
A Proof of Prop. 1: Asymptotic linearity of k-fold CV

We first prove a general asymptotic linearity result for repeated sample-splitting estimators. Given
a collection An = {(Bj , B′j)}j∈[J] of index vector pairs such that for any pair (Bj , B

′
j) in An, Bj

and B′j are disjoint, and a scalar loss function ρn,j(ZB′j , ZBj
), define the cross-validation error as

R̂n = 1
J

∑J
j=1 ρn,j(ZB′j , ZBj

)

and the multi-fold test error

Rn = 1
J

∑J
j=1 E[ρn,j(ZB′j , ZBj ) | ZBj ].

Note that similarly to the number of folds k in cross-validation, J can depend on the sample size n,
but we write J in place of Jn to simplify our notation.
Proposition 3 (Asymptotic linearity of CV). For any sequence of datapoints (Zi)i≥1,

√
n

σn

(
R̂n −Rn

)
−
√
n

σnJ

∑J
j=1(ρ̄n,j(ZB′j )− E[ρ̄n,j(ZB′j )])

p→
(

resp. L
q

→
)

0

for functions ρ̄n,1, . . . , ρ̄n,J with σ2
n , 1

JVar(
∑J
j=1 ρ̄n,j(ZB′j )) if and only if

√
n

σnJ

∑J
j=1

(
ρn,j(ZB′j , ZBj )− E

[
ρn,j(ZB′j , ZBj ) | ZBj

]
−
(
ρ̄n,j(ZB′j )− E

[
ρ̄n,j(ZB′j )

]))
p→
(

resp. L
q

→
)

0

where the parenthetical convergence indicates that the same statement holds when both conver-
gences in probability are replaced with convergences in Lq for the same q > 0.

Proof For each (Bj , B
′
j) ∈ An, let

Lj = ρn,j(ZB′j , ZBj
)− E[ρn,j(ZB′j , ZBj

) | ZBj
]−
(
ρ̄n,j(ZB′j )− E[ρ̄n,j(ZB′j )]

)
.

Then
√
n

σn

(
R̂n −Rn

)
=
√
n

σnJ

∑J
j=1(ρn,j(ZB′j , ZBj

)− E[ρn,j(ZB′j , ZBj
) | ZBj

])

=
√
n

σnJ

∑J
j=1 Lj +

√
n

σnJ

∑J
j=1(ρ̄n,j(ZB′j )− E[ρ̄n,j(ZB′j )]).

The result now follows from the assumption that
√
n

σnJ

∑J
j=1 Lj

p→
(

resp. L
q

→
)

0.

Prop. 1 now follows directly from Prop. 3 with the choices:

• An = {(B`, i) : ` ∈ [k], i ∈ B′`},
• for all j ∈ [J ], ρn,j(Zi, ZB`

) = hn(Zi, ZB`
) and ρ̄n,j(Zi) = h̄n(Zi) for the associated

` ∈ [k] and i ∈ B′`.

Note that for these choices, we have J = |An| =
∑k
`=1 |B′`| = n.

B Proof of Thm. 1: Asymptotic normality of k-fold CV with i.i.d. data

Thm. 1 follows from the next more general result, which establishes the asymptotic normality of
k-fold CV with independent (not necessarily identically distributed) data.
Theorem 6 (Asymptotic normality of k-fold CV with independent data). Under the notation
of Prop. 1, suppose that the datapoints (Zi)i≥1 are independent. If the triangular array(
h̄n(Zi)− E

[
h̄n(Zi)

])
n,i

satisfies Lindeberg’s condition,

∀ε > 0, 1
nσ2

n

∑n
i=1 E

[(
h̄n(Zi)− E

[
h̄n(Zi)

])2
1
[
|h̄n(Zi)− E

[
h̄n(Zi)

]
| > εσn

√
n
]]
→ 0, (B.1)
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then
1

σn
√
n

∑n
i=1

(
h̄n(Zi)− E

[
h̄n(Zi)

]) d→ N (0, 1).

Additionally, if (2.2) holds in probability, then
√
n

σn

(
R̂n −Rn

)
d→ N (0, 1).

Proof By independence of the datapoints (Zi)i≥1, (h̄n(Zi))n,i are independent, and
nσ2

n = Var(
∑n
i=1 h̄n(Zi)). Under Lindeberg’s condition, we get the first convergence result

thanks to Lindeberg’s Central Limit Theorem (see [10, Thm. 27.2]). Additionally, if assumption
(2.2) holds, we apply Prop. 1 and Slutsky’s theorem to get the second convergence result.

If the (Zi)i≥1 are i.i.d., then σ2
n = 1

nVar(
∑n
i=1 h̄n(Zi)) = Var(h̄n(Z0)), and Lindeberg’s condition

(B.1) reduces to

∀ε > 0, 1
σ2
n
E
[(
h̄n(Z0)− E

[
h̄n(Z0)

])2
1
[
|h̄n(Z0)− E

[
h̄n(Z0)

]
| > εσn

√
n
]]
→ 0.

We will show that this follows from the assumed uniform integrability of the sequence Xn =
(h̄n(Z0)− E[h̄n(Z0)])2/σ2

n. Indeed, for any ε > 0 and all n,

E[Xn1
[
Xn > nε2

]
] ≤ supm E[Xm1

[
Xm > nε2

]
]→ 0,

as n → ∞ by the uniform integrability of the sequence of Xn. Thm. 1 therefore follows from
Thm. 6.

C Proof of Thm. 2: Approximate linearity from loss stability

Thm. 2 will follow from the following more general result.
Theorem 7 (Approximate linearity from loss stability). Under the notation of App. A, with
{(Bj , B′j)}j∈[J] a collection of disjoint index vector pairs where (B′j)j∈[J] is a pairwise disjoint
family, and ρn,j(ZB′j , ZBj

) , 1
|B′j |

∑
i∈B′j

hn,j(Zi, ZBj
), suppose that the datapoints (Zi)i≥1 are

i.i.d. copies of a random element Z0. Define ρ′n,j(ZB′j , ZBj
) , ρn,j(Zi, ZBj

)− E[ρn,j(Zi, ZBj
) |

ZBj
] and ρ′′n,j(ZB′j , ZBj

) , ρ′n,j(Zi, ZBj
)− E[ρ′n,j(Zi, ZBj

) | Zi]. Then

E[( 1
J

∑J
j=1 ρ

′′
n,j(ZB′j , ZBj ))2] ≤ 1

J2

(∑
j 6=j′

√
γloss(hn,j)γloss(hn,j′)

+
∑J
j=1

1
|B′j |

1
2 |Bj |γloss(hn,j)

)
. (C.1)

Proof

Define h′n,j and h′′n,j as:

h′n,j(Zi, ZBj
) , hn,j(Zi, ZBj

)− E[hn,j(Zi, ZBj
) | ZBj

],

h′′n,j(Zi, ZBj ) , h′n,j(Zi, ZBj )− E[h′n,j(Zi, ZBj ) | Zi].

Therefore, we have ρ′n,j(ZB′j , ZBj ) = 1
|B′j |

∑
i∈B′j

h′n,j(Zi, ZBj
) and ρ′′n,j(ZB′j , ZBj

) =
1
|B′j |

∑
i∈B′j

h′′n,j(Zi, ZBj
).

Thus

( 1
J

∑J
j=1 ρ

′′
n,j(ZB′j , ZBj

))2 = 1
J2

∑J
j,j′=1 ρ

′′
n,j(ZB′j , ZBj

)ρ′′n,j′(ZB′j′ , ZBj′ )

= 1
J2

∑J
j,j′=1

1
|B′j |

1
|B′

j′ |
∑
i∈B′j

∑
i′∈B′

j′
h′′n,j(Zi, ZBj

)h′′n,j′(Zi′ , ZBj′ ).

In what follows, Z\iBj′
is ZBj′ with Zi replaced by Z ′0, an i.i.d. copy of Z0, independent of (Zi)i≥1.

Note that if i /∈ Bj′ , Z\iBj′
is just ZBj′ . We similarly define Z\i

′

Bj
.
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If j 6= j′, we have EZi
[
∑
i∈B′j

∑
i′∈B′

j′
h′′n,j(Zi, ZBj

)h′′n,j′(Zi′ , Z
\i
Bj′

)] = 0, because (i)

h′′n,j(Zi, ZBj
) and h′′n,j′(Zi′ , Z

\i
Bj′

) are conditionally independent given everything but Zi, and (ii)
EZi [h

′′
n,j(Zi, ZBj )] = 0.

Similarly, if j 6= j′,

EZi′ [
∑
i∈B′j

∑
i′∈B′

j′
h′′n,j(Zi, Z

\i′
Bj

)h′′n,j′(Zi′ , ZBj′ )] = 0,

EZi′ [
∑
i∈B′j

∑
i′∈B′

j′
h′′n,j(Zi, Z

\i′
Bj

)h′′n,j′(Zi′ , Z
\i
Bj′

)] = 0.

Therefore, if j 6= j′,

E[ 1
|B′j |

1
|B′

j′ |
∑
i∈B′j

∑
i′∈B′

j′
h′′n,j(Zi, ZBj

)h′′n,j′(Zi′ , ZBj′ )]

= E[ 1
|B′j |

1
|B′

j′ |
∑
i∈B′j

∑
i′∈B′

j′

(
(h′′n,j(Zi, ZBj

)− h′′n,j(Zi, Z
\i′
Bj

))

× (h′′n,j′(Zi′ , ZBj′ )− h
′′
n,j′(Zi′ , Z

\i
Bj′

))
)
]

= 1
|B′j |

1
|B′

j′ |
∑
i∈B′j

∑
i′∈B′

j′
E
[(

(h′′n,j(Zi, ZBj )− h′′n,j(Zi, Z
\i′
Bj

))

× (h′′n,j′(Zi′ , ZBj′ )− h
′′
n,j′(Zi′ , Z

\i
Bj′

))
)]

≤ 1
|B′j |

1
|B′

j′ |
∑
i∈B′j

∑
i′∈B′

j′

√
E
[
(h′′n,j(Zi, ZBj )− h′′n,j(Zi, Z

\i′
Bj

))2
]

×
√
E
[
(h′′n,j′(Zi′ , ZBj′ )− h′′n,j′(Zi′ , Z

\i
Bj′

))2
]

≤
(

1
|B′j |

1
|B′

j′ |
∑
i∈B′j

∑
i′∈B′

j′
E
[
(h′′n,j(Zi, ZBj

)− h′′n,j(Zi, Z
\i′
Bj

))2
]

× E
[
(h′′n,j′(Zi′ , ZBj′ )− h

′′
n,j′(Zi′ , Z

\i
Bj′

))2
])1/2

=
(

1
|B′j |

1
|B′

j′ |
∑
i∈B′j

∑
i′∈B′

j′
E
[
(h′′n,j(Z0, ZBj )− h′′n,j(Z0, Z

\i′
Bj

))2
]

× E
[
(h′′n,j′(Z0, ZBj′ )− h

′′
n,j′(Z0, Z

\i
Bj′

))2
])1/2

=
(

1
|B′

j′ |
∑
i′∈B′

j′
E
[
(h′′n,j(Z0, ZBj )− h′′n,j(Z0, Z

\i′
Bj

))2
])1/2

×
(

1
|B′j |

∑
i∈B′j

E
[
(h′′n,j′(Z0, ZBj′ )− h

′′
n,j′(Z0, Z

\i
Bj′

))2
])1/2

=
√
γms(h′′n,j)γms(h

′′
n,j′) =

√
γms(h′n,j)γms(h

′
n,j′) =

√
γloss(hn,j)γloss(hn,j′),

where we have applied Cauchy–Schwarz inequality and Jensen’s inequality, used that the datapoints
are i.i.d. copies of Z0 and applied the definitions of mean-square stability and loss stability.

