Rewriting History with Inverse RL:
Hindsight Inference for Policy Improvement

Benjamin Eysenbach*?® Xinyang Geng*¥ Sergey Levine?’ Ruslan Salakhutdinov?
¢ Carnegie Mellon University ¥ UC Berkeley % Google Brain

Abstract

Multi-task reinforcement learning (RL) aims to simultaneously learn policies for
solving many tasks. Several prior works have found that relabeling past experience
with different reward functions can improve sample efficiency. Relabeling methods
typically pose the question: if, in hindsight, we assume that our experience was
optimal for some task, for what task was it optimal? Inverse RL answers this
question. In this paper we show that inverse RL is a principled mechanism for
reusing experience across tasks. We use this idea to generalize goal-relabeling
techniques from prior work to arbitrary types of reward functions. Our experiments
confirm that relabeling data using inverse RL outperforms prior relabeling methods
on goal-reaching tasks, and accelerates learning on more general multi-task settings
where prior methods are not applicable, such as domains with discrete sets of
rewards and those with linear reward functions.

1 Introduction

Reinforcement learning (RL) aims to acquire control policies that take actions to maximize their
reward, though existing RL algorithms remain data inefficient [11, 26]. Multi-task RL, where many
RL problems are solved in parallel, has the potential to be more sample efficient than single-task RL,
as data can be shared across tasks. Nonetheless, the problem of effectively sharing data across tasks
remains largely unsolved.

The idea of sharing data across tasks has been studied at least since the 1990s [5]. More recently,
a number of works have observed that retroactive relabeling of experience with different tasks can
improve data efficiency [3, 24]. A common theme in prior relabeling methods is to relabel past trials
with whatever goal or task was performed successfully in that trial. For example, in a goal-reaching
task, we might use the state actually reached at the end of the trajectory as the relabeled goal, since
the trajectory corresponds to a successful trial for the goal that was actually reached [3, 38]. However,
prior work on goal relabeling is inapplicable to more general reward functions, such as discrete sets
of reward functions or tasks defined by varying linear combinations of reward terms.

In this paper, we formalize prior relabeling techniques under the umbrella of inverse RL: by inferring
the most likely task for a given trial via inverse RL, we provide a principled formula for relabeling
in arbitrary multi-task problems. Inverse RL is not the same as evaluating a trajectory under all
tasks and choosing whichever task yielded the highest reward. In fact, this strategy would often
result in assigning most trajectories to the easiest task. Rather, inverse RL automatically takes into
account the difficulty of each task by normalizing each reward function by the partition function.
RL and inverse RL can be seen as complementary tools for maximizing reward: RL takes tasks and
produces high-reward trajectories, and inverse RL takes trajectories and produces task labels such
that the trajectories receive high reward. Formally, we prove that maximum entropy (MaxEnt) RL
and MaxEnt inverse RL optimize the same multi-task objective: MaxEnt RL optimizes with respect

*Equal contribution. Correspondence to beysenba@cs.cmu.edu

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

& Task 1: sweep
W8 (|5 block into drawer

S Task 3: push

\ & green button

1. Gather 2. Infer Hindsight 3. Learn from
Experience Intentions with Inverse RL Relabelled Experience

Figure 1: Hindsight Inference for Policy Improvement (HIPI): Given a dataset of prior experience,
we use inverse RL to infer the intentions of the agent’s own past experience. We then use the relabeled experience
with any policy learning algorithm, such as off-policy RL or supervised learning.

to trajectories, while MaxEnt inverse RL optimizes with respect to tasks. Unlike prior goal-relabeling
techniques, we can use inverse RL to relabel experience for arbitrary task distributions, including
linear or discrete reward sets. This observation suggests that RL and inverse RL might be combined
to efficiently solve many tasks simultaneously. The combination we develop, Hindsight Inference
for Policy Improvement (HIPI), first relabels experience with inverse RL and then uses the relabeled
experience to learn a task-conditioned policy (see Fig. 1). One variant of this framework follows
the same design as prior value-based goal-relabeling methods [3, 24, 38] but uses inverse RL to
relabel experience, a difference that allows our method to handle arbitrary task families. The second
variant has a similar design to self-imitation behavior cloning methods [15, 33, 45]: we relabel past
experience using inverse RL and then learn a policy via task-conditioned behavioral cloning. Both
algorithms are probabilistic reinterpretations and generalizations of prior work.

The main contribution of our paper is the observation that inverse RL is a principled mechanism
for reusing experience across tasks. This observation not only provides insight into success of prior
relabeling methods, but it also provides guidance on applying relabeling to arbitrary multi-task RL
problems. Our second contribution is two simple algorithms that use inverse RL-based relabeling
to accelerate multi-task RL. These algorithms do not require expert demonstrations, but rather
perform inverse RL on the agent’s own (possibly-random) past experience. Our experiments on
complex simulated locomotion and manipulation tasks demonstrate that our approach outperforms
state-of-the-art multi-task RL methods.

2 Related Work

We focus on multi-task RL problems, for which a number of algorithms have been proposed over the
past decades [12, 22, 43, 51, 53]. Existing approaches still struggle to reuse data across multiple tasks,
with researchers often finding that training separate models is a very strong baseline [58]. Similarly,
prior work [16, 34, 44, 51] has effectively used independently-trained models to initialize multi-task
models. When applying off-policy RL in the multi-task setting, a common technique is to take data
collected when performing task A and pretend that it was collected for task B by recomputing the
rewards at each step, effectively inflating the amount of data available for learning [3, 24, 38, 47]. In
this paper we will show that this relabeling can be understood as inverse RL.

