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Abstract

Graph neural networks (GNNs) extends the functionality of traditional neural
networks to graph-structured data. Similar to CNNs, an optimized design of graph
convolution and pooling is key to success. Borrowing ideas from physics, we
propose a path integral based graph neural networks (PAN) for classification and
regression tasks on graphs. Specifically, we consider a convolution operation
that involves every path linking the message sender and receiver with learnable
weights depending on the path length, which corresponds to the maximal entropy
random walk. It generalizes the graph Laplacian to a new transition matrix we call
maximal entropy transition (MET) matrix derived from a path integral formalism.
Importantly, the diagonal entries of the MET matrix are directly related to the
subgraph centrality, thus lead to a natural and adaptive pooling mechanism. PAN
provides a versatile framework that can be tailored for different graph data with
varying sizes and structures. We can view most existing GNN architectures as
special cases of PAN. Experimental results show that PAN achieves state-of-the-
art performance on various graph classification/regression tasks, including a new
benchmark dataset from statistical mechanics we propose to boost applications of
GNN in physical sciences.

1 Introduction

The triumph of convolutional neural networks (CNNs) has motivated researchers to develop similar
architectures for graph-structured data. The task is challenging due to the absence of regular grids.
One notable proposal is to define convolutions in the Fourier space [12, 11]. This method relies on
finding the spectrum of the graph Laplacian I −D−1A or I −D− 1

2AD−
1
2 and then applies filters to

∗Equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



the components of input signal X under the corresponding basis, where A is the adjacency matrix of
the graph, and D is the corresponding degree matrix. Due to the high computational complexity of
diagonalizing the graph Laplacian, people have proposed many simplifications [17, 34].

The graph Laplacian based methods essentially rely on message passing [27] between directly
connected nodes with equal weights shared among all edges, which is at heart a generic random
walk (GRW) defined on graphs. It can be seen most obviously from the GCN model [34], where
the normalized adjacency matrix is directly applied to the left-hand side of the input. In statistical
physics, D−1A is known as the transition matrix of a particle doing a random walk on the graph,
where the particle hops to all directly connected nodes with equiprobability. Many direct space-based
methods [28, 40, 54, 63] can be viewed as generalizations of GRW, but with biased weights among
the neighbors.

In this paper, we go beyond the GRW picture, where information necessarily dilutes when a path
branches, and instead consider every path linking the message sender and receiver as the elemental
unit in message passing. Inspired by the path integral formulation developed by Feynman [24, 23],
we propose a graph convolution that assigns trainable weights to each path depending on its length.
This formulation results in a maximal entropy transition (MET) matrix, which is the counterpart
of graph Laplacian in GRW. By introducing a fictitious temperature, we can continuously tune our
model from a fully localized one (MLP) to a spectrum based model. Importantly, the diagonal of
the MET matrix is intimately related to the subgraph centrality, and thus provides a natural pooling
method without extra computations. We call this complete path integral based graph neural network
framework PAN.

We demonstrate that PAN outperforms many popular architectures on benchmark datasets. We
also introduce a new dataset from statistical mechanics, which overcomes the lack of explanability
and tunability of many previous ones. The dataset can serve as another benchmark, especially for
boosting applications of GNN in physical sciences. This dataset again confirms that PAN has a faster
convergence rate, higher prediction accuracy, and better stability compared to many counterparts.

2 Path Integral Based Graph Convolution

Path integral and MET matrix Feynman’s path integral formulation [24, 69] interprets the proba-
bility amplitude φ(x, t) as a weighted average in the configuration space, where the contribution from
φ0(x) is computed by summing over the influences (denoted by eiS[x,ẋ]) from all paths connecting
itself and φ(x, t). This formulation has been later extensively used in statistical mechanics and
stochastic processes [35]. We note that this formulation essentially constructs a convolution by
considering the contribution from all possible paths in the continuous space. Using this idea, but

Figure 1: A schematic analogy between the original path integral formulation in continuous space
(left) and the discrete version for a graph (right). Symbols are defined in the text.
modified for discrete graph structures, we can heuristically propose a statistical mechanics model on
how information is shared between different nodes on a given graph. In the most general form, we
write observable φi at the i-th node for a graph with N nodes as