If j = j′ and i 6= i′, then EZi [h
′′
n,j(Zi, ZBj )h′′n,j(Zi′ , ZBj )] = 0.

If j = j′ and i = i′, then E[h′′n,j(Zi, ZBj
)2] = E[Var(h′n,j(Zi, ZBj

) | Zi)].
We now state a conditional application of a version of the Efron–Stein inequality due to Steele [47].
Lemma 1 (Conditional Efron–Stein inequality). Suppose that, given W , the random vectors X1:m

and X ′1:m are conditionally independent and identically distributed and that the components of
X1:m are conditionally independent given W . Then, for any suitably measurable function f

1
2E[(f(X1:m,W )− f(X ′1:m,W ))2 |W ] = Var(f(X1:m,W ) |W )

≤ 1
2

∑m
i=1 E[(f(X1:m,W )− f(X

\i
1:m,W ))2 |W ]

where, for each i ∈ [m], X\i1:m represents X1:m with Xi replaced with X ′i .
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Using Lemma 1, we get E[Var(h′n,j(Zi, ZBj ) | Zi)] ≤ 1
2 |Bj |γms(h

′
n,j) = 1

2 |Bj |γloss(hn,j).

Combining everything, we get

E[( 1
J

∑J
j=1 ρ

′′
n,j(ZB′j , ZBj

))2] ≤ 1
J2

(∑
j 6=j′

√
γloss(hn,j)γloss(hn,j′)

+
∑J
j=1

1
|B′j |

1
2 |Bj |γloss(hn,j)

)
.

In the case of k-fold cross-validation with equal-sized folds and i.i.d. data, the left-hand side of
(C.1) becomes

Var
(

1
n

∑k
j=1

∑
i∈B′j

(h′n(Zi, ZBj )− E
[
h′n(Zi, ZBj ) | Zi

]
)
)
,

and its right-hand side simplifies to

1
k2

(
k(k − 1)

√
γloss(hn)2 + k kn

1
2n(1− 1

k )γloss(hn)
)

= 3
2 (1− 1

k )γloss(hn).

Hence,

1
nVar

(
1√
n

∑k
j=1

∑
i∈B′j

(h′n(Zi, ZBj
)− E

[
h′n(Zi, ZBj

) | Zi
]
)
)
≤ 3

2

(
1− 1

k

)
γloss(hn).

We then note that the asymptotic linearity condition (2.2) in L2-norm with the choice h̄n(z) =
E
[
hn(z, Z1:n(1−1/k))

]
can be written as

1
σn
√
n

∑k
j=1

∑
i∈B′j

(h′n(Zi, ZBj
)− E

[
h′n(Zi, ZBj

) | Zi
]
)
L2

→ 0,

which is implied by (3.2) when γloss(hn) = o(σ2
n/n). Therefore, Thm. 2 follows from Thm. 7.

D Proof of Thm. 3: Asymptotic linearity from conditional variance
convergence

Thm. 3 will follow from the following more general statement.

Theorem 8 (Asymptotic linearity from conditional variance convergence). Under the notation of
Prop. 1, suppose that the datapoints (Zi)i≥1 are i.i.d. copies of a random element Z0. If a function
h̄n satisfies

max(kq−1, 1)
∑k
j=1 E

[(
|B′j |
nσ2

n
VarZ0

(
hn(Z0, ZBj

)− h̄n(Z0)
))q/2]

→ 0

for some q ∈ (0, 2], then h̄n satisfies the Lq asymptotic linearity condition (2.2). If a function h̄n
satisfies

∑k
j=1 E

[
min

(
1,

√
|B′j |

σn
√
n

√
VarZ0

(
hn(Z0, ZBj

)− h̄n(Z0)
))]

→ 0,

then h̄n satisfies the in-probability asymptotic linearity condition (2.2).

Proof In the notation of Prop. 1, for each j ∈ [k], let

Lj = 1
|B′j |

∑
i∈B′j

(hn
(
Zi, ZBj

)
− h̄n(Zi))− EZ0

[hn
(
Z0, ZBj

)
− h̄n(Z0)].
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We first note that for any non-decreasing concave ψ satisfying the triangle inequality, we have

E

[
ψ

(∣∣∣∣∣ 1
σn
√
n

∑k
j=1 |B′j |Lj

∣∣∣∣∣
)]
≤ E

[
ψ

(
1

σn
√
n

∑k
j=1 |B′j ||Lj |

)]

≤
∑k
j=1 E

[
ψ

(
1

σn
√
n
|B′j ||Lj |

)]

=
∑k
j=1 E

[
EZB′

j

[
ψ

(
1

σn
√
n
|B′j ||Lj |

)]]

≤
∑k
j=1 E

[
ψ

(
1

σn
√
n
|B′j |EZB′

j
[|Lj |]

)]

≤
∑k
j=1 E

[
ψ

(
1

σn
√
n
|B′j |

√
VarZB′

j
(Lj)

)]

=
∑k
j=1 E

[
ψ

(√
|B′j |

σn
√
n

√
VarZ0

(
hn(Z0, ZBj

)− h̄n(Z0)
))]

,

where we have applied the triangle inequality twice, the tower property once, and Jensen’s inequality
twice. The advertised Lq result for q ∈ (0, 1] now follows by taking ψ(x) = xq , and the in-
probability result follows by taking ψ(x) = min(1, x) and invoking the following lemma.

Lemma 2. For any sequence of random variables (Xn)n≥1,Xn
p→ 0 if and only if E[ψ(|Xn|)]→ 0,

where ψ(x) = min(1, x).

Proof If Xn
p→ 0, then as Xn

d→ 0 and ψ is bounded and continuous for nonnegative x,
E[ψ(|Xn|)] → 0. Now suppose E[ψ(|Xn|)] → 0. Since ψ is nonnegative and non-decreasing
for nonnegative x, we have P(|Xn| > ε) ≤ E[ψ(|Xn|)]/ψ(ε) → 0 for every ε > 0 by Markov’s
inequality. Hence, Xn

p→ 0.

Now fix any q ∈ (1, 2], and note that as x 7→ xq is non-decreasing and convex on the nonnegative
reals, we have

E

[∣∣∣∣∣ 1
σn
√
n

∑k
j=1 |B′j |Lj

∣∣∣∣∣
q]
≤ E

[(
k
k

∑k
j=1

1
σn
√
n
|B′j ||Lj |

)q]

≤ kq

k

∑k
j=1 E

[(
1

σn
√
n
|B′j ||Lj |

)q]

= kq−1E

∑k
j=1 EZB′

j

( 1
nσ2

n
|B′j |2|Lj |2

)q/2
≤ kq−1E

∑k
j=1

(
|B′j |

2

nσ2
n

VarZB′
j
(Lj)

)q/2
= kq−1E

∑k
j=1

(
|B′j |
nσ2

n
VarZ0

(
hn(Z0, ZBj

)− h̄n(Z0)
))q/2,

where we have applied the triangle inequality, Jensen’s inequality using the convexity of x 7→ xq ,
the tower property, and Jensen’s inequality using the concavity of x 7→ xq/2. Hence, the Lq result
for q ∈ (1, 2] follows from our convergence assumption.

Thm. 3 then follows from Thm. 8 by replacing |B′j | with n
k and ZBj

with Z1:n(1−1/k) since folds
are equal-sized and the Zi’s are i.i.d.
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E Conditional Variance Convergence from Loss Stability

We show that the quantity appearing in (3.3) is controlled by the loss stability, for any q ∈ (0, 2].
Note however that (3.3) can be satisfied even in a case where the loss stability is infinite (see App. G).
Proposition 4 (Conditional variance convergence from loss stability). Suppose that k divides n
evenly. Under the notation of Thm. 3 with h̄n(z) = E[hn(z, Z1:n(1−1/k))],

E
[(

1
σ2
n

VarZ0

(
hn(Z0, Z1:n(1−1/k))− h̄n(Z0)

))q/2]
≤
(

1
σ2
n

1
2n(1− 1/k)γloss(hn)

)q/2
,

for any q ∈ (0, 2]. Consequently, the condition (3.3) is verified whenever γloss(hn) =

o
(

σ2
n

n(1−1/k)max(k,k(2/q)−1)

)
.

Remark 2. If k = O(1), this loss stability assumption simplifies to γloss(hn) = o(σ2
n/n) for any

q ∈ (0, 2].

Proof Write m = n(1− 1/k). Then

VarZ0
(hn(Z0, Z1:m)− E[hn(Z0, Z1:m) | Z0]) = VarZ0

(h′n(Z0, Z1:m)− E[h′n(Z0, Z1:m) | Z0]),

since the difference hn(Z0, Z1:m)−h′n(Z0, Z1:m) = E[hn(Z0, Z1:m) | Z1:m] is a Z1:m-measurable
function. For 0 < q ≤ 2, using Jensen’s inequality,

E
[
(VarZ0

(h′n(Z0, Z1:m)− E[h′n(Z0, Z1:m) | Z0]))
q/2
]

≤ E[VarZ0
(h′n(Z0, Z1:m)− E[h′n(Z0, Z1:m) | Z0])]

q/2
.

We can bound it using loss stability.

VarZ0
(h′n(Z0, Z1:m)− E[h′n(Z0, Z1:m) | Z0])

= EZ0

[(
(h′n(Z0, Z1:m)− E[h′n(Z0, Z1:m) | Z0])

− (E[h′n(Z0, Z1:m) | Z1:m]− E[h′n(Z0, Z1:m)])
)2]

= E[(h′n(Z0, Z1:m)− E[h′n(Z0, Z1:m) | Z0])2 | Z1:m],

so that

E[VarZ0
(h′n(Z0, Z1:m)− E[h′n(Z0, Z1:m) | Z0])] = E[(h′n(Z0, Z1:m)− E

[
h′n(Z0, Z1:m) | Z0])2

]
= E[Var(h′n(Z0, Z1:m) | Z0)]

≤ 1
2mγloss(hn),

where the last inequality comes from Lemma 1. Consequently,

E
[(

1
σ2
n

VarZ0
(hn(Z0, Z1:m)− E[hn(Z0, Z1:m) | Z0])

)q/2]
≤
(

1
σ2
n

1
2mγloss(hn)

)q/2
.

F Excess Loss of Sample Mean: o(σ
2
n

n
) loss stability, constant σ2

n ∈ (0,∞),
infinite mean-square stability

Here we present a very simple learning task in which (i) the CLT conditions of Thms. 1 and 2 hold
and (ii) mean-square stability (3.1) is infinite.

