
APPENDIX

A Backpropagation in neural networks

We will follow [46], Chapter 7, section 7.3.3 for the notation. Let us define a two-layer neural network

gθ(x) = σ (W2σ (W1x)) (16)
where we also define

z2 = σ (W2z1)

z1 = σ (W1x) .

and

u2 = σ′ (W2z1)

u1 = σ′(W1x)

and

y2 = W2z1
y1 = W1x

We need to consider the contributions to the objective function due to the terms Lp and L1
J (the

contribution due to L2
J will be dealt with separately). For Lp, we define

e(x) =
∂

∂x
log p(x′)|x′=x

and

e =


e(z12)
e(z22)

...
e(zD2)


To deal with the terms in L1

J , we define

h(x) =
∂

∂x
log x′|x′=x (17)

=
1

x
(18)

and

hk =


h(u1k)
h(u2k)

...
h(uDk)


for k = 1, 2. During forward propagation, we store the Dk = diag (σ′ (yk)) for k = 1, 2,

Dk =


σ′(y1k) 0 · · · 0

0 σ′(y2k) · · · 0
...

...
. . .

...
0 0 · · · σ′(yDk)


and the Gk = diag (σ′′ (yk)) for k = 1, 2,

Gk =


σ′′(y1k) 0 · · · 0

0 σ′′(y2k) · · · 0
...

...
. . .

...
0 0 · · · σ′′(yDk)


13

for example, if the nonlinearity were a sigmoid function σ(x) = (1 + e−x)−1, the second derivative
would be σ′′(x) = σ(x)(1− σ(x)) (1− 2σ(x)). Then

δ2 = D2e + G2h2

and
δ1 = D1W2δ2 + G1h1

In general, the following recursive relationship holds

δk = DkWk+1δk+1 + Gkhk (19)

Which results in the update rule
∆Wk = −µzk−1δ>k ,

where z0 = x. Notice that the only necessary operations are vector-matrix, matrix-vector and
vector-vector multiplications.

A.1 Relative gradient

Now if we want to use the relative/natural gradient trick each of these terms needs to be multiplied by
W>

k Wk from the right.
∆Wk = −µzk−1δ>kW>

k Wk .

Terms in L2
J The terms in L2

J , consisting of log |Wk| give as gradient
(
W>

k

)−1
. This requires a

D ×D matrix inversion for each of the matrices. Our strategy to avoid it is to substitute the ordinary
gradient with a relative gradient, where we multiply the gradient (with respect to the whole objective
but for each layer separately) by W>

k Wk from the right. In this case, the updates for the Wk terms
simply become proportional to the Wk themselves. Therefore, the update rule becomes

∆Wk = −µ(zk−1δ
>
kW

>
k Wk + Wk) . (20)

As we already noted, the operations involved in these updates can be performed in a way such
that no matrix-matrix multiplication needs to be performed – only matrix-vector and vector-vector
multiplication. This is more apparent when the update rules are rewritten as below

∆Wk = −µ
(
zk−1

((
δ>k W

>
k

)
Wk

)
+ Wk

)
. (21)

B Related work

In the following, we present a review of related work in tractable deep density estimation and
invertible neural networks.

Normalizing flows The modern conception of normalizing flows was introduced in [50], which
discussed density estimation through the composition of simple maps. In [45], it was then proposed
that deep density models implemented through neural networks could be used in order to construct
bijective maps to a representation space and obtain normalized probability density estimates. Since
then, the focus mainly shifted to scalability; [14, 15] introduced scalable architectures, further refined
in [33] to make them more scalable and suitable for practical applications; [44] applied the results to
variational inference. Comprehensive reviews on normalizing flows can be found in [42, 35].

Autoregressive flows Autoregressive flows are among the most used in practice. They involve maps
which can be written as z′i = τ(zi;hi), with hi = ci (z<i). τ is termed the transformer and is a
strictly monotonic function of zi, and ci is termed the i-th conditioner. Its constraint is that the i−th
conditioner can only take variables with dimension indices less than i as an input. This results in an
overall transformation with a triangular Jacobian; the determinant is therefore tractable and can be
computed in O(D) time. Autoregressive flows differ in the way the transformer and conditioner are
implemented; most commonly used are affine autoregressive flows [14, 15, 34, 43, 33] and non-affine
neural transformers [25].

