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Abstract

We introduce a novel online multitask setting. In this setting each task is partitioned
into a sequence of segments that is unknown to the learner. Associated with each
segment is a hypothesis from some hypothesis class. We give algorithms that
are designed to exploit the scenario where there are many such segments but
significantly fewer associated hypotheses. We prove regret bounds that hold for
any segmentation of the tasks and any association of hypotheses to the segments.
In the single-task setting this is equivalent to switching with long-term memory
in the sense of [1]. We provide an algorithm that predicts on each trial in time
linear in the number of hypotheses when the hypothesis class is finite. We also
consider infinite hypothesis classes from reproducing kernel Hilbert spaces for
which we give an algorithm whose per trial time complexity is cubic in the number
of cumulative trials. In the single-task special case this is the first example of
an efficient regret-bounded switching algorithm with long-term memory for a
non-parametric hypothesis class.

1 Introduction

We consider a model of online prediction in a non-stationary environment with multiple interrelated
tasks. Associated with each task is an asynchronous data stream. As an example, consider a scenario
where a team of drones may need to decontaminate an area of toxic waste. In this example, the tasks
correspond to drones. Each drone is receiving a data stream from its sensors. The data streams are
non-stationary but interdependent as the drones are travelling within a common site. At any point
in time, a drone receives an instance x and is required to predict its label y. The aim is to minimize
mispredictions. As is standard in regret-bounded learning we have no statistical assumptions on
the data-generation process. Instead, we aim to predict well relative to some hypothesis class of
predictors. Unlike a standard regret model, where we aim to predict well in comparison to a single
hypothesis, we instead aim to predict well relative to a completely unknown sequence of hypotheses
in each task’s data stream, as illustrated by the “coloring” in Figure[I] Each mode (color) corresponds
to a distinct hypothesis from the hypothesis class. A switch is said to have occurred whenever we
move between modes temporally within the same task.

Thus in task 1, there are three modes and four switches. We are particularly motivated by the
case that a mode once present will possibly recur multiple times even within different tasks, i.e.,
“modes” < “switches.” We will give algorithms and regret bounds for finite hypothesis classes
(the “experts” model [2} 3, 14]) and for infinite non-parametric Reproducing Kernel Hilbert Space
(RKHS) [5] hypothesis classes.

The paper is organized as follows. In the next section, we introduce our formal model for online
switching multitask learning. In doing so we provide a brief review of some related online learning
results which enable us to provide a prospectus for attainable regret bounds. This is done by
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Task 1

ForT =1toT do
Receive task £7 € [s].

Task 2 5]
Seti«+ (75t <« o(r).

Task3 Receive instance z7 = :c; eX.
Task 4 Predict g = g]i e {-1,1}.
Receive label y =y; € {-1,1}.
Task 5 ~
Incur Loss Loi(y™,97).

Time

Figure 1: A Coloring of Data Streams (5 tasks, 6  Figure 2: The Switching Multitask Model
modes, and 11 switches).

considering the bounds achievable by non-polynomial time algorithms. We then provide a brief
survey of related work as well as our notational conventions. In Sections [3] and ] we provide
algorithms and bounds for finite hypothesis classes and RKHS hypothesis classes, respectively.
Finally, we provide a few concluding remarks in Section[5] The supplementary appendices contain
our proofs.

2  Online Learning with Switching, Memory, and Multiple Tasks

We review the models and regret bounds for online learning in the single-task, switching, and
switching with memory models as background for our multitask switching model with memory.

In the single-task online model a learner receives data sequentially so thaton atrial t = 1,..., 7"
1) the learner receives an instance x; € X from the environment, then 2) predicts a label §; € {—1, 1},
then 3) receives a label from the environment y; € {—1,1} and then 4) incurs a zero-one loss
Lo1(Yt,0¢) := [y+ # 9¢]. There are no probabilistic assumptions on how the environment generates
its instances or their labels; it is an arbitrary process which in fact may be adversarial. The only
restriction on the environment is that it does not “see” the learner’s ¢, until after it reveals y;. The
learner’s aim will be to compete with a hypothesis class of predictors H C {—1,1}* so as to
minimize its expected regret, Rp(h) = Zthl E[Lo1(ye, 91)] — Lo1(ye, h(x¢)) for every hypothesis
h € H, where the expectation is with respect to the learner’s internal randomization.