Example 1 (Excess loss of sample mean: o(
σ2
n

n ) loss stability, constant σ2
n ∈ (0,∞), infinite

mean-square stability). Suppose (Zi)i≥1 are independent and identically distributed copies of a
random element Z0 with E[Z0] = 0 and E[Z2

0 ] <∞. Consider k-fold cross-validation of the excess
loss of the sample mean relative to a constant prediction rule:

hn(z,D) = (z − f̂(D))2 − (z − a)2 where f̂(D) , 1
|D|
∑
Z0∈D Z0 and a 6= 0.
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The variance parameter of Thm. 1 σ2
n = Var(h̄n(Z0)) = 4a2Var(Z0) when h̄n(z) =

E[hn(z, Z1:n(1−1/k))], and the loss stability γloss(hn) = 8Var(Z0)
2

n2(1−1/k)2 = o(σ2
n/n). Consequently

Thm. 2 implies asymptotic linearity. The uniform integrability condition of Thm. 1 also holds. To-
gether, these results imply that the CLT of Thm. 1 is applicable. However, whenever Z0 does not
have a fourth moment, the mean-square stability (3.1) is infinite.

Proof Introduce the shorthand m = n(1 − 1/k), fix any D with |D| = m, and suppose DZ′0 is
formed by swapping Z ′0 for an independent point Z ′′0 in D. For any z we have

(z − f̂(D))2 − (z − f̂(DZ′0))2 = (f̂(D)− f̂(DZ′0))(2z − f̂(D)− f̂(DZ′0))

= 1
m (Z ′′0 − Z ′0)(2z − f̂(D)− f̂(DZ′0))

= 1
m (Z ′′0 − Z ′0)(2z − 1

m (Z ′′0 + Z ′0)− 2(f̂(D)− 1
mZ
′′
0 ))

= 2
m (Z ′′0 − Z ′0)(z − (f̂(D)− 1

mZ
′′
0 ))− 1

m2 (Z ′′20 − Z ′20 ).

Hence, the mean-square stability equals

E[((Z0 − f̂(D))2 − (Z0 − f̂(DZ′0))2)2]

= 1
m4E[(Z ′′20 − Z ′20 )2] + 4

m2E[(Z ′′0 − Z ′0)2]E[(Z0 − (f̂(D)− 1
mZ
′′
0 ))2]

− 4
m3E[(Z ′′0 − Z ′0)(Z ′′20 − Z ′20 )]E[Z0 − (f̂(D)− 1

mZ
′′
0 )]

= 1
m4E[(Z ′′20 − Z ′20 )2] + 4

m2E[(Z ′′0 − Z ′0)2]E[(Z0 − (f̂(D)− 1
mZ
′′
0 ))2]

≥ 2
m4 Var(Z2

0 )

since E[Z0] = 0, and Z0, Z
′
0, Z

′′
0 , f̂(D)− 1

mZ
′′
0 are mutually independent.

Moreover, the loss stability equals

E[((Z0 − f̂(D))2 − (Z0 − f̂(DZ′0))2 − EZ0 [(Z0 − f̂(D))2 − (Z0 − f̂(DZ′0))2])2]

= 4
m2E[(Z ′′0 − Z ′0)2]E[(Z0 − E[Z0])2] = 8

m2 Var(Z0)2.

Finally, for any z, E[(z − f̂(D))2 − (z − a)2] = 1
mVar(Z0) + 2za − a2. Consequently, for

h̄n(Z0) = E[hn(Z0,D) | Z0], we get the following equalities:

σ2
n = Var(h̄n(Z0)) = 4a2Var(Z0), and

(h̄n(Z0)− E[h̄n(Z0)])2/σ2
n = Z2

0/Var(Z0).

The distribution of Z2
0/Var(Z0) does not depend on n and is integrable, so the sequence of

(h̄n(Z0)− E[h̄n(Z0)])2/σ2
n is uniformly integrable.

G Loss of Surrogate Mean: constant σ2
n ∈ (0,∞), infinite σ̃2

n, vanishing
conditional variance

The following example details a simple task in which (i) the CLT conditions of Thm. 1 and Thm. 3
hold and (ii) mean-square stability, σ̃2

n, and loss stability are infinite.

Example 2 (Loss of surrogate mean: constant σ2
n ∈ (0,∞), infinite σ̃2

n, vanishing conditional
variance). Suppose (Zi)i≥1 are independent and identically distributed copies of a random element
Z0 = (X0, Y0) with Zi = (Xi, Yi) and E[X0] = E[Y0]. Consider k-fold cross-validation of the
following prediction rule under squared error loss:

hn((x, y),D) = (y − f̂(D))2 where f̂(D) , 1
|D|
∑

(X0,Y0)∈DX0.

The loss stability γloss(hn) = 8Var(X0)Var(Y0)
n2(1−1/k)2 , and the variance parameter of Thm. 1

σ2
n = Var(h̄n(Z0)) = Var((Y0 − E[Y0])2), (G.1)

19



when h̄n(z) = E[hn(z, Z1:n(1−1/k))]. Hence, if E[X2
0 ],E[Y 4

0 ] < ∞, then γloss(hn) = o(σ2
n/n)

and Thm. 2 implies asymptotic linearity. The uniform integrability condition of Thm. 1 also holds.
Together, these results imply that the CLT of Thm. 1 is applicable.

If X0 has no fourth moment, then the mean-square stability (3.1) is infinite.

If X0 has no second moment, then the loss stability and the [5, Theorem 1] variance parameter

σ̃2
n = E[Var(hn(Z0, Z1:n(1−1/k)) | Z1:n(1−1/k))] = Var((Y0 − E[Y0])2) + 8Var(X0)Var(Y0)

n(1−1/k) .

are infinite. However,
√
kE
[√

1
σ2
n

VarZ0

(
hn(Z0, Z1:n(1−1/k))− h̄n(Z0)

)]
= 2
√
k
√

Var(Y0)
Var((Y0−E[Y0])2)

E[|f̂(Z1:n(1−1/k))− E[X0]|].

Hence, if E[Y 4
0 ] < ∞ and k = O(1), L1 asymptotic linearity follows from Thm. 3, the uniform

integrability condition of Thm. 1 still holds, and the CLT of Thm. 1 holds with the finite variance
parameter (G.1).

Proof Without loss of generality, we will assume E[X0] = E[Y0] = 0; the formulas in the general
case are obtained by replacing X0 with X0 − E[X0] and similarly for Y0. Introduce the shorthand
m = n(1 − 1/k), fix any D with |D| = m, and suppose DZ′0 is formed by swapping Z ′0 for an
independent point Z ′′0 in D. For any z = (x, y) we have

(y − f̂(D))2 − (y − f̂(DZ′0))2 = (f̂(D)− f̂(DZ′0))(2y − f̂(D)− f̂(DZ′0))

= 1
m (X ′′0 −X ′0)(2y − f̂(D)− f̂(DZ′0))

= 1
m (X ′′0 −X ′0)(2y − 1

m (X ′′0 +X ′0)− 2(f̂(D)− 1
mX

′′
0 ))

= 2
m (X ′′0 −X ′0)(y − (f̂(D)− 1

mX
′′
0 ))− 1

m2 (X ′′20 −X ′20 ).

Hence, the mean-square stability equals

E[((Y0 − f̂(D))2 − (Y0 − f̂(DZ′0))2)2]

= 1
m4E[(X ′′20 −X ′20 )2] + 4

m2E[(X ′′0 −X ′0)2]E[(Y0 − (f̂(D)− 1
mX

′′
0 ))2]

− 4
m3E[(X ′′0 −X ′0)(X ′′20 −X ′20 )]E[Y0 − (f̂(D)− 1

mX
′′
0 )]

= 1
m4E[(X ′′20 −X ′20 )2] + 4

m2E[(X ′′0 −X ′0)2]E[(Y0 − (f̂(D)− 1
mX

′′
0 ))2]

≥ 2
m4 Var((X0 − E[X0])2)

since E[Y0] = 0, and Z0, Z
′
0, Z

′′
0 , f̂(D)− 1

mX
′′
0 are mutually independent.

Moreover, the loss stability equals

E[((Y0 − f̂(D))2 − (Y0 − f̂(DZ′0))2 − EY [(Y0 − f̂(D))2 − (Y0 − f̂(DZ′0))2])2]

= 4
m2E[(X ′′0 −X ′0)2]E[(Y0 − E[Y0])2] = 8

m2 Var(X0)Var(Y0).

Next note that, for any y, y′,

E[(y − f̂(D))2 − (y′ − f̂(D))2] = (y − y′)(y + y′ − 2E[f̂(D)])

= (y2 − y′2)− 2(y − y′)E[f̂(D)] = y2 − y′2

since E[X0] = 0. Therefore, Var(E[hn(Z0,D) | Z0]) = 1
2E[(Y 2

0 − Y ′20 )2] = Var(Y 2
0 ).

For any y, E[(y − f̂(D))2] = y2 + E[f̂(D)2] since E[X0] = 0. Consequently, for h̄n(Z0) =
E[hn(Z0,D) | Z0], we get the following equalities:

σ2
n = Var(h̄n(Z0)) = Var(Y 2

0 ), and

(h̄n(Z0)− E[h̄n(Z0)])2/σ2
n = (Y 2

0 − E[Y 2
0 ])2/Var(Y 2

0 ).
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The distribution of (Y 2
0 −E[Y 2

0 ])2/Var(Y 2
0 ) does not depend on n and is integrable, so the sequence

of (h̄n(Z0)− E[h̄n(Z0)])2/σ2
n is uniformly integrable.

Since

(y − f̂(D))2 − (y′ − f̂(D))2 = (y2 − y′2)− 2(y − y′)f̂(D)

we can compute the variance parameter of [5],

σ̃2
n = E[Var(hn(Z0,D) | D)] = E[(hn(Z0,D)− E[hn(Z0,D)|D])2]

= 1
2E[(hn(Z0,D)− hn(Z ′0,D))2]

= 1
2E((Y 2

0 − Y ′20 )2] + 4E[(Y0 − Y ′0)2]E[f̂(D)2]− E[(y2 − y′2)(y − y′)]E[f̂(D)]

= Var(Y 2
0 ) + 8Var(Y0) 1

mVar(X0),

since E[f̂(D)] = 0 and f̂(D), Y0, Y
′
0 are mutually independent.

Finally, let’s compute
√
kE
[√

1
σ2
n

VarZ0

(
hn(Z0,D)− h̄n(Z0)

)]
.

For any y, y′,

((y − f̂(D))2 − E[(y − f̂(D))2])− ((y′ − f̂(D))2 − E[(y′ − f̂(D))2])

= (y2 − y′2)− 2(y − y′)f̂(D)− (y2 − y′2)

= −2(y − y′)f̂(D),

so that VarZ0

(
hn(Z0,D)− h̄n(Z0)

)
= 1

2E[(−2(Y0 − Y ′0)f̂(D))2 | D] = 4Var(Y0)(f̂(D))2.

Then
√
kE
[√

1
σ2
n

VarZ0

(
hn(Z0,D)− h̄n(Z0)

)]
= 2
√
k
√

Var(Y0)
Var(Y 2

0 )
E[|f̂(D)|]. (G.2)

If E[|X0|] < ∞, the family of empirical averages { 1
m

∑m
i=1Xi : m ≥ 1} is uniformly integrable

and the weak law of large numbers implies that f̂(D) converges to 0 in probability. Hence,

f̂(D)
L1

→ 0. The quantity (G.2) then goes to zero when k = O(1).