Linear flows A strict generalization of autoregressive flows, where the Jacobian is not constrained to
be triangular, is given by linear flows, which are essentially transformations of the form z′ = Wz,
where W is a D ×D invertible matrix. The Jacobian of the trasformation is simply W and both

14

computing and optimizing its determinant takes time O(D3) in general. To obtain a better scaling
behaviour, [14] and [22] proposed to parameterize the invertible W matrix via matrix decomposition.
One possibility is to compute the PLU decomposition of W and optimize the L and U triangular
transformations. The drawback in this approach is that the permutation matrix P cannot be learned.
A more flexible alternative is to consider the QR decomposition of W, where Q is an orthogonal
matrix and R is upper triangular. However computing Q in full generality requiresO(D3) operations,
matching the complexity of the naive optimization of linear flows. [52] showed that we can apply
the Q transformation as a sequence of at most D symmetry transformations each taking linear time,
effectively making it possible to compute and optimize the QR parameterization of W in O(D2)
time; note however that the sequential nature of the computation makes the method unsuitable for
optimization on hardware accelerators. An experimental comparison of the performance of the PLU
and QR decompositions against the direct optimization of W is found in [22].

Flows based on residual transformations Another class of normalizing flows is based on invertible
transformations of the form z′ = z + gφ(z); this kind of flows are termed residual flows. Two main
approaches can be applied to build invertible residual flows: the first exploits the matrix determinant
lemma and also results in determinants with O(D) computation time; however, there is no analytical
way of computing their inverse. Examples of these approaches are Sylvester flows [53], planar
flows [44] and radial flows [50, 44]. The second approach is that of contractive flows [5]: in this case,
the determinant can not be computed simply; likelihood-based training of these models therefore
needs to rely on a Hutchkinson’s trace based approximation to the exact log-likelihood.

Continuous time flows A separate line of work focuses on building continuous flows; in these ap-
proaches, the flow’s infinitesimal dynamics is parametrized in continuous time, and the corresponding
transformation is then found by integration [13, 19]; Hamiltonian Flows [44] can also be regarded as
such kind of flows.

Other works Recently, many works have proposed ways of incorporating convolutional modules
in normalizing flows, for example see [33, 22, 32]. In particular, [17] presents a formalization of
the problem which bears some similarities to ours, while focusing on convolutional layers instead of
fully connected ones. Other work has been dedicated to constructing invertible neural networks, see
for example [3, 31, 18].

C Complexity of mathematical operations involved in gradient computation

We want to characterize the complexity of computing
∇θ log |detJgθ(x)| , (22)

where gθ is a neural network.

We will first recapitulate the computational complexity of the main mathematical operations we
employ (see e.g. [55]). Then we’ll recapitulate the complexity of forward evaluation and backpropa-
gation in neural networks. Finally, we’ll discuss the implications on the complexity of computing
the term in equation (22) with the three methods discussed in the paper — namely, based on auto-
matic differentiation, the standard computation described in section 3 and the relative gradient based
computation.

C.1 Matrix operations

Matrix-vector and vector-vector multiplication The multiplication of a D × D matrix with a
D × 1 vector scales as O(D2). Same for the outer product between two vectors of dimension D × 1.

Matrix-matrix multiplication For the multiplication of two square matrices of size D ×D

• An implementation of the Bareiss algorithm would scale as O(D3);
• An implementation of the Strassen algorithm would scale asO(D2.807...) ;
• An implementation of the Coppersmith-Winograd algorithm would scale asO(D2.373...) .

In practice, what is usually implemented in linear algebra libraries is some flavor of the Strassen
algorithm (this is because the Coppersmith-Winograd algorithm, while having a more favorable
asymptotic behaviour, is effectively slower if D is not extremely high).