In this paper we will consider two types of hypothesis classes: a finite set of hypotheses Hg,,, and a
set H y induced by a kernel K. A “multiplicative weight” (MW) algorithm [6]] that achieves a regret
boun(ﬁ of the form

Rr(h) € © ( 10g(|Hﬁn|)T) (Vh € Hen) 1)

was given in [[7]] for finite hypothesis classes. This is a special case of the framework of “prediction
with expert advice” introduced in 3. Given a reproducing kernel K : X x X — R we
denote the induced norm of the reproducing kernel Hilbert space (RKHS) H k as ||-||  (for details
on RKHS see [3] also Appendix . Given an instance sequence  := (x1,...,o7), we let
”H(;) :={h € Hk : h(z) € {—1,1},Vt € [T]} denote the functions in H that are binary-valued
on the sequence. An analysis of online gradient descent (OGD g ) with the hinge loss, kernel K and
randomized prediction [8] see e.g., Ch. 2 & 3] (proof included in Appendix [C.3|for completeness)
gives an expected regret bound of

Rr(h) € 0 (\/ |h||iX%<T) (vh e HD), @

where X7 > maxer) K (24, 2¢).

In the switching single-task model the hypothesis becomes a sequence of hypotheses h =
(h1,h2,...,hr) € HT and the regret is Ry (h) = ZtT:1 E[Lo1(ye, Gt)] — Lo1(ye, he(ze)). Two
parameters of interest are the number of switches k := 31:_11 [h¢ # h¢t1] and the number of modes
m = | UL, {h¢}],1.e., the number of the distinct hypotheses in the sequence. In this work we are

!"Technically, when we say that an algorithm achieves a bound, it may be that the algorithm depends on a
small set of parameters which we have then assumed are “tuned” optimally.



interested in long-term memory, that is, algorithms and bounds that are designed to exploit the case
of m < k.

The methodology of [9] may be used to derive an expected regret bound for Hg, in the switching

single-task model of the form Rr(h) € O(y/(klog(|Hsn|) + klog(T/k))T). Freund in [10]
posed an open problem to improve the results of [9]] in the case of long-term memory (m < k).
Freund gave counting arguments that led to an exponential-time algorithm with a regret bound

of Rr(h) € O(y/(mlog(|Hen|) + klogm + klog(T/k))T). In [I] an efficient algorithm was
given with nearly this bound, except for a small additional additive “T"loglog 7" term under the

square root. For the hypothesis class 7{(;) we may give non-memory bounds of the form Rr(h) €
O(\/k max || hy ||§< X2.T) by using a simple modification [T1]] of OGD x (see Appendix . To

the best of our knowledge there are no previous long-term memory bounds for 7-{(;) (however see
the discussion of [12] in Section @]); these will be a special case of our multitask model, to be
introduced next.

2.1 Switching Multitask Model

In Figure 2] we illustrate the protocol for our multitask model. The model is essentially the same as the
switching single-task model, except that we now have s tasks. On each (global) trial 7 the environment
reveals the active task ¢7 € [s]. The ordering of tasks chosen by the environment is arbitrary, and
therefore the active task may change on every (global) trial 7. We use the following notational
convention: (global time) 7 = ¢ (local time) where i = (7, t = o(7) and o (7) := Z;.':l[ﬁj ={7].
Thus 27 = ai, y" = v, etc., where the mapping is determined implicitly by the task vector