φi =
1

Zi

N∑
j=1

φj
∑

{l|l0=i,l|l|=j}

e−
E[l]
T , (1)

where Zi is the normalization factor known as the partition function for the i-th node. Here a path l is
a sequence of connected nodes (l0l1 . . . l|l|) where Alili+1

= 1, and the length of the path is denoted
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by |l|. In Figure 1 we draw the analogy between our discrete version and the original formulation.
It is straightforward to see that the integral should now be replaced by a summation, and φ0(x)
only resides on nodes. Since a statistical mechanics perspective is more proper in our case, we
directly change the exponential term, which is originally an integral of Lagrangian, to a Boltzmann’s
factor with fictitious energy E[l] and temperature T (we choose Boltzmann’s constant kB = 1).
Nevertheless, we still exploit the fact that the energy is a functional of the path, which gives us a way
to weight the influence of other nodes through a certain path. The fictitious temperature controls the
excitation level of the system, which reflects that to what extent information is localized or extended.
In practice, there is no need to learn the fictitious temperature or energy separately, instead the neural
networks can directly learn the overall weights, as will be made clearer later.

To obtain an explicit form of our model, we now introduce some mild assumptions and simplifications.
Intuitively, we know that information quality usually decays as the path between the message sender
and the receiver becomes longer, thus it is reasonable to assume that the energy is not only a functional
of path, but can be further simplified as a function that solely depends on the length of the path.
Clearly, in principle one can incorporate information of individual edges, such as replacing the energy
with a neural network that takes the nodes on a path as input. Therefore, the constant form used here
should only be understood as the easiest implementation of our general framework. In the random
walk picture, this simplification means that the hopping is equiprobable among all the paths that
have the same length, which maximizes the Shannon entropy of the probability distribution of paths
globally, and thus the random walk is given the name maximal entropy random walk [13]. 2 By first
conditioning on the length of the path, we can introduce the overall n-th layer weight k(n; i) for node
i by

k(n; i) =
1

Zi

N∑
j=1

g(i, j;n)e−
E(n)

T , (2)

where g(i, j;n) denotes the number of paths between nodes i and j with length of n, or density
of states for the energy level E(n) with respect to nodes i and j, and the summation is taken over
all nodes of the graph. Intuitively, node j with larger g(i, j;n) means that it has more channels
to talk with node i, thus may impose a greater influence on node i as the case in our formulation.
For example, in Figure 1, nodes B and C are both two-step away from A, but B has more paths
connecting A and would be assigned with a larger weight as a consequence. Presumably, the energy
E(n) is an increasing function of n, which leads to a decaying weight as n increases.3 By applying a
cutoff of the maximal path length L, we exchange the summation order in (1) to obtain

φi =

L∑
n=0

k(n; i)

N∑
j=1

g(i, j;n)∑N
s=1 g(i, s;n)

φj =
1

Zi

L∑
n=0

e−
E(n)

T

N∑
j=1

g(i, j;n)φj , (3)

where the partition function can be explicitly written as

Zi =

L∑
n=0

e−
E(n)

T

N∑
j=1

g(i, j;n). (4)

A nice property of this formalism is that we can easily compute g(i, j;n) by raising the power of the
adjacency matrix A to n, which is a well-known property of the adjacency matrix from graph theory,
i.e., g(i, j;n) = Anij . Plug in (3) we now have a group of self-consistent equations governed by a
transition matrix M (a counterpart of the propagator in quantum mechanics), which can be written in
the following compact form

M = Z−1
L∑
n=0

e−
E(n)

T An, (5)

where diag(Z)i = Zi. We call the matrix M maximal entropy transition (MET) matrix, with regard
to the fact that it realizes maximal entropy under the microcanonical ensemble. This transition matrix
replaces the role of the graph Laplacian under our framework.

2For a weighted graph, a feasible choice for the functional form of the energy could be E(leff), where the
effective length of the path leff can be defined as a summation of the inverse of weights along the path, i.e.
leff =

∑|l|−1
i=0 1/wlili+1 .

3This does not mean that k(n; i) must necessarily be a decreasing function, as g(i, j;n) grows exponentially
in general. It would be valid to apply a cutoff as long as E(n) � nT lnλ1 for large n, where λ1 is the largest
eigenvalue of the adjacency matrix A.
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More generally, one can constrain the paths under consideration to, for example, shortest paths or
self-avoiding paths. Consequentially, g(i, j;n) will take more complicated forms and the matrix An
needs to be modified accordingly. In this paper, we focus on the simplest scenario and apply no
constraints for the simplicity of the discussion.