15

Matrix inversion To find the inverse of a matrix of size D ×D

• An implementation of Gauss-Jordan elimination would scale as O(D3);

• An implementation of the Strassen algorithm would scale as O(D2.807...) ;

• An implementation of the Coppersmith-Winograd algorithm would scale as O(D2.373...) .

Determinant To find the determinant of a matrix of size D ×D

• An implementation of the Bareiss algorithm would scale as O(D3);

• Algorithms based on fast matrix multiplication scale asO(D2.373...) .

For simplicity, in most of our considerations on complexity we assume that the computation of
the determinant, the computation of the inverse and the multiplication of two square matrices have
cubic cost. Notice that the cost of these operations always dominates over that of matrix-vector and
vector-vector multiplication.

C.2 Other operations involved in the Jacobian term computation

Other operations turn out to be ininfluent on the overall computational complexity. Namely logarithms,
absolute values, sums have no relevant effect in terms of asymptotic scaling, since their computational
cost is dominated by that of the most expensive matrix operations listed above.

C.3 Complexity of neural network operations

Forward pass in a neural network The complexity of the forward pass in a neural network
depends on the neural network structure. For simplicity, we will consider fully connected Neural
Networks, which due to their dense structure will provide an upper bound for the complexity of most
of the nets used in practice. Given an input vector, the forward pass is comprised of a sequential series
of matrix-vector operations, plus elementwise operations on the resulting vector. The matrix-vector
operations dominate the complexity; for an L layer neural network, there are L such operations.
Therefore, for data of dimensionality D, the complexity of a forward pass in a Neural Network for a
single data sample is O(LD2).

Minibatching The objectives should, in principle, be optimized on the full batch. Stochastic
optimization [9] relies on the idea that the update steps in the optimization process can be performed
on subsets of the whole training data, called minibatches. In practice these objectives will always
be computed on minibatches, so the expected value must be substituted with its empirical estimate
over a single minibatch. The minibatch size should in principle be considered when considering how
the algorithm scales. In the remainder, however, we will neglect this term, as minibatches used in
practice are usually quite small.

Gradient computation On top of this, we also need to consider the gradient computation. Since
the gradient is taken over the scalar loss function, this implies (through backpropagation or reverse
mode differentiation) no increase in the asymptotic computational cost. We further elaborate on this
in the next section.

C.4 Computing the Jacobian with automatic differentiation

Jacobian through automatic differentiation Automatic differentiation [4] includes two main
operational modes: the forward mode and the backward mode. Consider the computation of the
Jacobian of a function gθ) : RD → Rd. The complexity of computing the Jacobian will depend on
whether we use forward or reverse mode AD. This changes the complexity of the operation:

• forward mode requires D c ops(gθ) operations, where D is the dimensionality of the data
and c is a constant, c < 6 and typically c ∈ [2, 3] (see [21]);

• reverse mode requires d c ops(gθ) operations.

16

In the case of dimensionality reduction, reverse mode differentiation (of which backpropagation
represents an instance) is clearly more efficient. This is the case when the output of the function is
scalar (d = 1); thus, this explains our claim that gradients computation with backpropagation implies
no increase in the asymptotic computational cost with respect to the forward pass alone.

For neural networks where all layers (including input and output) have the same size, both methods
result in the same complexity. So in that case neither is better in terms of computational complexity
— though in practice it is known that reverse mode performs better [40]. For such neural networks
(including those we consider) therefore, given that ops(gθ) is O(LD2), the overall complexity of the
Jacobian computation via automatic differentiation is O(LD3).

The gradient of the objective can then be computed via backpropagation; however, the forward
evaluation is what dominates the overall complexity.

Standard and relative gradient computations The evaluation of the two terms Lp and L1
J re-

quires a forward pass of the neural networks, thus scaling as O(LD2). As we discussed, back-
propagation to compute the gradient does not increase the overall cost. For L2

J , as we have shown,
the gradient can be computed without need to actually evaluate the corresponding term (that is,
side-stepping the determinant computation). However, the standard computation of the gradient still
requires computing inverses of all the weight matrices, resulting in a cubic cost operation for each
layer — thus utimately in O(LD3) cost.