While RL asks how to go from a reward function to a policy, inverse RL asks the opposite question:
after observing an agent acting in an environment, can we infer which reward function the agent was
trying to optimize? Prior work has proposed a number of inverse RL algorithms [1, 41], with MaxEnt
inverse RL being one of the most commonly used frameworks [14, 23, 62]. MaxEnt inverse RL can
be viewed as the problem of inferring the posterior distribution over reward functions. [62] While
most prior work uses maximum a-posteriori estimates, we follow prior work [7, 21, 40] in using the
full posterior. Section 3 discusses how MaxEnt RL and MaxEnt inverse RL are related, with one
problem being the dual of the other. It is therefore not a coincidence that many MaxEnt inverse RL
algorithms involve solving a MaxEnt RL problem in the inner loop. Our method will do the opposite,
using MaxEnt inverse RL in the inner loop of MaxEnt RL.

Our work builds on the idea that MaxEnt (forward) RL can be viewed as probabilistic inference. This
idea has been proposed in a number of prior works [25, 28, 42, 52, 54-56] and used to construct
practical RL algorithms [2, 18, 19]. While prior work [37, 60] has combined hindsight relabeling
with MaxEnt RL, we will show that MaxEnt RL itself suggests a natural relabeling mechanism.
Concurrent with our work, Li et al. [30] also propose to use inverse RL to relabel experience for
off-policy RL. In contrast with this concurrent work, our analysis provides a principled unification
of (forward) MaxEnt RL and MaxEnt inverse RL. We go further and observe that prior relabeling
methods are already doing inverse RL, albeit as a special case, and present value-based and behavioral
cloning-based variants of our method.

3 Preliminaries
This section reviews MaxEnt RL and MaxEnt inverse RL. We start by introducing notation.

Notation. We will analyze an MDP with states s;, actions a;, and a reward function 7 (s, a;). We
sample actions from a policy g(a; | s¢). The initial state is sampled s; ~ p;(s1) and subsequent
transitions are governed by a dynamics distribution s;11 ~ p(s¢+1 | st, a¢). We define a trajectory as
a sequence of states and actions, 7 = (s, ay, - - -), and write the likelihood of 7 under policy g as

q(r) = p1(s1) [[p(se41 | st ardqlar | s0).
t
In the multi-task setting, we use ¢ € ¥ to identify each task and assume that the prior p(1)) over
tasks is known. The set of tasks W can be continuous or discrete, finite or infinite; each particular task
1 € U can be continuous or discrete valued. We define 7, (s¢, a;) as the reward function for task).
Our experiments use both goal-reaching tasks, where 1) is a goal state and r, is a distance metric, as
well as more general task distributions, where 1) specifies the hyperparameters of the reward function.

MaxEnt RL. MaxEnt RL maximizes the entropy-regularized sum of rewards [61]. MaxEnt RL
can be equivalently expressed as a distribution matching problem. First, construct a reward-based
target distribution p(T) over trajectories,

1
p(r) = Zpl(sl) Hp(3t+1 | s, ap)er (o), (D
¢

Then, minimizing the reverse KL between the policy’s trajectory distribution ¢(7) and the target
trajectory distribution p(7) is equivalent to maximizing the entropy-regularized sum of rewards:

max —Dict(q(7) || p(7)) = B, [(> r(si,a0) ~loga(ar | s1)) — log Z] , 2)

t

The partition function Z is introduced to make p(7) integrate to one. Although the partition function
is independent of the policy, and prior RL algorithms have therefore ignored it, it will play a crucial
role in relabeling experience. Section 4 will examine the multi-task version of this objective, where
rewards will depend on the task).

MaxEnt inverse RL. Inverse RL observes previously-collected data and attempts to infer which
reward function r, the actor was trying to maximize. While many inverse RL algorithms also yield a
policy which is optimal for the inferred reward function, we will use “inverse RL” to refer to just the
problem of inferring the reward. MaxEnt inverse RL [62] is a variant of inverse RL that defines the
probability of trajectory 7 being produced for task) as

Ty (5t,at)
p(T ‘ 17[}) = p1(51) Htp(St;(QL}jt’at)e) where Z(d)) £ /pl (Sl) Hp(5t+1 | Staat)eTw(St’at)dT.
t
3)
Applying Bayes’ rule, the posterior distribution over tasks v is given as follows:
p(7 [¢¥)p(¥) ro (50.00) — ;
p(Y|7) = (;;(T))(o p(tp)ei T (svan)—log Z(¥) “)

In the next section, we will show that both MaxEnt RL and MaxEnt inverse RL minimize the same
reverse KL divergence on the joint distribution of tasks and trajectories.

4 Hindsight Relabeling is Inverse RL

Off-policy RL allows us to use experience collected from one task to train the policy to solve another
task. As one might expect, some trajectories are more useful for some tasks than others. Can we
automatically determine for which tasks a given trajectory will be useful? Our analysis in the section
suggests that one appealing answer is to apply MaxEnt inverse RL.