H Proof of Prop. 2: Variance comparison

Prop. 2 will follow from the following more general result.

Proposition 5. Fix any j ∈ [k], and define σ2
n,j , Var(E[hn(Z0, ZBj

) | Z0]) and σ̃2
n,j ,

E[Var(hn(Z0, ZBj
) | ZBj

)]. Then

σ2
n,j ≤ σ̃2

n,j ≤ σ2
n,j +

|Bj |
2 γloss(hn),

where the first inequality is strict whenever h′n(Z0, ZBj ) = hn(Z0, ZBj ) − E[hn(Z0, ZBj ) | ZBj ]
depends on ZBj .

Proof For all j ∈ [k], we can rewrite both variance parameters.

σ̃2
n,j = E[Var(hn(Z0, ZBj

) | ZBj
)]

= E[(hn(Z0, ZBj )− E[hn(Z0, ZBj ) | ZBj ])2]

= E[h′n(Z0, ZBj )2] = Var(h′n(Z0, ZBj )).

σ2
n,j = Var(E[hn(Z0, ZBj ) | Z0])

= E[(E[hn(Z0, ZBj ) | Z0]− E[hn(Z0, ZBj )])2]

= E[E[h′n(Z0, ZBj ) | Z0]2] = Var(E[h′n(Z0, ZBj ) | Z0])

= Var(h′n(Z0, ZBj
))− E[Var(h′n(Z0, ZBj

) | Z0)]

= σ̃2
n,j − E[Var(h′n(Z0, ZBj

) | Z0)] ≤ σ̃2
n,j ,
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where the final inequality is strict whenever E[Var(h′n(Z0, ZBj ) | Z0)] is non-zero.

Since every non-constant variable has either infinite or strictly positive variance,
E[Var(h′n(Z0, ZBj

) | Z0)] = 0 ⇔ h′n(Z0, ZBj
) = E[h′n(Z0, ZBj

) | Z0], that is, if and
only if h′n(Z0, ZBj ) = hn(Z0, ZBj )− E[hn(Z0, ZBj ) | ZBj ] is independent of ZBj .

Finally, we know from Lemma 1 that the difference σ̃2
n,j − σ2

n,j = E[Var(h′n(Z0, ZBj
) | Z0)] ≤

1
2 |Bj |γloss(hn).

Prop. 2 then follows from Prop. 5 since the Zi’s are i.i.d. and, when k divides n, the only possible
size for Bj is n(1− 1/k).

I Proof of Thm. 4: Consistent within-fold estimate of asymptotic variance

We will prove the following more detailed statement from which Thm. 4 will follow.

Theorem 9 (Consistent within-fold estimate of asymptotic variance). Suppose that k ≤ n/2
and that k divides n evenly. Under the notation of Thm. 1 with m = n(1 − 1/k), h̄n(z) =
E[hn(z, Z1:m)], h′n(Z0, Z1:m) = hn(Z0, Z1:m) − E[hn(Z0, Z1:m) | Z1:m] and h̄′n(z) =
E[h′n(z, Z1:m)], define the within-fold variance estimate

σ̂2
n,in , 1

k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(
hn(Zi, ZBj

)− k
n

∑
i′∈B′j

hn(Zi′ , ZBj
)
)2
.

If (Zi)i≥1 are i.i.d. copies of a random element Z0, then

E[|σ̂2
n,in − σ2

n|] ≤ 2n2

n−kγloss(hn) + 2
√

2n2

n−kγloss(hn)σ2
n +

√
1
nE[h̄′n(Z0)4] + 3k−n

n(n−k)σ
4
n

and there exists an absolute constant C specified in the proof such that

E[(σ̂2
n,in − σ2

n)2] ≤ 4 Cn4

(n−k)2 γ4(h′n) + 8
√

Cn4

(n−k)2 γ4(h′n)( 1
nE[h̄′n(Z0)4] + 3k−n

n(n−k)σ
4
n + σ4

n)

+ 2( 1
nE[h̄′n(Z0)4] + 3k−n

n(n−k)σ
4
n) (I.1)

where γ4(h′n) , 1
m

∑m
i=1 E[(h′n(Z0, Z1:m) − h′n(Z0, Z

\i
1:m))4]. Here, Z\i1:m denotes Z1:m with Zi

replaced by an i.i.d. copy independent of Z0:m.

Moreover,

E[|σ̂2
n,in − σ2

n|] ≤ 2n2

n−kγloss(hn) + 2
√

2n2

n−kγloss(hn)σ2
n +

√
2

n(n/k−1)σ
4
n + o(σ2

n) (I.2)

whenever the sequence of (h̄n(Z0)− E[h̄n(Z0)])2/σ2
n is uniformly integrable.

Proof

Eliminating training set randomness We begin by approximating our variance estimate

σ̂2
n,in = 1

k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(
hn(Zi, ZBj

)− k
n

∑
i′∈B′j

hn(Zi′ , ZBj
)
)2

= 1
k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(
h′n(Zi, ZBj )− k

n

∑
i′∈B′j

h′n(Zi′ , ZBj )
)2

by a quantity eliminating training set randomness in each summand,

σ̂2
n,in,approx , 1

k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(
h̄′n(Zi)− k

n

∑
i′∈B′j

h̄′n(Zi′)
)2
,

where h̄′n(z) = E[h′n(z, Z1:m)]. Note that h̄′n(Z0) has expectation 0.

By Cauchy–Schwarz, we have

|σ̂2
n,in − σ̂2

n,in,approx| ≤ ∆ + 2
√

∆σ̂n,in,approx
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for the error term

∆ , 1
k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(
h′n(Zi, ZBj

)− h̄′n(Zi) + k
n

∑
i′∈B′j

h̄′n(Zi′)− k
n

∑
i′∈B′j

h′n(Zi′ , ZBj
)
)2

≤ 2 1
k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(h′n(Zi, ZBj
)− h̄′n(Zi))

2

+ 2 1
k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(
k
n

∑
i′∈B′j

(h̄′n(Zi′)− h′n(Zi′ , ZBj
))
)2

≤ 2
n−k

∑k
j=1

∑
i∈B′j

(h′n(Zi, ZBj
)− h̄′n(Zi))

2

+ 2 1
k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

k
n

∑
i′∈B′j

(h̄′n(Zi′)− h′n(Zi′ , ZBj
))2

= 4
n−k

∑k
j=1

∑
i∈B′j

(h′n(Zi, ZBj
)− h̄′n(Zi))

2 (I.3)

where we have used Jensen’s inequality twice.

Thus,

∆2 ≤ 16n2

(n−k)2
1
n

∑k
j=1

∑
i∈B′j

(h′n(Zi, ZBj
)− h̄′n(Zi))

4

= 16n
(n−k)2

∑k
j=1

∑
i∈B′j

(h′n(Zi, ZBj
)− h̄′n(Zi))

4 (I.4)

by Jensen’s inequality.

Controlling the error ∆ We will first control the error term ∆. By the bound (I.3) and the
conditional Efron–Stein inequality (Lemma 1), we have

E[∆] ≤ 4
n−k

∑k
j=1

∑
i∈B′j

E[(h′n(Zi, ZBj
)− h̄′n(Zi))

2]

= 4
n−k

∑k
j=1

∑
i∈B′j

E[(h′n(Zi, ZBj
)− E[h′n(Zi, ZBj

) | Zi])2]

= 4
n−k

∑k
j=1

∑
i∈B′j

E[E[(h′n(Zi, ZBj
)− E[h′n(Zi, ZBj

) | Zi])2 | Zi]]

= 4
n−k

∑k
j=1

∑
i∈B′j

E[Var(h′n(Zi, ZBj
) | Zi)]

≤ 2
n−k

∑k
j=1

∑
i∈B′j

mγms(h
′
n)

≤ 2n2

n−kγms(h
′
n) = 2n2

n−kγloss(hn). (I.5)

Controlling ∆2 In the following, for any j ∈ [k] and i′ ∈ Bj , Z\i
′

Bj
is ZBj with Zi′ replaced by

Z0. By the bound (I.4) and Boucheron et al. [12, Thm. 2], and by noting that x4 = x4+ + x4− where
x+ = max(x, 0) and x− = max(−x, 0), we have

E[∆2] ≤ 16n
(n−k)2

∑k
j=1

∑
i∈B′j

E[(h′n(Zi, ZBj
)− h̄′n(Zi))

4]

= 16n
(n−k)2

∑k
j=1

∑
i∈B′j

E[E[(h′n(Zi, ZBj
)− E[h′n(Zi, ZBj

) | Zi])4 | Zi]]

= 16n
(n−k)2

∑k
j=1

∑
i∈B′j

(
E[E[(h′n(Zi, ZBj )− E[h′n(Zi, ZBj ) | Zi])4+ | Zi]]

+ E[E[(h′n(Zi, ZBj )− E[h′n(Zi, ZBj ) | Zi])4− | Zi]]
)

≤ 16n
(n−k)2 (1− 1

4 )24( 8
7 )216

∑k
j=1

∑
i∈B′j

(
E[(E[

∑
i′∈Bj

(h′n(Zi, ZBj )− h′n(Zi, Z
\i′
Bj

))2+ | ZBj ])2]

+ E[(E[
∑
i′∈Bj

(h′n(Zi, ZBj )− h′n(Zi, Z
\i′
Bj

))2− | ZBj ])2]
)

≤ 16n
(n−k)2

2304
49

∑k
j=1

∑
i∈B′j

(
E[(
∑
i′∈Bj

(h′n(Zi, ZBj )− h′n(Zi, Z
\i′
Bj

))2+)2]

+ E[(
∑
i′∈Bj

(h′n(Zi, ZBj )− h′n(Zi, Z
\i′
Bj

))2−)2]
)

≤ 36864n
49(n−k)2m

∑k
j=1

∑
i∈B′j

(∑
i′∈Bj

E[(h′n(Zi, ZBj )− h′n(Zi, Z
\i′
Bj

))4+]

+
∑
i′∈Bj

E[(h′n(Zi, ZBj )− h′n(Zi, Z
\i′
Bj

))4−]
)
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= 36864n
49(n−k)2m

∑k
j=1

∑
i∈B′j

∑
i′∈Bj

E[(h′n(Zi, ZBj
)− h′n(Zi, Z

\i′
Bj

))4]

≤ 36864n4

49(n−k)2 γ4(h′n) = Cn4

(n−k)2 γ4(h′n) (I.6)

where γ4(h′n) = 1
m

∑m
i=1 E[(h′n(Z0, Z1:m)− h′n(Z0, Z

\i
1:m))4] and C = 36864/49.

Controlling the error σ̂2
n,in,approx − σ2

n To control the error σ̂2
n,in,approx − σ2

n, we first rewrite
σ̂2
n,in,approx as

σ̂2
n,in,approx = 1

k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(
h̄′n(Zi)− k

n

∑
i′∈B′j

h̄′n(Zi′)
)2

= 1
k

∑k
j=1

n
n−k

k
n

∑
i∈B′j

(
h̄′n(Zi)− k

n

∑
i′∈B′j

h̄′n(Zi′)
)2

= n
n−k

1
k

∑k
j=1

(
k
n

∑
i∈B′j

h̄′n(Zi)
2 −

(
k
n

∑
i∈B′j

h̄′n(Zi)
)2)

= n
n−k

1
n

∑k
j=1

∑
i∈B′j

h̄′n(Zi)
2 − n

n−k
1
k

∑k
j=1

(
k
n

∑
i∈B′j

h̄′n(Zi)
)2
.