When using the relative gradient, this inversion can be avoided, and computing the gradients of
L2
J implies no additional costs. The overall cost of the gradient computation is therefore simply
O(LD2).

D Implementation details

To efficiently optimize our objective (e.g. equation (3) in the main paper) we need to implement a
variant of the backpropagation algorithm as detailed in appendix A. In particular, we need to compute
the updates (equation (15) in the main paper) avoiding expensive matrix-matrix multiplications. This
section is devoted to the description of an implementation strategy that takes advantage of Automatic
Differentiation (AD), in order to have full flexibility in the definition of our model architectures and
loss functions.

Although all modern deep learning frameworks include automatic differentiation libraries, they imple-
ment the standard backpropagation algorithm. To implement our variant, we have two straightforward
alternatives:

• tweak some existing AD libraries to let us access the extra terms we need;

• implement our own AD library with the extra functionality we need.

The second alternative is easily excluded as we don’t want to reinvent the wheel and the development
effort would be too much. The first alternative is somewhat viable, but not future proof; we would be
faced with the need to support our own modifications on top of the AD library we use.

We obviate to these problems with a little trick: we introduce in our architectures some dummy layers
to accumulate the partial results that the standard backpropagation computes in the backward pass.
This approach solves the previous problems by being:

• universal: it can be easily implemented on top of whatever AD library that computes
reverse-mode AD, without tweaking the internals of the library;

• efficient: the dummy layer operations are O(1).

D.1 The Accumulator layer

To obtain the gradient updates (20) we need to compute the δ terms (19). To better understand what
these terms represent, we can consider a simple 2-layers "scalar" network, i.e. a network in which
inputs, outputs and weights are scalar values:

17

f(x;w) = w2σ(w1x) (23)
= w2σ(y1)

= w2z1
= y2

where w is the vector of scalar parameters, σ is the activation function of choice and

y1 = w1x, y2 = w2z1, z1 = σ(y1) .

Given a loss function L, the gradient of L with respect to w1 is easily computed with application of
the chain rule

∂L
∂w1

=
∂L
∂y2

∂y2
∂z1

∂z1
∂y1

∂y1
∂w1

(24)

In this simple case, it is easy to isolate δ in the gradient equation:
∂L
∂w1

= δ1
∂y1
∂w1

(25)

Reverse mode AD libraries necessarily compute all the partial derivatives in (24) and thus the δ1
term we need. Unfortunately, the partial results are usually not accessible by the users. To access
such terms without dealing with the internals of the AD libraries, we can introduce a parameterized
function

a(x;λ) = x+ λ

and redefine our scalar network as

f(x;w) = w2σ(a(y1)) (26)

The gradient with respect to w1 becomes

∂L
∂w1

=
∂L
∂y2

∂y2
∂z1

∂z1
∂a

∂a

∂y1

∂y1
∂w1

(27)

The introduction of a is only a trick; in order not to modify the gradients nor the behaviour of the
scalar network, we require

a(y1) = y1 (28)
∂z1
∂a

=
∂z1
∂y1

∂a

∂y1
= 1

which is easily achieved by setting λ = 0.

The benefit of introducing this accumulator layer a is that now we can ask the AD library to compute
the gradients with respect to the dummy parameter λ; it is easy to verify that

∂a

∂λ
= δ1 (29)

thus making it possible to obtain the δ terms we need to compute (20).

18

E Universal approximation capacity in normalizing flows

Universal approximation for densities is a property often discussed in the context of autoregressive
normalizing flows. It can be shown, based on the proof of existence and non-uniqueness of solutions
to the nonlinear ICA problem [29], that any distribution can be mapped onto a factorized base
distribution by an invertible function with triangular Jacobian, provided that the function class used
for this mapping is large enough. Normalizing flows with triangular Jacobians and a high number of
parameters therefore have this approximation capacity (see e.g. [25]). However, they can obviously
not represent all possible functions — but only those with triangular Jacobians. They can therefore
not be used to learn proper inverse functions and perform useful feature extraction.

