learning implies finite littlestone

dimension. In STOC, pages 852–860, 2019.

A. Beimel, K. Nissim, and U. Stemmer. Characterizing the sample complexity of private learners. In
Innovations in Theoretical Computer Science, ITCS, pages 97–110, 2013a.

A. Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization: Pure vs. approximate
differential privacy. In APPROX-RANDOM, volume 8096, pages 363–378, 2013b. Journal version:
Theory of Computing, 12(1):1–61, 2016.

A. Beimel, S. Moran, K. Nissim, and U. Stemmer. Private center points and learning of halfspaces.
In Conference on Learning Theory, COLT, volume 99, pages 269–282, 2019.

M. Bun, K. Nissim, U. Stemmer, and S. P. Vadhan. Differentially private release and learning of
threshold functions. In FOCS, pages 634–649, 2015.

M. Bun, C. Dwork, G. N. Rothblum, and T. Steinke. Composable and versatile privacy via truncated
cdp. In STOC, pages 74–86, 2018.

M. Bun, R. Livni, and S. Moran. An equivalence between private classification and online prediction.
CoRR, abs/2003.00563, 2020. URL https://arxiv.org/abs/2003.00563.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In TCC, volume 3876, pages 265–284, 2006.

V. Feldman and D. Xiao. Sample complexity bounds on differentially private learning via communi-
cation complexity. SIAM J. Comput., 44(6):1740–1764, 2015. URL http://dx.doi.org/10.
1137/140991844.

H. Kaplan, K. Ligett, Y. Mansour, M. Naor, and U. Stemmer. Privately learning thresholds: Closing
the exponential gap. In Conference on Learning Theory, COLT, volume 125, pages 2263–2285,
2020.

S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. D. Smith. What can we
learn privately? SIAM J. Comput., 40(3):793–826, 2011. URL https://doi.org/10.1137/
090756090.

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, Nov. 1984. ISSN
0001-0782. URL http://doi.acm.org/10.1145/1968.1972.

10

https://arxiv.org/abs/2003.00563
http://dx.doi.org/10.1137/140991844
http://dx.doi.org/10.1137/140991844
https://doi.org/10.1137/090756090
https://doi.org/10.1137/090756090
http://doi.acm.org/10.1145/1968.1972

	Introduction
	Existing Results
	Our Results

	Preliminaries
	Preliminaries from Learning Theory
	Private Learning

	A Private Algorithm for Optimizing Quasi-concave Functions – ARecConcave
	Halfspaces and Convex Hull

	Optimizing High-Dimensional Functions
	Defining a Quasi-Concave Function with Small Sensitivity
	The Algorithm

	The Linear Feasibility Problem
	Learning Halfspaces
	A Reduction to the Linear Feasibility Problem

	Open Questions