We rewrite it once again to find

σ̂2
n,in,approx = 1

n

∑k
j=1

∑
i∈B′j

h̄′n(Zi)
2 − 1

k

∑k
j=1Wj

= 1
n

∑n
i=1 h̄

′
n(Zi)

2 − 1
k

∑k
j=1Wj (I.7)

where

Wj , 1

(n/k
2 )

∑
i,i′∈B′j
i<i′

h̄′n(Zi)h̄
′
n(Zi′).

Since (Wj)j∈[k] are i.i.d. with mean 0 and for i1 < i′1 and i2 < i′2

E[h̄′n(Zi1)h̄′n(Zi′1)h̄′n(Zi2)h̄′n(Zi′2)] = 0

whenever i1 6= i2 or i′1 6= i′2, we have

E[( 1
k

∑k
j=1Wj)

2] = 1
kVar(W1) = 1

k
1

(n/k
2 )

2

∑
i,i′∈B′j
i<i′

E[h̄′n(Zi)
2h̄′n(Zi′)

2]

= 1
k

1

(n/k
2 )

2

∑
i,i′∈B′j
i<i′

E[h̄′n(Zi)
2]E[h̄′n(Zi′)

2]

= 1
k

1

(n/k
2 )

2

∑
i,i′∈B′j
i<i′

σ4
n = 1

k
1

(n/k
2 )
σ4
n = 2

n(n/k−1)σ
4
n (I.8)

by noticing that E[h̄′n(Z0)2] = Var(h̄′n(Z0)) = Var(h̄n(Z0)) = σ2
n.

Moreover, by the independence of our datapoints, we have

E[h̄′n(Zi1)2h̄′n(Zi2)h̄′n(Zi′2)] = 0

for all i1, i2, i′2 ∈ [n] such that i2 < i′2, and thus

E[(σ̂2
n,in,approx − σ2

n)2] = Var(σ̂2
n,in,approx)

= Var( 1
n

∑n
i=1 h̄

′
n(Zi)

2) + E[( 1
k

∑k
j=1Wj)

2]

= 1
nVar(h̄′n(Z0)2) + 2

n(n/k−1)σ
4
n

= 1
nE[h̄′n(Z0)4] + 3k−n

n(n−k)σ
4
n. (I.9)

Putting the pieces together We have

E[
√

∆σ̂n,in,approx] ≤
√
E[∆]E[σ̂2

n,in,approx] ≤
√

2n2

n−kγloss(hn)σ2
n

by Cauchy–Schwarz and the bound (I.5).
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We also have

E[∆σ̂2
n,in,approx] ≤

√
E[∆2]E[σ̂4

n,in,approx]

=
√
E[∆2](Var(σ̂2

n,in,approx) + E[σ̂2
n,in,approx]2)

≤
√

Cn4

(n−k)2 γ4(h′n)( 1
nE[h̄′n(Z0)4] + 3k−n

n(n−k)σ
4
n + σ4

n)

by Cauchy-Schwarz, (I.6) and (I.9).

Assembling our results with the triangle inequality and Cauchy–Schwarz for the L1 bound and with
Jensen’s inequality for the L2 bound, we find that

E[|σ̂2
n,in − σ2

n|] ≤ E[|σ̂2
n,in − σ̂2

n,in,approx|] + E[|σ̂2
n,in,approx − σ2

n|]

≤ E[∆] + 2E[
√

∆σ̂n,in,approx] +
√
E[(σ̂2

n,in,approx − σ2
n)2]

≤ 2n2

n−kγloss(hn) + 2
√

2n2

n−kγloss(hn)σ2
n +

√
1
nE[h̄′n(Z0)4] + 3k−n

n(n−k)σ
4
n

and

E[(σ̂2
n,in − σ2

n)2] ≤ 2E[(σ̂2
n,in − σ̂2

n,in,approx)2] + 2E[(σ̂2
n,in,approx − σ2

n)2]

≤ 4E[∆2] + 8E[∆σ̂2
n,in,approx] + 2E[(σ̂2

n,in,approx − σ2
n)2]

≤ 4 Cn4

(n−k)2 γ4(h′n) + 8
√

Cn4

(n−k)2 γ4(h′n)( 1
nE[h̄′n(Z0)4] + 3k−n

n(n−k)σ
4
n + σ4

n)

+ 2( 1
nE[h̄′n(Z0)4] + 3k−n

n(n−k)σ
4
n)

as advertised.

In order to get the bound

E[|σ̂2
n,in − σ2

n|] ≤ 2n2

n−kγloss(hn) + 2
√

2n2

n−kγloss(hn)σ2
n +

√
2

n(n/k−1)σ
4
n + o(σ2

n)

whenever the sequence of (h̄n(Z0) − E[h̄n(Z0)])2/σ2
n is uniformly integrable, i.e., the sequence

of h̄′n(Z0)2/σ2
n is uniformly integrable, we need to argue that 1

n

∑n
i=1 h̄

′
n(Zi)

2/σ2
n
L1

→ 1. Indeed,

thanks to (I.7) and (I.8), this will lead to E[|σ̂2
n,in,approx − σ2

n|] ≤
√

2
n(n/k−1)σ

4
n + o(σ2

n).

To this end, we show that for any triangular i.i.d. array (Xn,i)n,i such that (Xn,1)n≥1 is uni-
formly integrable, then the two conditions in the weak law of large numbers for triangular ar-
rays of [24, Thm. 2.2.11] (stated below) are satisfied. We will also show that for such (Xn,i)n,i,
(Sn , 1

n

∑n
i=1Xn,i)n≥1 is uniformly integrable. Together, these results will imply L1 conver-

gence. We will then choose Xn,i = h̄′n(Zi)
2/σ2

n to get the desired result in our specific case.
Theorem 10 (Weak law for triangular arrays [24, Thm. 2.2.11]). For each n, let Xn,i, 1 ≤ i ≤ n,
be independent. Let bn > 0 with bn → ∞, and let X̄n,i = Xn,i1[|Xn,i| ≤ bn]. Suppose that as
n→∞ ∑n

i=1 P(|Xn,i| > bn)→ 0, and (I.10)

b−2n
∑n
i=1 E[X̄2

n,i]→ 0. (I.11)

If we let Sn =
∑n
i=1Xn,i and an =

∑n
i=1 E[X̄n,i], then (Sn − an)/bn

p→ 0.

To prove our result, we specify the case of interest bn = n. First, nP(|Xn,1| > n) ≤
E[|Xn,1|1[|Xn,1| > n]] ≤ supm≥1 E[|Xm,1|1[|Xm,1| > n]]→ 0 as n→∞, because (Xn,1)n≥1 is
uniformly integrable. Thus the first condition (I.10) holds.

Note that we then get E[Xn,11[|Xn,1| ≤ n]] → 1 as n → ∞, for our choice Xn,i = h̄′n(Zi)
2/σ2

n
which satisfies E[Xn,i] = 1.

To verify the second condition (I.11), we will show that n−1E[X2
n,11[Xn,1 ≤ n]]→ 0. To this end,

we need the following lemma, which gives a useful formulation of uniform integrability.
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Lemma 3 (De la Vallée Poussin Theorem [41, Thm. 22]). If (Xn)n≥1 is uniformly integrable,
then there exists a nonnegative increasing function G such that G(t)/t → ∞ as t → ∞ and
supn E[G(Xn)] <∞.

With such a function G, fix any T such that G(t)/t ≥ 1 for all t ≥ T , so that t/G(t) ≤ 1 for all
t ≥ T . Using [24, Lem. 2.2.13] for the first equality, we can write

1
nE[X2

n,11[Xn,1 ≤ n]] = 2
n

∫∞
0
yP(Xn,11[Xn,1 ≤ n] > y)dy

≤ 2
n

∫ n
0
yP(Xn,1 > y)dy

= 2
n (
∫ T
0
yP(Xn,1 > y)dy +

∫ n
T
yP(Xn,1 > y)dy)

≤ T 2

n + 2
n

∫ n
T
yP(Xn,1 > y)dy)

≤ T 2

n + E[G(Xn,1)] 2n
∫ n
T
y/G(y)dy

= T 2

n + o(1),

where the penultimate line follows from Markov’s inequality and the last line comes from the fol-
lowing lemma since supy≥T y/G(y) ≤ 1 and y/G(y)→ 0.

Lemma 4. If f(y)→ 0 as y →∞ and supy≥T |f(y)| ≤M , then 1
n

∫ n
T
f(y)dy → 0.

Proof Let fn(z) = f(nz)1[z > T/n], and note that, for any z ≥ 0, fn(z)→ 0 as n→∞. Then

1
n

∫ n
T
f(y)dy =

∫ 1

0
1[z > T/n]f(nz)dz

=
∫ 1

0
fn(z)dz

→ 0

by the bounded convergence theorem.
Consequently, the second condition (I.11) holds.

Moreover, (Sn , 1
n

∑n
i=1Xn,i)n≥1 is uniformly integrable whenever (Xn,i)n,i is a triangular i.i.d.

array such that (Xn,1)n≥1 is uniformly integrable for the following reasons:

1. supn E[|Sn|] ≤ supn E[|Xn,1|] < ∞ by triangle inequality and because (Xn,1)n≥1 is
uniformly integrable.

2. For any ε > 0, let δ > 0 such that for any event A satisfying P(A) ≤ δ,
supn E[|Xn,1|1[A]] ≤ ε. Such δ exists because (Xn,1)n≥1 is uniformly integrable. Then
supn E[|Sn|1[A]] ≤ ε by triangle inequality.

The combination of convergence in probability and uniform integrability implies convergence in L1.

As a result, 1
n

∑n
i=1 h̄

′
n(Zi)

2/σ2
n
L1

→ 1 as long as the sequence of (h̄n(Z0) − E[h̄n(Z0)])2/σ2
n =

h̄′n(Z0)2/σ2
n is uniformly integrable.

Therefore, E[|σ̂2
n,in,approx/σ

2
n − 1|] ≤

√
2

n(n/k−1) + o(1), and we get the result advertised.

If k ≤ n/2, which is the case here since k < n and k divides n, then 2
n(n/k−1) → 0 and 3k−n

n(n−k) → 0.

Therefore, by (I.2), we have (σ̂2
n,in − σ2

n)/σ2
n
L1

→ 0, i.e. σ̂2
n,in/σ

2
n
L1

→ 1, whenever the sequence of
(h̄n(Z0) − E[h̄n(Z0)])2/σ2

n is uniformly integrable and γloss(hn) = o(n−kn2 σ
2
n), or equivalently

γloss(hn) = o(σ2
n/n) since k ≤ n/2, and, by (I.1), we have (σ̂2

n,in−σ2
n)/σ2

n
L2

→ 0, i.e. σ̂2
n,in/σ

2
n
L2

→
1, whenever E[h̄′n(Z0)4] = E[(h̄n(Z0) − E[h̄n(Z0)])4] = o(nσ4

n) and γ4(h′n) = o( (n−k)2
n4 σ4

n), or
equivalently γ4(h′n) = o(σ4

n/n
2) since k ≤ n/2.