We start by defining a multi-task version of the MaxEnt RL objective (Eq. 2). In the multi-task setting,
the target distribution p(7, 1) is a joint distribution over trajectories 7 and tasks). We can express
the joint distribution as the product of a prior over tasks, p(¢), and the target trajectory distribution,
p(7 |) (Eq. 3):

1

p(7,%) = p(wmpl

(1) [T plsern | e ar)ers o). 5)
t

We can express the multi-task (MaxEnt) RL objective as the reverse KL divergence between the joint
trajectory-task distributions:

max — Dk (q(7,9) || p(7,¢)). (6)
q(7)
If we factor the joint distribution as ¢(7,v) = q(7 | ¥)p(¢), this objective is equivalent to maximizing
the expected (entropy-regularized) reward of a task-conditioned policy ¢(7 | ¥):

E Prop(eh) [(Z“ﬁ(st, at) —log Q(at ‘ St ZZJ)) _W] .
Teq (7)) t

To share experience across tasks, we will want to figure out for which tasks a given trajectory will
be useful. Thur, we instead choose to factor ¢(7,v) = q(¢b | 7)g(7), where ¢(7) is represented
non-parametrically as a distribution over previously-observed trajectories. The distribution ¢(1) | 7)
tells us the tasks for which trajectory 7 is similar to the optimal policy for task 1. We therefore expect
that trajectory 7 will be most useful for learning tasks 1) where g(¢ | 7) is large. To compute the
relabeling distribution, we expand our objective (Eq. 6) using this factorization:

E reqn) {10gp1(81)+z Ty (St, ar)+logp(set1 | s, ar)+log p(1) —log g | T)—log q(1)—log Z(v) |
prq(p|T) t

The relabeling distribution ¢(1) | 7) that optimizes this objective is

a(| 7) o p(t) exp <Z ro(se,ar) — log zw)) .)

Intuitively, we should use trajectory 7 for solving tasks where the trajectory receives the highest
reward, as compared with the partition function. The key observation here is that the optimal
relabeling distribution corresponds exactly to the MaxEnt inverse RL posterior over tasks (Eq. 4).
While the optimal relabeling distribution derived here depends on the entire trajectory, Appendix B
shows how to perform relabeling when given a transition rather than an entire trajectory:

a(4 | st,a1) o< p(¥) exp (Q(st,a1) — log Z(v)) ®)

In the next section we show that prior goal-relabeling methods are a special case of inverse RL.

4.1 Special Case: Goal Relabeling

A number of prior works have explicitly [3, 24, 38] and implicitly [15, 32, 45] found that hindsight
relabeling can accelerate learning for goal-reaching tasks, where tasks ¢ correspond to goal states.
We now show that these prior methods are a special case of inverse RL. Define a goal-conditioned
reward function that penalizes the agent for failing to reaching the goal at the last step:

—oo ift=Tands
rtonan = {; v

We assume that the time step ¢ is included in s; to ensure that this reward function is Markovian. With
this reward function, the optimal relabeling distribution ¢(¢ | 7) from Eq. 7is ¢(v | 7) = 1(¢) = s1),

©))

otherwise

where s is the final state in trajectory 7. Thus, relabeling with the state actually reached is equivalent
to inverse RL when using the reward function in Eq. 9. While inverse RL is convenient when using
this reward function, we rarely care about a policy’s expected reward under this particular reward
function. Viewing goal relabeling as a special case of inverse RL lets us extend goal relabeling
to arbitrary task distributions. We will show that inverse RL handles task distributions including
goal-reaching, discrete sets of tasks, and linear reward functions.

4.2 The Importance of the Partition Function

. . . . Y1 Y2 Y1 Y2
The partition function used by inverse RL is

important for hindsight relabeling as it normal- T1
izes the rewards from tasks with varying diffi-
culty and reward scale. Fig. 2 shows a didactic
example with two tasks, where task) is eas-
ier than task 1o, providing larger rewards to
all trajectories. Relabeling with the task under
which the agent received the largest reward (akin
to Andrychowicz et al. [3]) fails because all ex-
perience will be relabeled with the first (easier)
task. Subtracting the partition function from the
rewards (as in Eq. 7) results in the desired be-
havior: trajectory 7 is assigned task 1, and 7
is assigned to 5.

T1

T2 T2

r(t) A1) = ry(t) — logZ(y)

Figure 2: The partition function normalizes re-
wards of different scales: Two trajectories are evalu-
ated on tasks with different reward scales. Black borders
indicate the task to which we assign each trajectory.
(Left) Without normalization, both trajectories are as-
signed to task 1. (Right) After normalizing with the
partition function, as is done by inverse RL (our method),
trajectory 7y is assigned task i1 and 7 is assigned to 2.

4.3 How Much Does Relabeling Help?

Up to now, we have shown that the optimal way to relabel data is via inverse RL. We now obtain a
lower bound on the improvement from relabeling. Both lemmas in this section will assume that a
joint distribution ¢(7, 1)) over tasks and trajectories be given (e.g., specified by a policy q(a; | s¢, ©)).
We will define ¢ (7) = [¢(7,) as the marginal distribution over trajectories and ¢ (¢ | 7) as the
corresponding optimal relabeling distribution (Eq. 7). Our aim is to show that the joint distribution
after relabeling, ¢, (7,%) = ¢ (¢ | 7)g-(7), is better than the joint distribution before relabeling,
q(7,). We first show that relabeling data using inverse RL improves the MaxEnt RL objective:

Lemma 1. The relabeled distribution q,(7,1) is closer to the target distribution than the original
distribution, as measured by the KL divergence:

DKL(qT(Tv¢) H p(Ta 1/1)) S DKL(q(Ta QZ)) || p(va))

Proof. Of the many possible relabeling distributions, one choice is to do no relabeling, assigning
to each trajectory 7 the task) that was commanded when the trajectory was collected. Denote this
relabeling distribution go (v | 7), s0 qo(¢ | 7)g-(7) = q(7,¥). Because ¢, (¢ | 7) minimizes the KL
among all relabeling distributions (including ¢o (¢ | 7)), the desired inequality holds:

Dx1(g-(¢ | 7)g=(7) || p(7,9)) < Dxw(go(¥ | 7)g-(7) || p(7,9)). u

Thus, the relabeled data is an improvement over the original data, achieving a larger entropy-
regularized reward (Eq. 6). As our experiments will confirm, relabeling data will accelerate learning.
Our next result will give us a lower bound on the size of this improvement:

Lemma 2. The improvement in the MaxEnt RL objective (Eq. 6) gained by relabeling is lower
bounded as follows:

Dxr(q(¥) || p(7,) = Dxila- (7, 9) || p(7,9)) = By, [Drr(q(¥ [7) [¢ (¢ [7))]-

The proof, a straightforward application of information geometry, is in Appendix A. This result says
that the amount that relabeling helps is at least as large as the difference between the original task
labels ¢(¢ | 7) and the task labels inferred by inverse RL, ¢, (¢ | 7). When experience is collected
from a random policy, there is little correlation between the originally-commanded tasks and the
tasks inferred by inverse RL, so we expect a large gain from relabeling. Experience from the optimal
policy is already optimally labeled, so the improvement from relabeling drops to zero once we have
acquired the optimal policy.

Algorithm 1 Approximate Inverse RL. Algorithm 2 HIPI-RL:
When used in HIPI-RL (Alg. 2) we only have transi- Inverse RL for Off-Policy RL

tions, so we compute Rf;() ;) using Eq. 8 (blue line). while not converged do

When used in HIPI-BC (Alg 3) we have full trajecto- {(351), ai'% 3521, 1/J(i)} ~ REPLAYBUFFER
ries, SO we compute RY e using Eq. 7 (red line). {w(z)} « INVERSERL({(SE),a(i) () w())})
()
function INVERSERL({(s{"”, a{”, sV, (D} @ « MAXENT RL({(s;", a;", t+17¢ 1
forj=1,--- 7Bdo l>task1ndex
fori=1,--- ,Bdo > state-action index Alzorithm 3 HIPLBC
R(”L — () a® W) > Ea. 8 gorithm - ‘:)
A ()” Q(G L)ZJ <)> 9° Inverse RL for Behavior Cloning
RM-”) 2y (817 ('f‘)) >Eq.7 while not converged do
log Z(pD) « L8 o) {(s87,a(, 50, 9D} ~ REPLAYBUFFER
fori=1,---,Bdo {9} INvERSERL({(s;"”, 0", 51, V) })
PO~ SOFTMAX(R(Z(U —log Z(1p™M),) 0 60+nVe>, logme ((| g{D 4t)>
return {4V} return 7o

5 Using Inverse RL to Accelerate RL

In this section we propose two multi-task policy search algorithms that use inverse RL to relabel
experience. We will call both methods Hindsight Inference for Policy Improvement (HIPI). Both
methods will follow the same general recipe. Inverse RL (Alg. 1) takes as input transitions or
trajectories and returns a distribution over tasks. Our policy search algorithms (Algorithms 2 and 3)
take past experience, use inverse RL to sample a corresponding task, and then update the policy using
experience together with the task label. The two algorithms differ in how they update the policy:
HIPI-RL (Sec. 5.1) will use off-policy MaxEnt RL, whereas HIPI-BC (Sec. 5.2) will use behavior
cloning. Full experimental details are included in Appendix E and code has been released.”

5.1 Using Relabeling Data for Off-Policy RL (HIPI-RL)

HIPI-RL is a multi-task RL algorithm that uses experience relabeled with inverse RL for off-policy
RL. We describe the algorithm in Alg. 2. At each iteration, we sample a batch of B transitions from

the replay buffer. For each transition in the batch, we run inverse RL, sample a new task 1Z from

the inverse RL posterior, and relabel that transition to be used for learning task . We then perform
MaxEnt RL on the batch of relabeled transitions. We use SAC [19] as the underlying MaxEnt RL
algorithm. The only difference between HIPI-RL and SAC is that HIPI-RL relabels experience with
inverse RL before applying the standard SAC updates. To collect new experience, we sample a task
from the prior, 1) ~ p(1), and then take actions using corresponding (stochastic) policy, 7 (a | s,).
HIPI-RL can be viewed as a generalization of prior relabeling techniques [3, 24], allowing them to be
applied to task distributions beyond goal-reaching.

The key design decision is the choice of inverse RL algorithm. Alg. 1 outlines one approximate
inverse RL algorithm that can be efficiently integrated into off-policy RL. The algorithm takes as input
B transitions {(sgi), agi), sﬁi@l)} along with the tasks that were commanded when these transitions
were collected, {w(i) }. Rather than consider all (possibly-infinite) tasks, we make a non-parametric
approximation and only consider the likelihood of these B originally-commanded tasks. Then, for all
pairs 1 < 4,5 < B, we compute the likelihood that transition (S,EZ)7 a,@, sg +)1) is optimal for task 1))
following Eq. 8. Finally, we normalize these likelihoods by taking a softmax, which is equivalent to

using the following (biased) approximation of the partition function log Z(v):

B
1 (@) q(®
_ Ry (s,a) ~ - Ry (s'",a'")
logZ(z/))—log/e v dsdafvlogB;e v + log B.
Alg. 1 is one of many possible methods for inverse RL. Alternative methods include doing gradient
descent on the tasks 1 or learning a parametric task-sampler to approximate the optimal relabeling
distribution (Eq. 7). We leave this as future work.

https://github.com/google-research/google-research/tree/master/hipi

(a) (b)

Figure 4: Environments for experiments: (a) quadruped, (b) finger, (c) 2D reacher, (d) sawyer
reach, (e) 2D navigation (f) jaco reach, (g) walker, () cheetah, and (i) desk manipulation.