A more general notion of universal approximation is the one usually discussed in the neural network
literature, that is — universal approximation for functions. It has been shown that standard multilayer
feedforward networks can approximate any continuous function to any degree of accuracy. For
example, [38] proved that a standard multilayer feedforward network with a locally bounded piecewise
continuous activation function can approximate any continuous function to any degree of accuracy if
and only if the network’s activation function is not a polynomial. Biases also play a crucial role in
this proof, as universal approximation capacity wouldn’t be possible without.

While the proof above does not directly apply to our case, since it requires hidden layers with arbitrary
width, we discuss how to incorporate biases in our training procedure in appendix F, in order to
increase the expressivity of our model. We describe the nonlinearities we employed in appendix H.

F Relative gradient for the augmented matrix

In order to allow for the training of neural networks with biases, we present a heuristic based on the
fact that affine transformations involving vector-matrix products plus biases can be represented as a
single matrix operation through the formalism of the augmented matrix (see e.g. [46]).

Linear affine operations of the form y = Wx + b can be represented via an augmented matrix as
follows [

y
1

]
=

[
W b

0 . . . 0 1

] [
x
1

]
= W

[
x
1

]
, (30)

where we refer to the matrix W as augmented matrix.

The question is whether the relative gradient trick can be applied to the augmented matrix. The main
issue is that we would like, throughout our optimization procedure, to remain on the manifold of
augmented matrices; that is, we do not want to change the last row of Wk. Therefore, the problem
becomes a constrained optimization problem.

The L2
J term It is easy to see that detWk = detWk. The ordinary gradient for all terms in the last

column and row of Wk will therefore be equal to zero, and this will not be changed by the relative
gradient trick; therefore, the contribution of this term will not lead us away from the manifold of
augmented matrices.

The Lp and L1
J terms Both the yk and zk terms will however be influenced by the presence of biases,

so the gradients on the first D elements of the last column (that is bk) will be nonzero. Through the
multiplication with W

>
kWk, the updates given by the relative gradient on the last row of Wk will

therefore in general be nonzero, thus implying moving outside of the manifold we are interested in.

To solve this issue, we use a projected gradient algorithm, enforcing that the update for the last row
of Wk at each step is equal to zero. We call this algorithm projected relative gradient descent.

In practice, we can use the augmented matrix formalism to apply the relative trick to the full
parameters and then extract only the updates for the parameters of interest W, b disregarding the
dummy row in (30). Denoting by G the gradients of W and by gb the gradients of b, we can compute
the relative gradients as

[
G gb
g g

]
W
>
W =

[
GW>W + gbb

>W GW>b + gbb
>b + gb

.

]
(31)

19

The relative gradient updates we need are then given by

∆W→ GW>W + gb
(
b>W

)
(32)

∆b→ G
(
W>b

)
+ gb(1 + b>b) (33)

Note that G is nothing more then the standard backpropagation update (6), thus we can efficiently
compute ∆W by avoiding matrix-matrix multiplications as in (15). For ∆b we can directly avoid
matrix-matrix multiplications by taking some care in the evaluation of (33).

G Convolutions

The convolutional neural network [56] is composed of modules whose main components are: (i) a
convolution layer; (ii) a pooling layer; (iii) a nonlinearity.

The convolution operation We follow the same notation as in [56]. Typically, inputs to the
convolution layers are order 3 tensors with size H l ×W l × Dl. A convolution kernel is also an
order 3 tensor with size H ×W l ×Dl. If D convolutions are used, this results in a order 4 tensor
RH×W l×Dl×D of parameters. If the input is H ×W l×Dl and the kernel size is H ×W l×Dl×D,
the convolution result has size (H l −H + 1) × (W l −W + 1) ×D. In our setting, note that the
number of channels which can be used in practice is constrained, due to the formula in equation (3),
which requires the input and output dimensionalities to be equal.

Are convolutional neural networks invertible? The convolution operation was shown to be
invertible under some mild conditions. See [39] and [17], section 3.3, describing how Gaussian (or
Uniform) sampled c × c × r × r parameter tensors will yield invertible convolutional layers with
probability 1.