PAN convolution The eigenstates, or the basis of the system {ψi} satisfy Mψi = λiψi. Similar to
the basis formed by the graph Laplacian, one can define graph convolution based on the spectrum of
MET matrix, which now has a distinct physical meaning. However, it is computationally impractical
to diagonalize M in every iteration as it is updated. To reduce the computational complexity, we
apply the trick similar to GCN [34] by directly multiplying M to the left hand side of the input and
accompanying it by another weight matrix W on the right-hand side. The convolutional layer is then
reduced to a simple form

X(h+1) =M (h)X(h)W (h), (6)
where h refers to the layer number. Applying M to the input X is essentially a weighted average
among neighbors of a given node, which leads to the question that if the normalization consistent
with the path integral formulation works best in a data-driven context. It has been consistently
shown experimentally that a symmetric normalization usually gives better results [34, 41, 43]. This
observation might have an intuitive explanation. Most generally, one can consider the normalization
Z−θ1 · Z−θ2 , where θ1 + θ2 = 1. There are two extreme situations. When θ1 = 1 and θ2 = 0, it
is called random-walk normalization and the model can be understood as “receiver-controlled", in
the sense that the node of interest performs an average among all the neighbors weighted by the
number of channels that connect them. On the contrary, when θ1 = 0 and θ2 = 1, the model becomes
“sender-controlled", since the weight is determined by the fraction of the flow coming out from the
sender that is directed to the receiver. Because of the fact that for an undirected graph, the exact
interaction between connected nodes are unknown, as a compromise, the symmetric normalization
can outperform both extremes, even it may not be the optimal. This consideration leads us to a final
perfection step that changes the normalization Z−1 in M to the symmetric normalized version. The
convolutional layer then becomes

X(h+1) =M (h)X(h)W (h) = Z−1/2
L∑
n=0

e−
E(n)

T AnZ−1/2X(h)W (h). (7)

We shall call this graph convolution PANConv.

The optimal cutoffL of the series depends on the intrinsic properties of the graph, which is represented
by temperature T . Incorporating more terms is analogous to having more particles excited to the
higher energy level at a higher temperature. For instance, in low-temperature limit,L = 0, the model is
reduced to the MLP model. In the high-temperature limit, all factors exp(−E(n)/T ) are effectively
one, and the term with the largest power dominates the summation. We can see it by noticing
An =

∑N
i=1 λ

n
i ψiψ

T
i , where λ1, . . . , λN is sorted in a descending order. By the Perron-Frobenius

theorem, we may only keep the leading order term with the unique largest eigenvalue λ1 when
n→∞. We then reach a prototype of the high temperature model X(h+1) = (I +ψ1ψ

T
1 )X

(h)W (h).
The most suitable choice of the cutoff L reflects the intrinsic dynamics of the graph.

3 Path Integral Based Graph Pooling

For graph classification and regression tasks, another critical component is the pooling mechanism,
which enables us to deal with graph input with variable sizes and structures. Here we show that the
PAN framework provides a natural ranking of node importance based on the MET matrix, which is
intimately related to the subgraph centrality. This pooling scheme, denoted by PANPool, requires no
further work aside from the convolution and can discover the underlying local motif adaptively.

MET matrix and subgraph centrality Many different ways to rank the “importance" of nodes in
a graph have been proposed in the complex networks community. The most straightforward one is
the degree centrality (DC), which counts the number of neighbors, other more sophisticated measures
include, for example, betweenness centrality (BC) and eigenvector centrality (EC) [45]. Although
these methods do give specific measures of the global importance of the nodes, they usually fail to
pick up local patterns. However, from the way CNNs work on image classifications, we know that it
is the locally representative pixels that matter.
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Estrada and Rodriguez-Velazquez [21] have shown that subgraph centrality is superior to the methods
mentioned above in detecting local graph motifs, which are crucial to the analysis of many social and
biological networks. The subgraph centrality computes a weighted sum of the number of self-loops
with different lengths. Mathematically, it simply writes as

∑∞
k=0(A

k)ii/k! for node i. Interestingly,
one immediately sees that the resemblance of this expression and the diagonal elements of the MET
matrix. The difference is easy to explain. The summation in the MET matrix is truncated at maximal
length L, and the weights for different path length e

E(n)
T is learnable. In contrast, the predetermined

weight 1/k! is a convenient choice to ensure the convergence of the summation and an analytical
form of the result, which writes

∑N
j=1 v

2
j (i)e

λj , where vj(i) is the i-th element of the orthonormal
basis associated with the eigenvalue λj .