£ € [s]”. Bach task i € [s] has its own data pair (instance, label) sequence (z%,41), ..., (zh:, y%)
where T = T + ... + T*. The multitask hypotheses multiset is denoted as h* = (h',..., hT) =
(hi,..., thl, kY, R € HT. In the multitask model we denote the number of switches

as k(h*) :== >0, fT;fl[hi # hi ], the set of modes as m(h*) := U_, UtT:i1 {hi} and the

multitask regret as Rp(h*) :== >0, ZtT;l E[Lo1(vi, 91)] — Lo1(vi, k(). In the following, we
give motivating upper bounds based on exponential-time algorithms induced by “meta-experts.” We
provide a lower bound with respect to 7—[&? in Proposition@

The idea of “meta-experts” is to take the base class of hypotheses and to construct a class of
“meta-hypotheses” by combining the original hypotheses to form new ones, and then apply an MW
algorithm to the constructed class; in other words, we reduce the “meta-model” to the “base-model.”
In our setting, the base class is Hp, C {—1,1}" and our meta-hypothesis class will be some
H' C {—1,1}* where X’ := {(x,t,i) : & € X,t € [T?],i € [s]}. To construct this set we define
H(k,m, s, Han, T, ..., T%) :={(h},... k%) = h € HL : k= k(h),m = |m(h)|} and then
observe that for each h € H we may define an b’ : X' — {—1,1} via ' ((x,,4)) := hi(z), where
hi is an element of h. We thus construct H’ by converting each h € H to an h’ € H’'. Hence we
have reduced the switching multitask model to the single-task model with respect to H’. We proceed
to obtain a bound by observing that the cardinality of H is bounded above by (*,*) (™)m®(m — 1)*
where n = |Hgy|. If we then substitute into (I)) and then further upper bound we have

Ry(h*) €O (\/(mlog(n/m) Yt slogm + klogm + klog((T — s)/k:))T) , 3)

for any h* € HI such that k = k(h*) and m = |m(h*)|. The drawback is that the algorithm
requires exponential time. In Section [3]we will give an algorithm whose time to predict per trial is
O(|Hsn|) and whose bound is equivalent up to constant factors.

We cannot directly adapt the above argument to obtain an algorithm and bound for H(;? since the
cardinality, in general, is infinite, and additionally we do not know «x in advance. However, the

structure of the argument is the same. Instead of using hypotheses from 'H(;) as building blocks to

construct meta-hypotheses, we use multiple instantiations of an online algorithm for ’H(;) as our
building blocks. We let Ak := {a[l],...,a[m]} denote our set of m instantiations that will act as

a surrogate for the hypothesis class 'H(;). We then construct the set, A (kym, s, T, ..., T%) :=
{a € AL : k = k(a),m = |m(a)|}. Bach @ € A now defines a meta-algorithm for the multitask



setting. That is, given an online multitask data sequence (x%,4%), ..., (275, Y7, )» each element of @
will “color” the corresponding data pair with one of the m instantiations (we will use the function
a:{(t,i):t €[T",i € [s]} — [m] to denote this mapping with respect to @). Each instantiation
will receive as inputs only the online sequence of the data pairs corresponding to its “color”; likewise,
the prediction of meta-algorithm a will be that of the instantiation active on that trial. We will use as
our base algorithm OGDg. Thus for the meta-algorithm @ we have from (2)),

S

ZZE [Lo1( ytayt < ZZ‘COl yt, Z (\/ lhj ||KX2TJ> 4)

i=1 t=1 i=1 t=1

for any received instance sequence € X7 and for any h[1],...,h[m] € HZ. The MW algo-
rithm [3} 12} 4] does not work just for hypothesis classes; more generally, it works for collections
of algorithms. Hence we may run the MW as a meta-meta-algorithm to combine all of the meta-
algorithms @ € Ag. Thus by substituting the loss for each meta-algorithm a (the R.H.S. of @)
into (T and using the upper bound (T;S) m?®(m — 1) for the cardinality of A, we obtain (using

upper bounds for binomial coefficients and the inequality Y. /piqi < \/(O_,; p:) (>, ¢4i))
Rr(h*) €O (\/(Zhem(h*)

|h|\§(X12<+slogm+klogm+klog((T—s)/k))T) )

T
for any received instance sequence € X7 and for any h* ¢ H(Iaﬁ) such that k = k(h*) and
m = [m(h")[.