The pooling layer can be substituted with an invertible counterpart (see [31], section 3; or [17],
figure 3), which basically becomes a tensorial extension of the permutation operation. As usual, an
invertible nonlinearity can be chosen.

Relative gradient for the convolution For a convolution layer that preserves the number of chan-
nels in the input, we can directly write the operation in the form of a square matrix. In this case we
can compute the relative gradient as explained in section 4, and we can obtain the gradients with
respect to the filter entries by careful application of the chain rule. We however leave the precise
theoretical derivation and experiments for future work.

20

10−4

10−3

10−2

10−1

1

10

102

5k 10k 15k 20k

T
im

e
(s

)

Data dimensionality

Relative
Ordinary

Figure 3: Comparison of the average computation times of a single evaluation of the gradient of the
log-likelihood over a batch of size 100. Values are the mean over 5 steps, and the experiments have
been run 5 times on a CPU cluster.

H Experiments

H.1 Computation of relative vs. ordinary gradient

Computational cost In section 5 and figure 1 we compared the computational cost of computing log-
likelihood gradients with our newly proposed method and a naive backpropagation implementation
when using hardware accelerators. Specifically, we used one Tesla P100 GPU card equipped with 16
GB of dedicated memory and circa 3500 computing cores. In figure 3 we show the same comparison
for a computation platform comprising 48 cpu threads (Intel Xeon Processor E5-2650 v4 @ 2.20
GHz base frequency, 2.90 GHz max frequency) operating in parallel with about 250 GB of available
RAM memory. It is hard to spot the expected theoretical improvement from O(D3) to O(D2), but a
practical gain of about 2 orders of magnitude in computation time emerges in favor of the relative
gradient computation.

In order to directly compare the execution times disregarding bottlenecks due to memory operations,
we performed all of the experiments with no garbage collection. Anyways, by using always the
same batch we made our experiments not very memory intensive and repeating the experiments with
garbage collection enabled didn’t show any substantial difference; we therefore don’t report the plot.

Memory consumption It is usual in deep learning to be constrained by the memory consumption of
the models in use, as the available memory on hardware accelerators is typically scarce. To operate,
a network needs to store the data, the intermediate activations (needed to compute gradients) and
the parameters. For our simple architecture, the bottleneck is the storage of the parameters; this is
because we don’t employ very deep architectures, so the amount of intermediate activations to store is
limited, and the size of the parameters grows quadratically with respect to the data size, meaning that
parameters storage clearly dominate over data storage (this is assuming that data are loaded in small
minibatches, which is the norm). This is certainly problematic for very high-dimensional datasets (i.e.
high definition images) but even from this point of view we have a clear advantage over an explicit
optimization of the Jacobian term with automatic differentiation. In this latter case, in fact, we need
to compute the full Jacobian of the affine transformations for each individual data point; like for the
weight matrices, the size of these terms grows quadratically with the input size, further increasing the
memory footprint of the optimization procedure.

21

Data dimensionality: D = 5000

0

200

400

600

800

1000

1200

1400

0 5 10 15
0

2

4

6

8

10

12

14

0 25 50 75 100

M
em

or
y
us
ag

e
(M

iB
)

Time (s)

Relative

M
em

or
y
us
ag

e
(G

iB
)

Time (s)

Autodiff

Figure 4: Comparison of the memory consumption for a single gradient evaluation. With D = 5000
our simplified analysis predicts a lower bound in the memory consumption of 400 MB for storing
the parameters and the computed gradients; given that at startup time we observe a base memory
consumption of almost 200 MB (computing environment + loaded libraries) we can see that our
relative gradient implementation comes very close to the theoretical limit. For the naive autodiff
implementation, instead, we compute a lower bound of 10.4 GB, which is approximately reflected in
the empirical measurements (maximum consumption is almost 13 GB). Note: memory consumption
for the autodiff case is reported in GiB, effectively making the scale of the plot one order of magnitude
higher then in the relative gradient plot.