5.2 Using Relabeled Data for Behavior Cloning (HIPI-BC)

Our second multi-task policy search algorithm, HIPI-BC, uses behavior cloning to learn from
relabeled past data. We describe the algorithm Alg. 3. Similar to HIPI-RL, each iteration samples a
batch of experience and relabels that experience with inverse RL. Rather than using this experience
for RL, HIPI-BC directly performs behavior cloning, maximizing the following objective:

B
1 (1) | (&) 7(0)
meaX; ogm(ay” | sy, ¥")

In Appendix C, we show that HIPI-BC generalizes a number of previous methods, extending
variational policy search [10, 29, 35, 36] to the multi-task setting and extending goal-conditioned
imitation learning [15, 32, 45] to arbitrary task distributions. Our implementation uses Alg. 1 for
inverse RL. We will use a trajectory-level replay buffer, so we can directly compute the reward of
each trajectory under each task, rather than approximating the future rewards with the Q function.
See Appendix E.2 for hyperparameters.

6 Experiments: Relabeling with Inverse RL Accelerates Learning

Our experiments focus on two methods for using relabeled data: off-policy RL (Alg. 2) and behavior
cloning (Alg. 3). We evaluate our method on both goal-reaching tasks as well as more general task
distributions, including linear combinations of a reward basis and discrete sets of tasks. The aim of
all experiments is to maximize the task reward, not to imitate an expert.

6.1 HIPI-RL: Inverse RL for Off-Policy RL

Our first set of experiments apply Alg. 2 to domains with varying reward structure, demonstrating
how relabeling data with inverse RL can accelerate off-policy RL.

Didactic example. We start with a didactic 104

example to motivate why relabeling experience @ /v”_"_/_v_—'_v
with inverse RL should accelerate off-policy RL. Y osd

In the gridworld shown in Fig. 3, we construct S

a dataset with two trajectories: A — B and v

C — D. From state A, inverse RL identifies 20t o o
many possible intentions, including states B and Iterations
D,soboth A — Band A — D getincluded —¥— HIPI-RL (ours) —#- Final State Relabelling (HER)

in the relabeled data. In contrast, final state re-

labeling (HER) only uses trajectory A — B. Figure 3: Relabeling stitches crossing trajectories:

. (Left) A gridworld with two observed trajectories A —
We then apply (soft) Q-learning to both datasets. B and C' — D. Inverse RL identifies both B and D as

Whereas Q-learning “_/lth final state r.elabehng likely intentions from state A and includes both A — B
only succeeds at reaching those goals in the top and 4 — D in the relabeled data. Final state relabeling
row (6/10 goals), our approach, which corre- (HER) only relabels with the goal actually achieved,
sponds to Q-learning with inverse RL, relabel- corresponding to trajectory . (Right) HIPI-RL
ing succeeds at reaching all goals. Note that learns to reach all goals, whereas HER only learns to
relabeling with future states would also fail to reach the 6/10 goals along the top row.

use states from trajectory C' — D as goal state

A. The remainder of this section will show the benefits of relabeling using inverse RL in domains of
increasing complexity.

2D Reacher 2D Reacher

Quadruped Finger (margin=0.01) (margin=0.003)
—400 —400 0 0
c
=
3 -200 -200
2
@ —600 - —600
N -400 -400
g 600 600
S -800+ ~800 - -) -
o m Wl -s00 A ~800
2 : ; ————— Tl
0 2 4 6 8 0.00 0.25 0.50 0.75 1.00 0 1 2 3 4 5 00 02 04 06 08 10
1e5 1e6 Jaco Reach 1e5 Jaco Reach 1e6
Sawyer Reach 2D Navigation (margin=0.1) (margin=0.01)
(O E—— 2 S 0 L —
c . —400
—
2 72007 -200
(V]
oC -400 —600
Q —400
O -600 -
@© —800
@ -800] -600
>
< ~1000 1 800 -1000
0.0 0.5 1.0 1.5 2.0 0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 10 0 2 4 6
Env. Steps 1% Env. Steps 1¢6 Env. Steps 1€® Env. Steps 1®
—v— HIPI-RL (ours) Random Relabeling —‘— No Relabeling (SAC)
Final State Relabeling (HER) Future State Relabeling

Figure 5: Relabeling for goal-reaching tasks: On six goal-reaching domains, relabeling with inverse RL (our
method) learns faster than with previous relabeling strategies. On extremely sparse versions of two tasks, shown
in the right column, only our method learns the tasks. See text for details.

Goal-reaching task distributions. We next apply our method to goal-reaching tasks, where each
task v corresponds to reaching a different goal state. We used six domains, shown in Fig. 4: a
quadruped locomotion task, a robotic finger turning a knob, a 2D reacher, a reaching task on the
Sawyer robot, a 2D navigation environment with obstacles, and a reaching task on the Jaco robot.
Appendix E provides details of all tasks. We compared our method against four alternative relabeling
strategies: relabeling with the final state reached (HER [3]), relabeling with a randomly-sampled task,
relabeling with a future state in the same trajectory, and doing no relabeling (SAC [19]). For tasks
where the goal state only specifies certain dimensions of the state, relabeling with the final state and
future state requires privileged information indicating which state dimensions correspond to the goal.
For example, in the quadruped domain, these methods need to be told that the agent’s center of mass
is stored in state dimensions 0 and 1. Our method does not require this additional information. We
found that the most sensitive parameter was the number of gradient steps per environment step. We
tuned this parameter independently for each method, and report the best results for each method.