Now it becomes clear that the MET matrix not only plays the role of a path integral-based convolution,
its diagonal elements Mii also automatically provides a measure of the importance of node i, thus
enabling a pooling mechanism by sorting Mii. Importantly, this pooling method has three main
merits compared to the subgraph centrality. First, we can exploit the readily-computed MET matrix,
thus circumvent extra computations, especially the direct diagonalization of the adjacency matrix in
the case of subgraph centrality. Second, the weights are data-driven rather than predetermined, which
can effectively adapt to different inputs. Furthermore, the MET matrix is normalized 4, which adds
weights on the local importance of the nodes, and can potentially avoid clustering around “hubs" that
are commonly seen in real-world “scale-free" networks [8].

The PAN Pooling strategy has similar physical explanations as the PAN convolution. In the low-
temperature limit, for example, if we set the cutoff at L = 2, the rank of

∑L
n=0 e

E(n)
T Anii is of the

same order as the rank of degrees, and thus we recover the degree centrality. In the high-temperature
limit, as n→∞, the sum is dominated by the magnitude of the i-th element of the orthonormal basis
associated with the largest eigenvalue of A, thus the corresponding ranking is reduced to the ranking
of the eigenvector centrality. By tuning L, PANPool provides a flexible strategy that can adapt to the
“sweet spot" of the input.

To better understand the effect of the proposed method, in Figure 2, we visualize the top 20% nodes
by different measures of node importance of a connected point pattern called RSA, which we detail in
Section 5.2. It is noteworthy that while DC selects points relatively uniform, the result of EC is highly
concentrated. This phenomenon is analogous to the contrast between the rather uniform diffusion
in the classical picture and the Anderson localization [5] in the quantum mechanics of disordered
systems [13]. In this sense, it tries to find a “mesoscopic" description that best fits the structure of
input data. Importantly, we note that the unnormalized MET matrix tends to focus on the densely
connected areas or hubs. In contrast, the normalized one tends to choose the locally representative
nodes and leave out the equally well-connected nodes in the hubs. This observation leads us to
propose an improved pooling strategy that balances the influencers at both the global and local levels.

Figure 2: Top 20% nodes (shown in blue) by different measures of node importance of an RSA
pattern from PointPattern dataset. From left to right are results from: Degree Centrality, Eigenvector
Centrality, MET matrix without normalization, MET matrix and Hybrid PANPool.

Hybrid PANPool To combine the contribution of the local motifs and the global importance, we
propose a hybrid PAN pooling (still referred as PANPool for simplicity) using a simple linear model.
The global importance can be represented by, but not limited to the strength of the input signal X
itself. More precisely, we project feature X ∈ RN×d by a trainable parameter vector p ∈ Rd and

4Notice that unlike the case in convolutions, the normalization being symmetric or not does not matter here.
For pooling, we only care about the diagonal terms, and different normalization methods will give the same
result.
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combine it with the diagonal diag(M) of the MET matrix to obtain a score vector

score = Xp+ βdiag(M). (8)

Here β is a real learnable parameter that controls the emphasis on these two potentially competing
factors. PANPool then selects a fraction of the nodes ranked by this score (number denoted by K),
and outputs the pooled feature array X̃ ∈ RK×d and the corresponding adjacency matrix Ã ∈ RK×K .
This new node score in (8) has jointly considered both node features (at global level) and graph
structures (at local level). In Figure 2, PANPool tends to select nodes that are both important locally
and globally. We also tested alternative designs under the same consideration, see supplementary
material for details.