As a simple example, we can compare the approximate memory requirements of the two methods
in the moderately high-dimensional case with D = 20000. For a modest 2-layers network and
employing Float32 weights (each requiring 4 Bytes (B) for storage), the memory needed to store
the parameters amounts to D2 × 4B × 2(layers) = 3.2GB. Assuming a minibatch size of 100, data
and activations require around 10-100 MB which is clearly negligible. The computed gradients will
require the same space as the parameters, raising the memory footprint to over 6GB. For the gradient
computations themselves, our method doesn’t require additional memory (theoretically), while
explicit automatic differentiation requires storing as many jacobian terms as the size of the minibatch,
thus requiring over 300GB in our simple case. As this is clearly unfeasible on common hardware
accelerators, we can drop the parallelization of the jacobian terms computation to considerably reduce
memory consumption (bringing it down to over 9GB in our case), but this comes at the cost of further
slowing down an already inefficient procedure.

While the simple analysis above shows a clear advantage for our proposed method, from the practical
point of view many additional technical details might play a role in incrementing the memory
requirements of both methods (e.g. loading of libraries and computing environment, just-in-time
compilation steps, intermediate computations that can’t be fused together...). In figure 4 we report a
simple profiling of the memory consumption of the two methods, which shows how the difference is
relevant in practice.

H.2 Relative gradient optimization behaviour with different optimizers

In this section we report some additional observations analyizing the relative gradient optimization
behaviour with different optimizers.

22

Figure 5: 2D toy examples trained with SGD. True distribution on the left, predicted densities on the
right.

1370

1470

0 50 100 150 200 250

-
lo

g
p(

x)

Epochs

Adam
SGD

Figure 6: Log-likelihood evolution on MNIST validation set.

In figures 5 and 6 we compare the optimization behaviour using vanilla Stochastic Gradient Descent
(SGD) and Adam. Results on toy datasets like those in figure 2 in the main paper are shown in
figure 5. It can be seen that the data densities are modeled convincingly. We also report (figure 6) the
evolution of the loss with SGD and Adam on density estimation on MNIST. The two methods seem
to reach convergence at comparable speed: SGD is faster initially, but in the longer run Adam appears
to achieve a better performance faster. Ultimately, both methods achieve a comparably good result.

H.3 Density estimation

Architecture Although mentioned all throughout the paper, let us recall the neural network used
for these experiments. We here rely on the usual feedforward architecture, that is, a neural network
for which the input is sequentially passed through an interleaving series of matrix multiplications and
non-linear activation functions, being the last operation a matrix multiplication.

Nonlinearities Note that, since we make use of square weight matrices, the only two hyperparame-
ters left in our architecture are the number of layers in the network, L, and the non-linearity used. We
consider two types of non-linearities. First, a smooth version of the leaky-ReLU activation function
with a hyperparameter α,

sL(x) = αx+ (1− α) log(1 + ex). (34)
Second, a weighted sum of the identity and hyperbolic tangent functions with two hyperparameters,
α and β, controlling the steepness and “level of linearity” of the activation function,

sT(x) = tanh(αx) + βx. (35)

However, in our experiments, these two hyperparameters for the sT nonlinearity are fixed to α = 1
and β = 0.1 always. Both of these nonlinearities are relatively smooth, and while no closed form
solution for their inverse is available they can be inverted easily with a Newton method; in practice,
for our parameter choice, we use a fixed number of 100 iterations which seems to be (way) more than
sufficient.

Toy examples For all the experiments shown in figure 2 of the main paper, we always use Adam as
optimizer, fix the batch size and number of layers L to 100, use biases, and fix the activation function
to sL with α = 0.3. We chose as base distribution (that is, the distribution of the latent variables)
the standard normal distribution. We plot, as in the quantitative experiments, the best model found

23

during the training. Regarding the data, we sampled five-thousand samples for the training set and
five-hundred points for the test set. The only changing hyperparameters across the figures is the
learning rate and the number of epochs, which are summarised in table 2.