As shown in Fig. 5, relabeling experience with inverse RL (our method) always learns at least as
quickly as the other relabeling strategies, and often achieves larger asymptotic reward. While final
state relabeling (HER) performs well on some tasks, it is worse than random relabeling on other
tasks. We also observe that random relabeling is a competitive baseline, provided that the number of
gradient steps is sufficiently tuned. We conjectured that soft relabeling would be most beneficial in
settings with extremely sparse rewards. To test this hypothesis, we modified the reward functions in
2D reacher and Jaco reaching environments to be much sparser. As shown in the far right column on
Fig. 5, only soft relabeling is able to make learning progress in this setting.

More general task distributions. Our next 2 Reacher: Walker sow _
: : yer Reacher:
eXperiment demOHStrateS that, in addition tO . Discrete Tasks N Linear Rewards o Goals+Margin Tasks

relabeling goals, inverse RL can also rela- ygf\fg

bel experience for more general tasks distri-

Average Return

butions. Our first task distribution is a dis-
crete set Of goal states /lp (= {17 ERIEN 32} Environment Ste‘;:s les Environment Steps 1*° Environment Ste‘ps s
for the 2D reacher environment. The second - DRELlows) - Rencom Teelts 4 Mofenem

task distribution highlights the capability of Figure 6: Relabeling for general tasks distributions:
inverse RL to relabel experience for classes On all tasks, relabeling with inverse RL accelerates learn-
of reward functions defined as linear combi- ing and leads to larger asymptotic reward. Existing rela-
nations r, (s,a) = 2?21 Vidi(s, a) of features beling strategies are not applicable in this setting.
#(s,a) € R?. We use the walker environment, with features corresponding to torso height, velocity,
relative position of the feet, and a control cost. The third task distribution is again a goal reaching task,
but one where the task ¢ = (s4,m) indicates both the goal state as well as the desired margin from
that goal state. As prior relabeling approaches are not applicable to these general task distributions, we

g . cheetah quadruped desks 0 With Pertit
=1 9] B ith Partition
3 400 ?g 01 =% ¥ Function (ours)
] 200 0 o g No Partition
o100 - z < _150 ' Function

@ i S —— ol

> random behavior HIPI-BC random behavior HIPI-BC random behavior HIPI-BC 00 05 10 15 20 25 30

< cloning (ours) cloning (ours) cloning (ours) Reward Bias

(a) Results of HIPI-BC on tasks with varying reward structure. (b) Partition function ablation.

Figure 7: HIPI-BC: (Left) Behavior cloning on experience relabeled with inverse RL boosts reward
on goal-reaching tasks, linear reward functions, and discrete tasks. (Right) Removing the partition
function from inverse RL results in poor performance.

only compared our approach to random relabeling and no relabeling. As shown in Fig. 6, relabeling
with inverse RL provides more sample efficient learning in all tasks, and the asymptotic reward is
larger than the baselines by a non-trivial amount in two of the three tasks.

6.2 HIPI-BC: Behavioral Cloning on Experience Relabeled with Inverse RL

We now present experiments using HIPI-BC (Alg. 3), performing behavior cloning on the experience
relabeled with inverse RL. We use three domains with varying types of rewards: (1) half-cheetah with
continuous goal velocities; (2) quadruped with linear reward functions; and (3) manipulation with nine
discrete tasks. For the half-cheetah and quadruped domains, we collected 1000 demonstrations from
a policy trained with off-policy RL. For the manipulation environment, Lynch et al. [32] provided
a dataset of 100 demonstrations for each of these tasks, which we aggregate into a dataset of 900
demonstrations. In all settings, we discarded the task labels, simulating the common real-world
setting where experience does not come prepared with task labels. As shown in Fig. 7a, first inferring
the tasks with inverse RL and then performing behavioral cloning results in significantly higher final
rewards than task-agnostic behavior cloning on the entire dataset, which is no better than random.

Our final experiment demonstrates the importance of the partition function. On the cheetah domain,
we synthetically corrupt the demonstrations by adding a constant bias to the reward for the first task.
We then compare the performance of our approach against an ablation that does not normalize by
the partition function when relabeling data. As shown in Fig. 7b, the performance of this ablation
degrades as the reward bias increases, whereas our method, which normalizes the task rewards in the
inverse RL step, is not affected.

7 Discussion

In this paper, we proved that inverse RL is as a principled mechanism for sharing experience across
tasks. We showed that a number of prior works can be understood as special cases of this framework.
The idea that inverse RL might be used to relabel data is powerful because it enables us to extend
relabeling techniques to general classes of reward functions. We used this idea to propose two
multi-task policy search algorithms, which relabel past experience with inverse RL and use this
relabeled experience for off-policy RL and supervised learning.

We are only scratching the surface of the many ways relabeled experience might be used to accelerate
learning. For example, the problem of task inference is ever-present in meta-learning, and it is
intriguing to imagine explicitly incorporating inverse RL into meta RL. Broadly, we hope that the
observation that inverse RL can be used to accelerate RL will spur research on better inverse RL
algorithms, which in turn will provide better RL algorithms.

Limitations Our algorithms do require that the user manually specify the family of reward functions,
over which we perform inverse RL. If this family of reward functions is overly narrow, our algorithm
will fail to learn omitted tasks. This failure mode can easily be mitigated by using expressive
task families. Indeed, because we take a nonparametric approach to inverse RL (Alg. 1), the time
complexity of our approach does not increase with the size of the task family. We conjecture that our
algorithm will work better in settings with highly expressive task families, as increasing the number
of reward functions increases the likelihood that a given trajectory is optimal for some task.

