
We thank the reviewers for their comments and the largely positive feedback. Reviewers agree that “the paper clearly1

touches on very important questions” (R5), since “ efficiently computing (a restricted form of) the Jacobian term” has2

been the focus of “quite a bit of recent research on deep density estimation” (R7). Reviewers also praised the novelty3

and correctness of the contribution: it is a shared opinion that “the paper has pointed to an interesting perspective of4

simplifying the gradient computation” (R6). The improvement our approach provides “is demonstrated by experiments”5

and “mathematically provable” (R5); “since it drastically reduces the computation cost of training a fully connected type6

deep latent variable model, it is certainly a significant contribution” (R8). The contribution was praised as “elegant”,7

“conceptually simple” (R7) and “potentially applicable in practice” (R5).8

A comment which was made (R5, R6, R8) is that, given its wide applicability, it would be interesting to try the method on9

additional applications. While we agree, we focused on density estimation as it is one of the most challenging problems10

in probabilistic modeling, and on the theoretical and empirical characterization of the computational improvement,11

believing (and reviewers seem to agree with us, s.a.) that our work constitutes a significant contribution in these regards.12

R6: Rigorous formulation and convergence properties of relative gradient: We will add more details on this. Rigorous13

theory of the relative gradient is well known [Absil et al. , Optimization Algorithms on Matrix Manifolds, 2009]; in14

our paper we propose a simple and accessible derivation. Our proposed method is a stochastic first order optimization15

algorithm on the manifold of invertible D ×D matrices: almost sure convergence of the parameters to a critical point16

of the gradient of the cost function can be derived for such SGD with decreasing step size under suitable assumptions17

(e.g. [Bonnabel, SGD on Riemannian manifolds, 2013]). We will include these references in the paper.18

R6: Example problems where normalizing flows suffer compared to relative gradients: We mention some in the paper,19

and will further elaborate on this. Most state-of-the-art flow models employ autoregressive transformations and/or20

coupling layers permuting the inputs between successive layers. These architectures have several limitations, e.g. they21

can not learn a properly disentangled feature representation. Linear flows provide a strict generalization thereof, and22

our approach can be used for their computationally efficient training. Alternative methods decompose the weight matrix23

W into easier-to-optimize transformations. One alternative is to compute the PLU decomposition of W and optimize24

the L and U transformations. The drawback in this approach is that the permutation matrix P cannot be learned. A25

more flexible alternative is to consider the QR decomposition of W , however computing Q in full generality requires26

O(D3) operations, matching the complexity of the naive optimization of linear flows. An experimental comparison of27

the performance of the PLU and QR decompositions against the direct optimization of W is in [Hoogeboom et al.,28

Emerging convolutions for generative normalizing flows, 2019], describing numerical and stability issues when using29

PLU . We will include this discussion and reference in the paper.30

R6: Too much emphasis on existing concepts, too little on the proposed approach: We will try to balance this.31

R7: Computation time in the experiments: We will add more details to the paper. One epoch on MNIST (D = 784,32

50k training samples) on a modern laptop CPU takes an order of tens of seconds, a ∼ 4.5× speedup compared to33

“standard” optimization and ∼ 50× speedup w.r.t. “autodiff” (see below). Our convergence time is ∼ 15 min.34

Broader impact: We will add a more thorough discussion of this point.35

R8: Experiments use regular SGD, without Adam: Thanks for pointing this out. We will add experiments with standard36

SGD. In figure 1 below, we show results on toy datasets like those in figure 2 in the main paper. It can be seen that37

the data densities are modeled convincingly. We also report (figure 2 below) the evolution of the loss with SGD and38

Adam on density estimation on MNIST. Optimization with SGD appears to converge slower (confirming the notion that39

Adam is a more effective optimizer) but ultimately leads to a comparably good result. Similar considerations hold for40

all datasets in Table 1 in the main paper, with SGD performance being slightly worse but comparable.41

R8: More comments on the projected gradient algorithm: The augmented matrix formalism allows the computation42

of the relative gradient for the biases. The projection step corresponds to zeroing out gradients on the last row of the43

augmented matrix, as remarked by the reviewer. We will report explicit formulas in the appendix.44

R6, R8: In Table 1, what is the number reported? What are the models being compared to?: The reported numbers are45

log-likelihoods. The competing models are the same as in reference [34]. We will clarify this in the caption.46

R7, R8: In the main body what is the difference between standard and autodiff in fig. 1?: “Standard” refers to computing47

gradients of the Jacobian term as explained in section 3 in the main paper; “autodiff” refers to computing the Jacobian48

term and its gradients via automatic differentiation with the Jax package. We will clarify this in the main text.49

Figure 1: 2D toy examples trained with SGD. True distribu-
tion on the left, predicted densities on the right.

1370

1470

0 50 100 150 200 250

-
lo

g
p(

x)

Epochs

Adam
SGD

Figure 2: Log-likelihood evolution
on MNIST validation set.