Table 2: Hyperparameters used for figure 2 of the main paper.
MoG half moons sine

learning rate 0.001 0.001 0.005
no. of epochs 2000 1300 4000

Quantitative results on MNIST To obtain the density results on the MNIST dataset, the same
preprocessing as in [43] has been applied. Note that we do not include the contribution due to this
preprocessing in the reported log-likelihood values. 8 For the model architecture, we fixed the number
of layers to 2. Note that competing models reported in table 4 of the main paper are taken from [43]
and employ a higher number of parameters. We used the smooth Leaky-ReLU (34) with α = 0.01
and a standard normal distribution as a distribution for the latent variables. The optimization has been
performed with Adam with default parameters. The hyperparameters search has been performed over
learning rate values of 0.001, 0.0005, 0.0001 and batch sizes of 10, 100. For each run, we selected
the model whose performance did not improve in the successive 30 epochs of training (i.e. we chose
the model at epoch 10 if all the values of the loss for epochs 11 to 40 were higher then the value after
10 epochs). The best hyperparameters selection is shown in table 4.

Convergence time on MNIST To get an idea of the running time of our method in a real-world
scenario, one epoch on MNIST (D = 784, 50k training samples) on a modern laptop CPU takes an
order of tens of seconds, a ∼ 4.5× speedup compared to “standard” optimization (which is roughly
consistent with figure 3, which was obtained with a slightly different experimental setup) and ∼ 50×
speedup with respect to “autodiff”. Our convergence time is ∼ 15 min. While the speed-up is already
visible at this data dimensionality, the difference is expected to be larger at higher dimensionality.

Quantitative results First, we want to remark that the data used for the experiments shown in
table 1 was pre-processed in the exact same way as described in [43].

For the results shown in such table (MNIST excluded) a more exhaustive hyperparameter search
has been performed. Particularly, for each dataset a grid-search was run with the options shown in
table 3, taking for each experiment the model with best validation log-likelihood obtained during
training and, across experiments, getting the one with best test log-likelihood. Experiments were
again trained using Adam and, instead of fixing the number of epochs, training was finished with an
early-stopping criteria that evaluates the validation set every 25 epochs and has a patience of 5 trials.
The best hyperparameters selection is shown in table 4.

Table 3: Hyperparameters considered for the grid search.
Option #1 Option #2 Option #3

activation sL, α = 0.3 sL, α = 0.01 sT
no. layers 25 50 100
learning rate 0.001 0.0005 0.0001
batch size 10 50 100
base distribution standard normal hyperbolic secant
bias Yes No

Regarding the rest of the models shown in that table, we reproduce the exact same experiments as
those described in [43]. Therefore, the considered models have the same architecture and stopping
criteria as the ones shown in table 1 of the aforementioned paper. The only difference with respect to
the results shown in table 1 of [43] and table 1 in our paper is the number of trainable parameters. As
mentioned in section 5, in order to perform a fair comparison, we tweaked the hyperparameters of
each architecture so they have approximately the same number of parameters.

8We thank T. Anderson Keller and Emiel Hoogeboom for pointing this out.

24

Table 4: Hyperparameters for the results in table 1 in the main paper.
POWER GAS HEPMASS MINIBOONE BSDS300 MNIST

activation sL, α = 0.3 sL, α = 0.3 sL, α = 0.3 sT sT sL, α = 0.01
no. layers 50 100 50 25 25 2
learning rate 0.001 0.001 0.001 0.0001 0.0001 0.0001
batch size 100 100 50 100 100 10
base dist. std normal std normal hyper. secant std normal hyper. secant std normal
bias Yes Yes No Yes No Yes

Specifically, we first trained our model as described above and, once we knew the number of
parameters of the best-performing model (which is approximately LD2) we used the formulae shown
in table 3 of [43] to find to which values we should fix the hyperparameters L and H of their models
so that they have the same number of parameters.

As a final remark, note that there is one degree-of-freedom in those equations (for every L there is a
value of H solving the given equation). Therefore, for each of the considered models and datasets,
we run two different experiments, one with L = 1 and another with L = 2 (as similarly done in [43]),
finding afterwards the proper value of H to match the number of trainable parameters of our best
model for that same dataset.

25