Inverse RL, which our approach uses as a building block, remains a challenging problem. We found
in our experiments that in cases where inverse RL failed, it returned a uniform relabeling distribution
q(¢ | 7). Thus, when inverse RL fails, our method resorts to (uniform) random relabeling. As shown
in Fig. 5 and Fig. 6, random task relabeling is surprisingly effective, suggesting that such a failure
case is not overly problematic.

Broader Impact

In this paper, we showed that hindsight relabeling is a form of inverse RL and used this insight
to propose algorithms which can effectively share experience for solving multiple tasks. These
algorithms may prove valuable in scenarios where data collection is costly or dangerous. Additionally,
the use of inverse RL makes our algorithm robust to misspecification in the scale of the reward
function (see Sec. 4.2 and Fig. 7b); an adversary cannot bias our algorithm to learn a certain task by
scaling the reward for that task.

Today, sharing data across tasks remains challenging, so users are forced to collect data anew when
they want to solve new tasks. The result is that users with access to robots have an upper-hand in
teaching robots to perform new tasks. If we were able to effectively share data across tasks, then
this balance of power would shift towards owners of data, rather than owners of robots (though, in
many cases, these are one and the same). Indeed, this seems to have been the trend in supervised
learning [48]. This risk might be mitigated by sharing data across institutions, as is starting to be
done for robot manipulation [9] and autonomous vehicles [4, 6, 27, 46, 49, 57].

Acknowledgments and Disclosure of Funding

We thank Yevgen Chebotar, Aviral Kumar, Vitchyr Pong, and Anirudh Vemula for formative discussions. We are
grateful to Ofir Nachum for pointing out the duality between MaxEnt RL and the partition function, and to Karol
Hausman for reviewing an early draft of this paper. We thank the anonymous NeurIPS reviewers for useful
feedback. We thank Stephanie Chan, Corey Lynch, and Pierre Sermanet for providing the desk manipulation
environment. This research was supported by the Fannie and John Hertz Foundation, NASA, DARPA, US
Army, and the National Science Foundation (IIS-1700696, 11S-1700697, 11S1763562, and DGE 1745016). Any
opinions, findings and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

References

[1] Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Machine learning, page 1. ACM.

[2] Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Riedmiller, M. (2018). Maximum
a posteriori policy optimisation. In International Conference on Learning Representations.

[3] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel,
O. P, and Zaremba, W. (2017). Hindsight experience replay. In Advances in Neural Information Processing
Systems, pages 5048-5058.

[4] Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G.,
and Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11621-11631.

[5] Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41-75.

[6] Chang, M.-F., Lambert, J. W., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P., Lucey, S.,
Ramanan, D., and Hays, J. (2019). Argoverse: 3d tracking and forecasting with rich maps. In Conference on
Computer Vision and Pattern Recognition (CVPR).

[7] Choi, J. and Kim, K.-E. (2012). Nonparametric bayesian inverse reinforcement learning for multiple reward
functions. In Advances in Neural Information Processing Systems, pages 305-313.

[8] Cover, T. M. and Thomas, J. A. (2006). Elements of information theory (wiley series in telecommunications
and signal processing).

[9] Dasari, S., Ebert, F., Tian, S., Nair, S., Bucher, B., Schmeckpeper, K., Singh, S., Levine, S., and Finn, C.
(2020). Robonet: Large-scale multi-robot learning. In Conference on Robot Learning, pages 885-897.

[10] Dayan, P. and Hinton, G. E. (1997). Using expectation-maximization for reinforcement learning. Neural
Computation, 9(2):271-278.

[11] Dubey, R., Agrawal, P., Pathak, D., Griffiths, T., and Efros, A. (2018). Investigating human priors for
playing video games. In International Conference on Machine Learning, pages 1349-1357.

10

[12] Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley,
T., Dunning, I, et al. (2018). Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In International Conference on Machine Learning, pages 1407-1416.

[13] Eysenbach, B., Salakhutdinov, R., and Levine, S. (2019). Search on the replay buffer: Bridging planning
and reinforcement learning. In Advances in Neural Information Processing Systems, pages 15220-15231.

[14] Finn, C., Levine, S., and Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy
optimization. In International Conference on Machine Learning, pages 49-58.

[15] Ghosh, D., Gupta, A., Fu, J., Reddy, A., Devine, C., Eysenbach, B., and Levine, S. (2019). Learning to
reach goals without reinforcement learning. arXiv preprint arXiv:1912.06088.

[16] Ghosh, D., Singh, A., Rajeswaran, A., Kumar, V., and Levine, S. (2018). Divide-and-conquer reinforcement
learning. In International Conference on Learning Representations.

[17] Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly, E., Fishman, S., Wang, K., Gonina, E.,
Harris, C., Vanhoucke, V., et al. (2018). Tf-agents: A library for reinforcement learning in tensorflow.

[18] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement learning with deep energy-based
policies. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1352-1361. JMLR. org.

[19] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a). Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290.

[20] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel,
P, et al. (2018b). Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905.

[21] Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and Dragan, A. (2017). Inverse reward design. In
Advances in neural information processing systems, pages 6765-6774.

[22] Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., and van Hasselt, H. (2019). Multi-task
deep reinforcement learning with popart. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 3796-3803.

[23] Javdani, S., Srinivasa, S. S., and Bagnell, J. A. (2015). Shared autonomy via hindsight optimization.
Robotics science and systems: online proceedings, 2015.

[24] Kaelbling, L. P. (1993). Learning to achieve goals. In IJCAI, pages 1094-1099. Citeseer.

[25] Kappen, H. J., Gémez, V., and Opper, M. (2012). Optimal control as a graphical model inference problem.
Machine learning, 87(2):159-182.

[26] Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and Dabney, W. (2018). Recurrent experience replay
in distributed reinforcement learning.