4 Related Works

Graph neural networks have received much attention recently [9, 40, 51, 60, 67, 68]. For graph
convolutions, many works take accounts of the first order of the adjacency matrix in the spatial
domain or graph Laplacian in the spectral domain. Bruna et al. [12] first proposed graph convolution
using the Fourier method, which is, however, computationally expensive. Many different methods
have been proposed to overcome this difficulty [6, 15, 16, 17, 27, 29, 34, 44, 52, 61, 62]. Another
vital stream considers the attention mechanism [54], which infers the interaction between nodes
without using a diffusion-like picture. Some other GNN models use multi-scale information and
higher-order adjacency matrix [1, 2, 3, 25, 36, 41, 59]. Compared to the generic diffusion picture
[28, 48, 53], the maximal entropy random walk has already shown excellent performance on link
prediction [39] or community detection [47] tasks. However, many popular models can be related
to or viewed as certain explicit realizations of our framework. We can interpret the MET matrix as
an operator that acts on the graph input, which works as a kernel that allocates appropriate weights
among the neighbors of a given node. This mechanism is similar to the attention mechanism [54],
while we restrict the functional form of MET matrix based on physical intuitions and preserve a
compact form. Although we keep the number of features unchanged by applying MET matrix, one
can easily concatenate the aggregated information of neighbors like GraphSAGE [29] or GAT [54].
Importantly, the best choice of the cutoff L reveals the intrinsic dynamics of the graph. In particular,
by choosing L = 1, model (7) is essentially the GCN model [34]. The trick of adding self-loops
is automatically realized in higher powers of A. By replacing A in (7) with D−1A or D−

1
2AD−

1
2 ,

we can easily transform our model to a multi-step GRW version, which is indeed the format of
LanczosNet [41]. The preliminary ideas about PAN convolution have been presented at a previous
ICML workshop [43], where the effectiveness of PAN convolution has been demonstrated by its
superb performance on node classification tasks. Here we present a complete framework on both
path integral based convolution and pooling mechanism, with a focus on classification and regression
tasks at graph level.

Graph pooling is the other crucial component of GNNs to make the output uniform in size for graph
classification and regression tasks. Researchers have proposed many pooling methods from different
aspects. For example, one can merely consider node feature or node embeddings [20, 27, 55, 66].
These global pooling methods do not utilize the hierarchical structure of the graph. One way to
reinforce learning ability is to build a data-dependent pooling layer with trainable operations or
parameters [14, 26, 37, 38, 64]. One can incorporate more edge information in graph pooling [18, 65].
One can also use spectral method and pool in Fourier or wavelet domain [42, 46, 57]. PANPool is a
method that takes both feature and structure into account. At last, it does not escape our analysis that
the loss of paths could represent an efficient way to achieve dropout.

Finally, considering that PAN could learn the optimal representation of the intrinsic dynamics of
the graphs by finding the optimal L, it is possible that PAN can alleviate the common information
bottleneck of message-passing GNNs [4]. A relevant interesting theoretical problem could be
comparing an extremely “wide" PAN against a deep GCN.

5 Experiments

In this section, we present the test results of PAN on various datasets in graph classification tasks.
We show a performance comparison of PAN with some existing GNN methods. All the experiments
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Table 1: Performance comparison for graph classification tasks (test accuracy in percentage for 10
repetitions; bold font is used to highlight the best performance in the list; the L of all PAN-models on
five datasets are {3, 1, 3, 3, 3}, respectively).

Method PROTEINS PROTEINSF NCI1 AIDS MUTAGEN

GCNConv + TopKPool 64.0±0.40 69.6±6.03 49.9±0.50 81.2±1.00 63.5±6.69
SAGEConv + SAGPool 70.5±3.95 63.0±2.34 64.0±3.61 79.5±2.02 67.6±3.24
GATConv + EdgePool 72.4±1.46 71.3±3.16 60.1±1.76 80.5±0.72 71.5±1.09

SGConv + TopKPooling 73.6±1.70 65.9±1.25 61.5±5.11 81.0±0.01 66.3±2.08
GATConv + ASAPooling 64.8±5.43 67.3±4.37 53.9±4.11 84.7 ±6.21 58.4±5.19
SGConv + EdgePooling 69.0±1.74 70.5±2.48 58.4±1.96 76.7±1.12 70.7±0.69

SAGEConv + ASAPooling 59.2±5.84 63.9±2.44 53.5±2.91 80.6±6.39 63.1±3.74
GCNConv + SAGPooling 71.5±2.72 68.6±2.25 52.2±8.87 83.1±1.10 68.9±5.80

PANConv+PANPool 76.6±2.06 71.7±6.05 60.8± 3.45 97.5±1.86 70.9±2.76

were performed using PyTorch Geometric [22] and run on a server with Intel(R) Core(TM) i9-9820X
CPU 3.30GHz, NVIDIA GeForce RTX 2080 Ti and NVIDIA TITAN V GV100. The codes can be
downloaded at https://github.com/YuGuangWang/PAN.