Thm. 4 thus follows from Thm. 9.

Strengthening of the consistency result of [5, Prop. 1] We provide more details about the
comparison of our L2-consistency result with [5, Prop. 1]. We have γ4(h′n) ≤ 16γ4(hn) and
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E[(h̄n(Z0) − E[h̄n(Z0)])4] ≤ 16E[hn(Z0, Z1:m)4] by Jensen’s inequality. Moreover, if σ̃2
n con-

verges to a non-zero constant, since γloss(hn) ≤ γms(hn) ≤
√
γ4(hn), then γloss(hn) = o(σ2

n/n)
whenever γ4(hn) = o(σ4

n/n
2) and thus σ2

n converges to the same non-zero constant as σ̃2
n does by

Prop. 2.

J Proof of Thm. 5: Consistent all-pairs estimate of asymptotic variance

We will prove the following more detailed statement from which Thm. 5 will follow.

Theorem 11 (Consistent all-pairs estimate of asymptotic variance). Suppose that k divides n evenly.
Under the notation of Thm. 1 with m = n(1 − 1/k), h̄n(z) = E[hn(z, Z1:m)], h′n(Z0, Z1:m) =
hn(Z0, Z1:m)−E[hn(Z0, Z1:m) | Z1:m] and h̄′n(z) = E[h′n(z, Z1:m)], define the all-pairs variance
estimate

σ̂2
n,out ,

1
k

∑k
j=1

k
n

∑
i∈B′j

(
hn(Zi, ZBj )− R̂n

)2
.

If (Zi)i≥1 are i.i.d. copies of a random element Z0 and σ̃2
n = E[h′n(Z0, Z1:m)2], then

E[|σ̂2
n,out − σ2

n|] ≤ (1 + n
k )γms(hn) + 2

√
2(1 + n

k )γms(hn)σ̃2
n +mγloss(hn)

+ 2
√
mγloss(hn)(1− 1

n )σ2
n +

√
1
n (E[h̄′n(Z0)4]− σ4

n) + 1
nσ

2
n.

Moreover,

E[|σ̂2
n,out − σ2

n|] ≤ (1 + n
k )γms(hn) + 2

√
2(1 + n

k )γms(hn)σ̃2
n +mγloss(hn)

+ 2
√
mγloss(hn)(1− 1

n )σ2
n + 1

nσ
2
n + o(σ2

n). (J.1)

whenever the sequence of (h̄n(Z0)− E[h̄n(Z0)])2/σ2
n is uniformly integrable.

Proof

A common training set for each validation point pair We begin by approximating our variance
estimate

σ̂2
n,out = 1

n

∑k
j=1

∑
i∈B′j

(
hn(Zi, ZBj

)− R̂n
)2

= 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

1
2 (hn(Zi, ZBj )− hn(Zi′ , ZBj′ ))

2

by a quantity that employs the same training set for each pair of validation points Z(i,i′),

σ̂2
n,out,approx,1 , 1

n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

1
2 (hn(Zi, Z

\i′
Bj

)− hn(Zi′ , Z
\i′
Bj

))2

= 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

1
2 (h′n(Zi, Z

\i′
Bj

)− h′n(Zi′ , Z
\i′
Bj

))2.

Here, for any j ∈ [k] and i′ ∈ [n], Z\i
′

Bj
is ZBj

with Zi′ replaced by Z0. By Cauchy–Schwarz, we
have

|σ̂2
n,out − σ̂2

n,out,approx,1| ≤ ∆1 + 2
√

∆1σ̂n,out,approx,1

for the error term

∆1 , 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

1
2 (hn(Zi, ZBj

)− hn(Zi, Z
\i′
Bj

) + hn(Zi′ , Z
\i′
Bj

)− hn(Zi′ , ZBj′ ))
2

≤ 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

(hn(Zi, ZBj
)− hn(Zi, Z

\i′
Bj

))2

+ 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

(hn(Zi′ , Z
\i′
Bj

)− hn(Zi′ , ZBj′ ))
2, (J.2)

where we have used Jensen’s inequality in the final display.
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Controlling the error ∆1 We will first control the error term ∆1. Note that, for Bj′ 6= Bj ,
|Bj′\(Bj′ ∩ Bj)| = n

k . Hence, by the bound (J.2) and the conditional Efron-Stein inequality
(Lemma 1), we have

E[∆1] ≤ γms(hn) + 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

E[(hn(Zi′ , Z
\i′
Bj

)− hn(Zi′ , ZBj′ ))
2]

≤ γms(hn) + n
k γms(hn) = (1 + n

k )γms(hn). (J.3)

Eliminating training set randomness We then approximate σ̂2
n,out,approx,1 by a quantity elimi-

nating training set randomness in each summand,

σ̂2
n,out,approx,2 , 1

n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

1
2 (h̄′n(Zi)− h̄′n(Zi′))

2

where h̄′n(z) = E[h′n(z, Z1:m)]. Note that h̄′n(Z0) has expectation 0.

By Cauchy–Schwarz, we have

|σ̂2
n,out,approx,1 − σ̂2

n,out,approx,2| ≤ ∆2 + 2
√

∆2σ̂n,out,approx,2

for the error term

∆2 , 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

1
2 (h′n(Zi, Z

\i′
Bj

)− h̄′n(Zi) + h̄′n(Zi′)− h′n(Zi′ , Z
\i′
Bj

))2

≤ 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

(h′n(Zi, Z
\i′
Bj

)− h̄′n(Zi))
2

+ 1
n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

(h̄′n(Zi′)− h′n(Zi′ , Z
\i′
Bj

))2, (J.4)

where we have used Jensen’s inequality in the final display.

Controlling the error ∆2 We will control the error term ∆2. By the bound (J.4) and the condi-
tional Efron-Stein inequality (Lemma 1), we have

E[∆2] ≤ 2m2 γms(h
′
n) = mγloss(hn). (J.5)

Controlling the error σ̂2
n,out,approx,2 − σ2

n To control the error σ̂2
n,out,approx,2 − σ2

n, we first
rewrite σ̂2

n,out,approx,2 as

σ̂2
n,out,approx,2 = 1

n2

∑k
j,j′=1

∑
i∈B′j ,i′∈B′j′

1
2 (h̄′n(Zi)− h̄′n(Zi′))

2

= 1
n2

∑n
i,i′=1

1
2 (h̄′n(Zi)− h̄′n(Zi′))

2

= 1
n

∑n
i=1

(
h̄′n(Zi)− 1

n

∑n
i′=1 h̄

′
n(Zi′)

)2
= 1

n

∑n
i=1 h̄

′
n(Zi)

2 −
(
1
n

∑n
i=1 h̄

′
n(Zi)

)2
. (J.6)

Since E[h̄′n(Zi)h̄
′
n(Zi′)] = 0 for all i, i′ ∈ [n] with i 6= i′ due to independence, we have

E[
(
1
n

∑n
i=1 h̄

′
n(Zi)

)2
] = 1

nE[h̄′n(Z0)2] = 1
nσ

2
n. (J.7)

Furthermore,

E[( 1
n

∑n
i=1 h̄

′
n(Zi)

2 − σ2
n)2] = Var( 1

n

∑n
i=1 h̄

′
n(Zi)

2) = 1
nVar(h̄′n(Z0)2) = 1

n (E[h̄′n(Z0)4]− σ4
n)

by independence. Hence,

E[|σ̂2
n,out,approx,2 − σ2

n|] ≤
√

1
n (E[h̄′n(Z0)4]− σ4

n) + 1
nσ

2
n.

Putting the pieces together Since each

1
2 (h′n(Zi, Z

\i′
Bj

)− h′n(Zi′ , Z
\i′
Bj

))2 ≤ h′n(Zi, Z
\i′
Bj

)2 + h′n(Zi′ , Z
\i′
Bj

)2,

we have

E[σ̂2
n,out,approx,1] ≤ 2E[h′n(Z0, Z1:m)2] = 2σ̃2

n

28



and hence

E[
√

∆1σ̂n,out,approx,1] ≤
√
E[∆1]E[σ̂2

n,out,approx,1] ≤
√

2(1 + n
k )γms(hn)σ̃2

n

by Cauchy–Schwarz and the bound (J.3).

Moreover, E[σ̂2
n,out,approx,2] = (1− 1

n )σ2
n, hence

E[
√

∆2σ̂n,out,approx,2] ≤
√

E[∆2]E[σ̂2
n,out,approx,2] ≤

√
mγloss(hn)(1− 1

n )σ2
n

by Cauchy–Schwarz and the bound (J.5).

Assembling our results with the triangle inequality, we find that

E[|σ̂2
n,out − σ2

n|] ≤ E[|σ̂2
n,out − σ̂2

n,out,approx,1|] + E[|σ̂2
n,out,approx,1 − σ̂2

n,out,approx,2|]
+ E[|σ̂2

n,out,approx,2 − σ2
n|]

≤ E[∆1] + 2E[
√

∆1σ̂n,out,approx,1]

+ E[∆2] + 2E[
√

∆2σ̂n,out,approx,2]

+
√

1
n (E[h̄′n(Z0)4]− σ4

n) + 1
nσ

2
n

≤ (1 + n
k )γms(hn) + 2

√
2(1 + n

k )γms(hn)σ̃2
n

+mγloss(hn) + 2
√
mγloss(hn)(1− 1

n )σ2
n

+
√

1
n (E[h̄′n(Z0)4]− σ4

n) + 1
nσ

2
n

as advertised.

We showed in the proof of Thm. 9 that 1
n

∑n
i=1 h̄

′
n(Zi)

2/σ2
n

L1

→ 1 whenever the sequence of
(h̄n(Z0) − E[h̄n(Z0)])2/σ2

n = h̄′n(Z0)2/σ2
n is uniformly integrable. Thus, with (J.6) and (J.7),

we get E[|σ̂2
n,out,approx,2/σ

2
n − 1|] ≤ 1/n+ o(1), and the final bound advertised

E[|σ̂2
n,out − σ2

n|] ≤ (1 + n
k )γms(hn) + 2

√
2(1 + n

k )γms(hn)σ̃2
n

+mγloss(hn) + 2
√
mγloss(hn)(1− 1

n )σ2
n

+ 1
nσ

2
n + o(σ2

n).

By the bound (J.1), (σ̂2
n,out − σ2

n)/σ2
n
L1

→ 0, i.e. σ̂2
n,out/σ

2
n
L1

→ 1, if the sequence of (h̄n(Z0) −
E[h̄n(Z0)])2/σ2

n is uniformly integrable, γloss(hn) = o(σ2
n/n) and γms(hn) = o(min(

kσ2
n

n ,
k σ4

n

n σ̃2
n

)).
By noticing that σ̃2

n/σ
2
n → 1 when γloss(hn) = o(σ2

n/n) thanks to Prop. 2, the last condition
becomes γms(hn) = o(kσ2

n/n). Therefore, Thm. 5 follows from Thm. 11.

K Experimental Setup Details

Here, we provide more details about the experimental setup of Sec. 5.