[27] Kesten, R., Usman, M., Houston, J., Pandya, T., Nadhamuni, K., Ferreira, A., Yuan, M., Low, B., Jain, A.,
Ondruska, P., Omari, S., Shah, S., Kulkarni, A., Kazakova, A., Tao, C., Platinsky, L., Jiang, W., and Shet, V.
(2019). Lyft level 5 av dataset 2019. urlhttps://level5.lyft.com/dataset/.

[28] Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909.

[29] Levine, S. and Koltun, V. (2013). Variational policy search via trajectory optimization. In Advances in
neural information processing systems, pages 207-215.

[30] Li, A. C., Pinto, L., and Abbeel, P. (2020). Generalized hindsight for reinforcement learning. arXiv preprint
arXiv:2002.11708.

[31] Liang, C., Berant, J., Le, Q., Forbus, K., and Lao, N. (2017). Neural symbolic machines: Learning semantic
parsers on freebase with weak supervision. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 23-33.

[32] Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J., Levine, S., and Sermanet, P. (2020). Learning
latent plans from play. In Conference on Robot Learning, pages 1113—-1132.

[33] Oh, J., Guo, Y., Singh, S., and Lee, H. (2018). Self-imitation learning. In International Conference on
Machine Learning, pages 3878-3887.

11

[34] Parisotto, E., Ba, J. L., and Salakhutdinov, R. (2015). Actor-mimic: Deep multitask and transfer reinforce-
ment learning. arXiv preprint arXiv:1511.06342.

[35] Peng, X. B., Kumar, A., Zhang, G., and Levine, S. (2019). Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177.

[36] Peters, J. and Schaal, S. (2007). Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pages 745-750.
ACM.

[37] Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. (2020). Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. arXiv preprint arXiv:2007.02832.

[38] Pong, V., Gu, S., Dalal, M., and Levine, S. (2018). Temporal difference models: Model-free deep rl for
model-based control. In International Conference on Learning Representations.

[39] Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D. (2019). Efficient off-policy meta-reinforcement
learning via probabilistic context variables. In International conference on machine learning, pages 5331—
5340.

[40] Ramachandran, D. and Amir, E. (2007). Bayesian inverse reinforcement learning. In IJCAI, volume 7,
pages 2586-2591.

[41] Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. (2006). Maximum margin planning. In Proceedings of
the 23rd international conference on Machine learning, pages 729-736. ACM.

[42] Rawlik, K., Toussaint, M., and Vijayakumar, S. (2013). On stochastic optimal control and reinforcement
learning by approximate inference. In Twenty-Third International Joint Conference on Artificial Intelligence.

[43] Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Wiele, T., Mnih, V., Heess, N., and
Springenberg, J. T. (2018). Learning by playing solving sparse reward tasks from scratch. In International
Conference on Machine Learning, pages 4344-4353.

[44] Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R., Mnih, V.,
Kavukcuoglu, K., and Hadsell, R. (2015). Policy distillation. arXiv preprint arXiv:1511.06295.

[45] Savinov, N., Dosovitskiy, A., and Koltun, V. (2018). Semi-parametric topological memory for navigation.
In International Conference on Learning Representations.

[46] Schafer, H., Santana, E., Haden, A., and Biasini, R. (2018). A commute in data: The comma2k19 dataset.

[47] Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approximators. In
International Conference on Machine Learning, pages 1312—-1320.

[48] Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting unreasonable effectiveness of data in
deep learning era. In Proceedings of the IEEE international conference on computer vision, pages 843—852.

[49] Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y.,
Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao, A.,
Joshi, A., Zhang, Y., Shlens, J., Chen, Z., and Anguelov, D. (2019). Scalability in perception for autonomous
driving: Waymo open dataset.

[50] Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., de Las Casas, D., Budden, D., Abdolmaleki, A., Merel, J.,
Lefrancq, A., Lillicrap, T., and Riedmiller, M. (2018). DeepMind control suite. Technical report, DeepMind.

[51] Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., Heess, N., and Pascanu, R.
(2017). Distral: Robust multitask reinforcement learning. In Advances in Neural Information Processing
Systems, pages 4496-4506.

[52] Theodorou, E. A. and Todorov, E. (2012). Relative entropy and free energy dualities: Connections to
path integral and kl control. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages
1466-1473. IEEE.

[53] Thrun, S. and Pratt, L. (2012). Learning to learn. Springer Science & Business Media.

[54] Todorov, E. (2007). Linearly-solvable markov decision problems. In Advances in neural information
processing systems, pages 1369-1376.

[55] Todorov, E. (2008). General duality between optimal control and estimation. In 2008 47th IEEE Conference
on Decision and Control, pages 4286-4292. IEEE.

12

[56] Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In Proceedings of the
26th annual international conference on machine learning, pages 1049-1056. ACM.

[57] Yu, E., Xian, W., Chen, Y., Liu, F,, Liao, M., Madhavan, V., and Darrell, T. (2018). Bdd100k: A diverse
driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687.

[58] Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and Finn, C. (2020a). Gradient surgery for
multi-task learning. arXiv preprint arXiv:2001.06782.

[59] Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. (2020b). Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on Robot Learning,
pages 1094-1100.

[60] Zhao, R., Sun, X., and Tresp, V. (2019). Maximum entropy-regularized multi-goal reinforcement learning.
In International Conference on Machine Learning, pages 7553-7562.

[61] Ziebart, B. D. (2010). Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. PhD thesis, figshare.

[62] Ziebart, B. D., Maas, A., Bagnell, J. A, and Dey, A. K. (2008). Maximum entropy inverse reinforcement
learning.

13