5.1 PAN on Graph Classification Benchmarks

Datasets and baseline methods We test the performance of PAN on five widely used benchmark
datasets for graph classification tasks [33], including two protein graph datasets PROTEINS and
PROTEINS_full [10, 19]; one mutagen dataset MUTAGEN [50, 32] (full name Mutagenicity); and
one dataset that consists of chemical compounds screened for activity against non-small cell lung
cancer and ovarian cancer cell lines NCI1 [56]; one dataset that consists of molecular compounds for
activity against HIV or not AIDS [50]. These datasets cover different domains, sample sizes, and
graph structures, thus enable us to obtain a comprehensive understanding of PAN’s performance in
various scenarios. Specifically, the number of data samples ranges from 1,113 to 4,337, the average
number of nodes is from 15.69 to 39.06, and the average number of edges is from 16.20 to 72.82,
see a detailed statistical summary of the datasets in the supplementary material. We compare PAN
in Table 1 with existing GNN models built by combining graph convolution layers GCNConv [34],
SAGEConv [29], GATConv [54], or SGConv [58], and graph pooling layers TopKPool, SAGPool
[38], EdgePool [42], or ASAPool [49].

Setting In each experiment, we split 80%, 10%, and 10% of each dataset for training, validation,
and testing. All GNN models share the same architecture: Conv(nf -512) + Pool + Conv(512-256)
+ Pool + Conv(256-128) + FC(128-nc), where nf is the feature dimension and nc is the number of
classes. We use batch size of 128 and 200 epochs. The learning rate and weightdecay are set to 0.01
and 5e-4, respectively. We evaluate the performance by the percentage of correctly predicted labels
on test data. Specifically for PAN, we compared different choices of the cutoff L (between 1 and 7)
and reported the one that achieved the best result (shown in the description of Table 1).

Results Table 1 reports classification test accuracy for several GNN models (see supplementary
material for a larger table which includes results for aforementioned alternative pooling methods).
PAN has excellent performance on all datasets and achieves top accuracy on three of the five datasets.
In some cases, PAN improves state of the art by a few percentage points. For MUTAGEN, PAN still
has the second-best performance. Most interestingly, the optimal choice of the highest order L for the
MET matrix varies for different types of graph data. It confirms that the flexibility of PAN enables it
to learn and adapt to the most natural representation of the given graph data.

Additionally, we tested PAN on graph regression tasks such as QM7 and achieved excellent perfor-
mances. See supplementary material for details.

5.2 PAN for Point Pattern Recognition

A new benchmark dataset for graph classification People have proposed many graph neural
network architectures; however, there are still insufficient well-accepted datasets to assess their
relative strength [31]. Despite being popular, many datasets suffer from a lack of understanding of the
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underlying mechanism, such as whether one can theoretically guarantee that a graph representation
is proper. These datasets are usually not controllable either; many different prepossessing tricks
might be needed, such as zero paddings. Consequentially, reproducibility might be compromised. In

Figure 3: From left to right: Graph samples generated from HD, Poisson and RSA point processes in
PointPattern dataset.
order to tackle this challenge, we introduce a new graph classification dataset constructed by simple
point patterns from statistical mechanics. We simulated three point patterns in 2D: hard disks in
equilibrium (HD), Poisson point process, and random sequential adsorption (RSA) of disks. The HD
and Poisson distributions can be seen as simple models that describe the microstructures of liquids
and gases [30], while the RSA is a nonequilibrium stochastic process that introduces new particles
one by one subject to nonoverlapping conditions. These systems are well known to be structurally
different, while being easy to simulate, thus provide a solid and controllable classification task. For
each point pattern, the particles are treated as nodes, and edges are subsequently drawn according to
whether two particles are within a threshold distance. We name the dataset PointPattern, which can
be downloaded from the links contained in the supplementary material. See Figure 3 for examples of
the three types of resulting graphs. The volume fraction (covered by particles) φHD of HD is fixed
at 0.5, while we tune φRSA to control the similarity between RSA and the other two distributions
(Poisson point pattern corresponds to φRSA=0). As φRSA becomes closer to 0.5, RSA patterns are
harder to be distinguished from HD patterns. We use the degree as the feature for each node. It thus
allows us to generate a series of graph datasets with varying difficulties as classification tasks.
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Figure 4: Comparison of validation loss and accuracy of PAN, GCN and GIN on PointPattern under
similar network architectures with 10 repetitions.