K.1 General experimental setup details

Learning algorithms and hyperparameters To illustrate the performance of our confidence
intervals and tests in practice, we carry out our experiments with a diverse collection of pop-
ular learning algorithms. For classification, we use the xgboost XGBRFClassifier with
n estimators=100, subsample=0.5 and max depth=1, the scikit-learn MLPClassifier
neural network with hidden layer sizes=(8,4,) defining the architecture and alpha=1e2,
and the scikit-learn `2-penalized LogisticRegression with solver='lbfgs' and
C=1e-3. For regression, we use the xgboost XGBRFRegressor with n estimators=100,
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subsample=0.5 and max depth=1, the scikit-learn MLPRegressor neural network with
hidden layer sizes=(8,4,) defining the architecture and alpha=1e2, and the scikit-learn
Ridge regressor with alpha=1e6. The random forest max depth hyperparameter and neural net-
work, logistic, and ridge `2 regularization strengths were selected to ensure the stability of each
algorithm. All remaining hyperparameters are set to their defaults, and we set random seeds for
all algorithms’ random states for reproducibility. We use scikit-learn [44] version 0.22.1 and
xgboost [17] version 1.0.2.

Training set sample sizes n For both datasets, we work with the following training set sample
sizes n: 700, 1,000, 1,500, 2,300, 3,400, 5,000, 7,500, 11,000. Up to some rounding, this corre-
sponds to a geometric sequence with growth rate 50%.

Details on the Higgs dataset The target variable has value either 0 or 1 and there are 28 features.
We initially shuffle the rows of the dataset uniformly at random and then, starting at the 5,000,001-th
instance, we take 500 consecutive chunks of the largest sample size, that is 11,000. For each n, we
take the first n instances of these 500 chunks to play the role of our 500 independent replications
of size n. The features are standardized during training in the following way: for each iteration of
k-fold CV (k = 10 here), we rescale the validation fold and the remaining folds, used as training,
with the mean and standard deviation of the training data. The features for the training folds then
have mean 0 and variance 1.

Details on the FlightsDelay dataset To avoid the temporal dependence issues inherent to time
series datasets, we treat the complete FlightsDelay dataset as the population and thus process
it differently from the Higgs dataset. For this dataset, we predict the signed log transform (y 7→
sign(y) log(1 + |y|); this addressed the very heavy tails of y on its original scale) of the delay at
arrival using 4 features: the scheduled time of the journey from the origin airport to the destination
airport (taxi included), the distance between the two airports, the scheduled time of departure in
minutes (converted from a time to a number between 0 and 1,439) and the airline operating the
plane (that we one-hot encode). We drop the instances that have missing values for at least one of
these variables. Then, we perform 500 times the sampling with replacement of 11,000 points, that
is the largest sample size. For each n, we take the first n instances of these 500 chunks to play the
role of our 500 independent replications of size n. The features are standardized during training in
the same way we do for the Higgs dataset.

Computing target test errors For the FlightDelays experiments, since training datapoints are
sampled with replacement, the population distribution is the entirety of the FlightDelays dataset,
and we use this exact population distribution to compute all test errors. For the Higgs experiments,
we form a surrogate ground-truth estimate of the target test errors using the first 5,000,000 datapoints
of the shuffled Higgs dataset. As an illustration, for our method where the target test error is the
k-fold test error Rn = 1

n

∑10
j=1

∑
i∈B′j

E[hn(Zi, ZBj ) | ZBj ] = 1
k

∑10
j=1 E[hn(Z0, ZBj ) | ZBj ],

we use these instances to compute the k conditional expectations by a Monte Carlo approximation.
Practically, for each training set ZB , we compute the average loss on these instances of the fitted
prediction rule learned on ZB . Then, we evaluate the CIs and tests constructed from the 500 training
sets of varying sizes n sampled from the datasets.

Random seeds Seeds are set in the code to ensure reproducibility. They are used for the initial ran-
dom shuffling of the datasets, the sampling with replacement for the regression dataset, the random
partitioning of samples in each replication, and the randomized algorithms.

K.2 List of procedures

In our numerical experiments, we compare our procedures with the most popular alternatives from
the literature. For each procedure, we give its target test error Rn, the estimator R̂n of this target,
the variance estimator σ̂2

n, the two-sided CI used in Sec. 5.1, and the one-sided test used in Sec. 5.2.

In the following, qα is the α-quantile of a standard normal distribution and tν,α is the α-quantile of
a t distribution with ν degrees of freedom.

30



1. Our 10-fold CV CLT-based test, with σ̂n being either σ̂n,in (Thm. 4) or σ̂n,out (Thm. 5). The
curve with σ̂n,in is not displayed in our plots since the results are almost identical to those for
σ̂n,out and the curves are overlapping.

• Target test error: Rn = 1
10

∑10
j=1 E[hn(Z0, ZBj

) | ZBj
].

• Estimator: R̂n = 1
n

∑10
j=1

∑
i∈B′j

hn(Zi, ZBj
).

• Variance estimator: σ̂2
n, either σ̂2

n,in or σ̂2
n,out.

• Two-sided (1− α)-CI: R̂n ± q1−α/2σ̂n/
√
n.

• One-sided test: REJECT H0 ⇔ R̂n < qασ̂n/
√
n.

2. Hold-out test described, for instance, in Austern and Zhou [5, Eq. (17)].

• Target test error: Rn = E[hn(Z0, ZS) | ZS ], where S is a subset of size bn(1− 1/10)c of
[n]. Since we already have a partition for our 10-fold CV, we can use the first fold B1 for
S.

• Estimator: R̂n = 1
|Sc|

∑
i∈Sc hn(Zi, ZS).

• Variance estimator: σ̂2
n = 1

|Sc|
∑
i∈Sc(hn(Zi, ZS)− R̂n)2.

• Two-sided (1− α)-CI: R̂n ± q1−α/2σ̂n
√

10/
√
n.

• One-sided test: REJECT H0 ⇔ R̂n < qασ̂n
√

10/
√
n.

3. Cross-validated t-test of Dietterich [22], 10 folds.

• Target test error: Rn = 1
10

∑10
j=1 E[hn(Z0, ZBj ) | ZBj ].

• Estimator: R̂n = 1
n

∑10
j=1

∑
i∈B′j

hn(Zi, ZBj ).

• Variance estimator: σ̂2
n = 1

10−1
∑10
j=1(pj − R̂n)2, where pj , 1

|B′j |
∑
i∈B′j

hn(Zi, ZBj
).

• Two-sided (1− α)-CI: R̂n ± t10−1,1−α/2σ̂n/
√

10.

• One-sided test: REJECT H0 ⇔ R̂n < t10−1,ασ̂n/
√

10.

4. Repeated train-validation t-test of Nadeau and Bengio [43], 10 repetitions of 90-10 train-
validation splits.

• Target test error: Rn = 1
10

∑10
j=1 E[hn(Z0, ZSj

) | ZSj
], where for any j ∈ [10], Sj is a

subset of size bn(1− 1/10)c of [n], and these 10 subsets are chosen independently.
• Estimator: R̂n = 1

10

∑10
j=1 pj , where pj , 1

|Sc
j |
∑
i∈Sc

j
hn(Zi, ZSj

).

• Variance estimator: σ̂2
n = 1

10−1
∑10
j=1(pj − R̂n)2.

• Two-sided (1− α)-CI: R̂n ± t10−1,1−α/2σ̂n/
√

10.

• One-sided test: REJECT H0 ⇔ R̂n < t10−1,ασ̂n/
√

10.

5. Corrected repeated train-validation t-test of Nadeau and Bengio [43], 10 repetitions of 90-10
train-validation splits.

• Target test error: Rn = 1
10

∑10
j=1 E[hn(Z0, ZSj

) | ZSj
], where for any j ∈ [10], Sj is the

same as in the previous procedure.
• Estimator: R̂n = 1

10

∑10
j=1 pj , where pj is the same as in the previous procedure.

• Variance estimator: σ̂2
n = ( 1

10 + 0.1
1−0.1 ) 10

10−1
∑10
j=1(pj − R̂n)2.

• Two-sided (1− α)-CI: R̂n ± t10−1,1−α/2σ̂n/
√

10.

• One-sided test: REJECT H0 ⇔ R̂n < t10−1,ασ̂n/
√

10.

6. 5× 2-fold CV test of Dietterich [22].

• Target test error: Rn = 1
5

∑5
j=1

1
2 (E[hn(Z0, ZB1,j

) | ZB1,j
] + E[hn(Z0, ZB2,j

) | ZB2,j
]),

where for any j ∈ [5], {Bc1,j , Bc2,j} is a partition of [n] into 2 folds of size n/2, and these
5 partitions are chosen independently.

• Estimator: R̂n = 1
|Bc

1,1|
∑
i∈Bc

1,1
hn(Zi, ZB1,1

).

31



• Variance estimator: σ̂2
n = 1

5

∑5
j=1 s

2
j , where s2j , (p1,j − p̄j)2 + (p2,j − p̄j)2 with p̄j ,

(p1,j + p2,j)/2 and pk,j , 1
|Bc

k,j |
∑
i∈Bc

k,j
hn(Zi, ZBk,j

) for k ∈ [2], j ∈ [5].

• Two-sided (1− α)-CI: R̂n ± t5,1−α/2σ̂n.

• One-sided test: REJECT H0 ⇔ R̂n < t5,ασ̂n.

K.3 Concentration-based confidence intervals

For comparison in Sec. 1, we also implemented the ridge regression CI from [16, Thm. 3] for the
FlightDelays experiment (an implementable CI is not provided for any other learning algorithm
in [16]). This CI takes as input a uniform bound BY on the absolute value of the target variable
Y and a uniform bound BX on the `2 norm of the feature vector X . After mean-centering, we
find the maximum absolute value of Y across the FlightDelays dataset to be BY = 8.03. After
mean-centering, we find the maximum `2 norm of a feature vector X across the FlightDelays to
be BX = 13.17 if each feature is normalized to have standard deviation 1 or BX = 4200 if the
features are left unnormalized. When normalizing features as in Fig. 5, the smallest width produced
by [16, Thm. 3] for any value of n is 90.2; that is 91 times larger than the largest width of our CLT
intervals (equal to 0.99). When not normalizing as in Fig. 3, our maximum width is 0.98, but the
minimum [16, Thm. 3] width is 5× 1014.

K.4 Leave-one-out cross-validation

To evaluate the LOOCV CLT-based CIs discussed in Sec. 5.4 we follow the ridge regression ex-
perimental setup of App. K.1 except that we regress onto the raw feature values instead of the
standardized features values described in App. K.1. For our LOOCV CLT-based CIs, the quantities
of interest are the following.

• Target test error: Rn = 1
n

∑n
i=1 E[hn(Z0, Z{i}c) | Z{i}c ].

• Estimator: R̂n = 1
n

∑n
i=1 hn(Zi, Z{i}c) computed efficiently using the Sherman–

Morrison–Woodbury derivation below.

• Variance estimator: σ̂2
n,out with k = n folds.

• Two-sided (1− α)-CI: R̂n ± q1−α/2σ̂n,out/
√
n.