Setting We tested the PANConv+PANPool model on PointPattern with φRSA = 0.3, 0.35 and
0.4, and compared it with other two GNN models which use GCNConv+TopKPool or GIN-
Conv+TopKPool as basic architecture blocks [14, 26, 34, 37, 62]. Each PointPattern dataset
is a 3-classification problem for 15,000 graphs (5000 for each type) with sizes varying between 100
and 1000. All GNN models use the same network architecture: 3 units of one graph convolutional
layer plus one graph pooling, followed by fully connected layers. In GCN and GIN models, we also
use global max pooling to compress the node size to one before the fully connected layer. We split
the data into training, validation, and test sets of size 12,000, 1,500, and 1,500. We fix the number
of neurons in the convolutional layers to 64, the learning rate and weight decay are set to 0.001 and
0.0005.
Results Table 2 shows the mean and SD of the test accuracy of the three networks on the three
PointPattern datasets. PAN outperforms GIN and GCN models on all datasets with 5 to 10 percents
higher accuracy, while significantly reduces variances. We observe that PAN’s advantage is persistent
over varying task difficulties, which may be due to the consideration of higher order paths (here
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Table 2: Test accuracy (in percentage) of PAN, GIN and GCN on three types of PointPattern datasets
with different difficulties, epoch up to 20. The value in brackets is the cutoff of L.

PointPattern GINConv + SAGPool GCNConv + TopKPool PANConv + PANPool (ours)

φRSA = 0.3 90.9±2.95 92.9±3.21 99.0±0.30 (4)
φRSA = 0.35 86.7±3.30 89.3±3.31 97.6±0.53 (4)
φRSA = 0.4 80.2±3.80 85.1±4.06 94.4±0.55 (4)

L = 4). We compare the validation loss and accuracy trends in the training of PANConv+PANPool
with GCNConv+TopKPool in Figure 4. It illustrates that the learning and generalization capabilities
of PAN are better than those of the GCN and GIN models. The loss of PAN decays to much smaller
values earlier while the accuracy reaches higher plateau more rapidly. Moreover, the loss and accuracy
of PAN both have much smaller variances, which can be seen most evidently after epoch four. In this
perspective, PAN provides a more efficient and stable learning model for the graph classification task.
Another intriguing pattern we notice is that the weights are concentrated on the powers A3 and A4. It
suggests that what differentiates these graph structures is the high orders of the adjacency matrix, or
physically, the pair correlations at intermediate distances. It may explain why PAN performs better
than GCN, which uses only A in its model.

6 Conclusion

We propose a path integral based GNN framework (PAN), which consists of self-consistent convolu-
tion and pooling units, the later is closely related to the subgraph centrality. PAN can be seen as a
class of generalization of GCN. PAN achieves excellent performances on various graph classification
and regression tasks, while demonstrating fast convergence rate and great stability. We also introduce
a new graph classification dataset PointPattern which can serve as a new benchmark.

Broader Impact

The path integral based graph neural network presented in this paper provides a general framework for
graph classification/regression tasks. We observe its advantages on the accuracy, convergence rate, and
stability against many previous models. Given the physical ideas behind this framework, we believe
PAN might be a powerful tool in analyzing biological, chemical, and physical systems. Specifically,
the success over the simple point pattern dataset preludes its potentials in more sophisticated tasks such
as detecting phase transitions and learning force fields in molecular dynamics, thus may accelerate
materials discovery [7, 25]. Additionally, the study of PAN will potentially link the communities of
both physics and machine learning. On the other hand, the PANPool strategy maintains a delicate
balance on selecting representative nodes from both well-connected and “underrepresented" regions;
this pooling method might be of particular interest to social scientists under specific contexts.
However, one must be aware that the use of graph neural networks in commercial settings, such as
recommendation systems, lending preferences, and fraud detection, may lead to negative ethical or
social consequences. Since graph neural networks tend to relate a node’s behavior to its environment,
the abuse of this feature may, for example, enhance the growing opinion polarization in our society,
and pose risks of systematic discrimination towards certain groups. Thus its use under these settings
must be done with full mindfulness.
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