Results We construct 95% CIs for ridge regression test error based on our LOOCV CLT and
compare their coverage and width with those of the procedures described in Sec. 5.1. We see that,
like the 10-fold CV CLT intervals, the LOOCV intervals provide coverage near the nominal level
and widths smaller than the popular alternatives from the literature; in fact, the 10-fold CV CLT
curves are obscured by the nearly identical LOOCV CLT curves.
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Figure 3: Test error coverage (left) and width (right) of 95% confidence intervals for ridge regres-
sion, including leave-one-out CV intervals (see Sec. 5.4). The CV CLT curves are obscured by the
nearly identical LOOCV CLT curves.
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Efficient computation We explain here how the Sherman–Morrison–Woodbury formula can be
used to efficiently compute the individual losses hn(Zi, Z{i}c), and therefore R̂n as well as σ̂n,out,
and the loss on the instances used to form a surrogate ground-truth estimate of the target error Rn.
Let X ∈ Rn×p be the matrix of predictors, whose i-th row is x>i , and Y ∈ Rn be the target
variable. The weight vector estimate ŵ minimizes minw∈Rp ‖Y −Xw‖22 + λ‖w‖22, and is given by
the closed-form formula

ŵ = (X>X + λIp)
−1X>Y.

We precomputeM , (X>X+λIp)
−1 and v , X>Y , that satisfy ŵ = Mv. Suppose that we have

an additional set with covariate matrix X̃ and target variable Ỹ , representing the instances used to
form a surrogate ground-truth estimate of Rn. We also precompute q , X̃ŵ and A , X̃M .

For the datapoint i, let X(−i) denote X without its i-th row and Y (−i) denote Y without its i-
th element. Let Mi , (X(−i)>X(−i) + λIp)

−1, vi , X(−i)>Y (−i) and wi , Mivi. We can
efficiently compute Mi from M based on the Sherman–Morrison–Woodbury formula.

Mi = (X(−i)>X(−i) + λIp)
−1

= (X>X − xix>i + λIp)
−1

= M −Mxix
>
i M/(−1 + hi),

where hi , x>i Mxi.

We can compute vi from v, with vi = X(−i)>Y (−i) = v − xiyi.
Therefore, wi = Mivi = (M −Mxix

>
i M(−1 +hi)

−1)(v−xiyi) = ŵ+Mxi(〈ŵ, xi〉− yi)/(1−
hi) can be computed without fitting any additional prediction rule. Then hn(Zi, Z{i}c) = (yi −
〈wi, xi〉)2, and we use them to compute R̂n and σ̂n,out. To make predictions for the covariate
matrix X̃ , we efficiently compute X̃wi as

X̃wi = X̃ŵ + X̃Mxi(〈ŵ, xi〉 − yi)/(1− hi)
= q +Axi(〈ŵ, xi〉 − yi)/(1− hi),

and 1
N ‖Ỹ − X̃wi‖

2
2 is an estimate of E[hn(Z0, Z{i}c) | Z{i}c ], where N is the size of the whole

dataset. An estimate of Rn is then 1
n

∑n
i=1

1
N ‖Ỹ − X̃wi‖

2
2.

L Additional Experimental Results

This section reports the additional results of the experiments described in Sec. 5.

L.1 Additional results from Sec. 5.1: Confidence intervals for test error

The remaining results of the experiments described in Sec. 5.1 are provided in Figs. 4 and 5. We
remind that each mean width estimate is displayed with a± 2 standard error confidence band, while
the confidence band surrounding each coverage estimate is a 95% Wilson interval. For all 6 learning
tasks, all procedures except the repeated train-validation t interval provide near-nominal coverage,
and our CV CLT intervals provide the smallest widths.

L.2 Additional results from Sec. 5.2: Testing for improved algorithm performance

In this section, we provide additional experimental details and results for the testing for improved
algorithm performance experiments of Sec. 5.2. We highlight that the aim of this assessment is
not to establish power convergence or to assess power in an absolute sense but rather to verify
whether, for a diversity of settings encountered in real learning problems, our proposed tests provide
power comparable to or better than the most popular heuristics from the literature. For all testing
experiments, we estimate size as # of rejections inH0 replications

#H0 replications and power as # of rejections inH1 replications
#H1 replications ,

where each simulation is classified as H0 or H1 depending on which algorithm has smaller test

33



0.80

0.85

0.90

0.95

1.00

Co
ve

ra
ge

 p
ro

ba
bi

lit
y

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

W
id

th

CV CLT (Ours)
Hold-out CLT
CV t
Rep. train-val t
Corr. rep. train-val t
5x2 CV

0.80

0.85

0.90

0.95

1.00

Co
ve

ra
ge

 p
ro

ba
bi

lit
y

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

W
id

th

700 1000 1500 2300 3400 5000 7500 11000
Sample size n (log scale)

0.80

0.85

0.90

0.95

1.00

Co
ve

ra
ge

 p
ro

ba
bi

lit
y

700 1000 1500 2300 3400 5000 7500 11000
Sample size n (log scale)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
W

id
th

Figure 4: Test error coverage (left) and width (right) of 95% confidence intervals (see Sec. 5.1). Top:
`2-regularized logistic regression classifier. Middle: Random forest classifier. Bottom: Neural
network classifier.

error. Moreover, a size point is only displayed if at least 25 replications were classified as H0, and a
power point is only displayed if at least 25 replications were classified as H1.

The remaining results of the testing experiments described in Sec. 5.2 are provided in Figs. 6 to 11.
In contrast to Fig. 2,9 in Figs. 6 to 11 we plot the size and power of the level α = 0.05 test of
H1 : Err(A1) < Err(A2) in the left column of each figure and the size and power of the level α test
of H1 : Err(A2) < Err(A1) in the right column. Notably, we only observe size estimates exceeding
the level when the number of H0 replications is very small (that is, when one algorithm improves
upon the other so infrequently that the Monte Carlo error in the size estimate is large).

L.3 Testing with synthetically generated labels

We complement the real-data hypothesis testing experiments of Sec. 5.2 with a controlled experi-
ment in which class labels are synthetically generated from a known logistic regression distribution.
Specifically, we replicate the exact classification experimental setup of Sec. 5.2 to compare logis-
tic regression and random forest classification and use the same Higgs dataset covariates, but we
replace each datapoint label Yi with an independent draw from the logistic regression distribution
Yi ∼ Ber( 1

1+exp(−〈Xi,β〉) ) for β a 28-dimensional vector with odd entries equal to 1 and even en-

9Recall that in Fig. 2 we identified the algorithm A1 that more often had smaller test error across our
simulations and displayed the power of H1 : Err(A1) < Err(A2) and the size of the level α = 0.05 test of
H1 : Err(A2) < Err(A1).
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Figure 5: Test error coverage (left) and width (right) of 95% confidence intervals (see Sec. 5.1).
Top: Random forest regression. Middle: Ridge regression. Bottom: Neural network regression.

tries equal to −1. This experiment enables us to evaluate our hypothesis tests in a realizable setting
in which the true label generating distribution belongs to the logistic regression model family. In
Fig. 12, we plot in the left column the size and power of the level α = 0.05 test of H1: random for-
est improves upon `2-regularized logistic regression classifier, and in the right column the size and
power of the level α test of H1: `2-regularized logistic regression classifier improves upon random
forest. As expected, almost all replications satisfy that `2-regularized logistic regression improves
upon random forest and we observe that in this setting as well, our method consistently outperforms
other alternatives.

L.4 Results for Sec. 5.3: Importance of stability

In this section, we provide the figures (Figs. 13 to 15) and experimental details supporting the im-
portance of stability experiment of Sec. 5.3. Compared to the chosen hyperparameters described
in App. K, for this example, we used the default value of max depth for XGBRFRegressor, that
is 6, and the default value of alpha for MLPRegressor, that is 1e-4. For Figs. 15a and 15b,
we obtain an estimate of σ2

n = Var(h̄n(Z0)) by computing a Monte Carlo approximation of
h̄n(Z0) = E[hn(Z0, Z1:m) | Z0] for each of 10,000 Z0 values and then reporting the empirical
variance of these 10,000 approximated values. For each value of Z0 we employ the Monte Carlo
approximation of

h̄n(Z0) ≈ 1

500

500∑
`=1

1

k

k∑
j=1

hn(Z0, Z
(`)
Bj

)
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Figure 6: Size (top) and power (bottom) of level-0.05 tests for improved test error (see Sec. 5.2).
Left: TestingH1: neural network improves upon `2-regularized logistic regression classifier. Right:
Testing H1: `2-regularized logistic regression classifier improves upon neural network.
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Figure 7: Size (top) and power (bottom) of level-0.05 tests for improved test error (see Sec. 5.2).
Left: Testing H1: `2-regularized logistic regression classifier improves upon random forest. Right:
Testing H1: random forest improves upon `2-regularized logistic regression classifier.

where (Z
(`)
1:n)500`=1 are the 500 datasets of size n described in App. K.
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Figure 8: Size (top) and power (bottom) of level-0.05 tests for improved test error (see Sec. 5.2).
Left: Testing H1: neural network classifier improves upon random forest. Right: Testing H1:
random forest classifier improves upon neural network.
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Figure 9: Size (top) and power (bottom) of level-0.05 tests for improved test error (see Sec. 5.2).
Left: TestingH1: ridge regression improves upon random forest. Right: TestingH1: random forest
improves upon ridge regression.
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Figure 10: Size (top) and power (bottom) of level-0.05 tests for improved test error (see Sec. 5.2).
Left: Testing H1: neural network improves upon ridge regression. Right: Testing H1: ridge regres-
sion improves upon neural network.
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Figure 11: Size (top) and power (bottom) of level-0.05 tests for improved test error (see Sec. 5.2).
Left: Testing H1: neural network regression improves upon random forest. Right: Testing H1:
random forest regression improves upon neural network.
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Figure 12: Size (top) and power (bottom) of level-0.05 tests for improved test error with syn-
thetic logistic regression labels (see App. L.3). Left: Testing H1: random forest improves upon
`2-regularized logistic regression classifier. Right: Testing H1: `2-regularized logistic regression
classifier improves upon random forest.
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Figure 13: Impact of instability on size (left) and power (right) of level-0.05 tests for improved
test error (see Sec. 5.3). Testing H1: less stable neural network regression improves upon less stable
random forest.
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Figure 14: Impact of instability on test error coverage (top) and width (bottom) of 95% confidence
intervals (see Sec. 5.3). Left: Less stable neural network regression. Right: Less stable random
forest regression.
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(a) Algorithm comparison
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(b) Single algorithm assessment

Figure 15: Impact of instability on variance of
√
n

σn
(R̂n −Rn) (see Sec. 5.3). Left: hn(Z0, ZB) =

(Y0 − f̂1(X0;ZB))2 − (Y0 − f̂2(X0;ZB))2 for neural network and random forest prediction rules,
f̂1 and f̂2. As predicted in Thms. 1 and 2, the variance is close to 1 when hn is stable, but the
variance can be much larger when hn is unstable. Right: hn(Z0, ZB) = (Y0 − f̂(X0;ZB))2

for neural network or random forest prediction rule, f̂ . The same destabilized algorithms produce
relatively stable hn in the context of single algorithm assessment, as the variance parameter σ2

n =
Var(h̄n(Z0)) is larger.
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