The terms mlog(n/m) (assuming m < n) and 3¢,y |h||§( X2 may be viewed as learner
complexities, i.e., the price we “pay” for identifying the hypotheses that fit the modes. A salient
feature of long-term memory bounds is that although the data pairs associated with each hypothesis
are intermixed in the multitask sequence, we pay the learner complexity only modestly in terms
of potentially leading multiplicative constants. A switching algorithm without long-term memory
“forgets” and pays the full price for a mode on every switch or new task. We gave exponential-time

algorithms for Hg, and 7{(;? with O(1) leading multiplicative constants in the discussion leading
to (3) and (3). We give efficient algorithms for finite hypothesis classes and RKHS hypothesis classes
in Section and 4] with time complexities of O(n) and O(T?) per trial, and in terms of learner
complexities they gain only leading multiplicative constants of O(1) and O(logT').

2.2 Related Work

In this section we briefly describe other related work in the online setting that considers either
switching or multitask models.

The first result for switching in the experts model was the WML algorithm [3] which was generalized
in [9]. There is an extensive literature building on those papers, with some prominent results
including [IL, 13,14} 115016k 117, 15,118119,1201 121 22]]. Relevant for our model are those papers [[1, 14,
17,1150 20% 21} 22] that address the problem of long-term memory (m < k), in particular [1} [14}[17].

Analogous to the problem of long-term memory in online learning is the problem of catastrophic
forgetting in artificial neural network research [23| 24]. That is the problem of how a system can
adapt to new information without forgetting the old. In online learning that is the problem of how
an algorithm can both quickly adapt its prediction hypothesis and recall a previously successful
prediction hypothesis when needed. In the experts model this problem was first addressed by [,
which gave an algorithm that stores each of its past state vectors, and then at each update mixes
these vectors into the current state vector. In [14]], an algorithm and bounds were given that extended
the base comparision class of experts to include Bernoulli models. An improved algorithm with a
Bayesian intepretation based on the idea of “circadian specialists” was given for this setting in [17].
Our construction of Algorithm[I] was based on this methodology.

The problem of linear regression with long term memory was posed as an open problem in [[17}
Sec. 5]. Algorithm [2] gives an algorithm for linear interpolation in a RKHS with a regret bound
that reflects long-term memory. Switching linear prediction has been considered in [[L1, 25} 26} [12].
Only [12] addresses the issue of long-term memory. The methodology of [12]] is a direct inspiration
for Algorithm [2] We significantly extend the result of [[12, Eq. (1)]. Their result was 1) restricted to a



mistake as opposed to a regret bound, ii) restricted to finite positive definite matrices and iii) in their
mistake bound the term analogous t0 3 ), ., ) ||h\|§< X2 was increased by a multiplicative factor

of O(|m(h*)|), a significantly weaker result.

Multitask learning has been considered extensively in the batch setting, with some prominent early
results including [27, 28, 29]. In the online multitask expert setting [30, 31, 32} [17]] considered a
model which may be seen as a special case of ours where each task is associated only with a single
hypothesis, i.e., no internal switching within a task. Also in the expert setting 33} |34] considered
models where the prediction was made for all tasks simultaneously. In [34] the aim was to predict
well relative to a set of possible predefined task interrelationships and in [33] the interrelationships
were to be discovered algorithmically. The online multitask /inear prediction setting was considered
in [35/ 136 137]]. The models of [36}137] are similar to ours, but like previous work in the expert setting,
these models are limited to one “hypothesis” per task. In the work of [35]], the predictions were made
for all tasks simultaneously through a joint loss function.

2.3 Preliminaries

For any positive integer m, we define [m] := {1,2,..., m}. For any predicate [PRED] := 1 if PRED
is true and equals O otherwise, and for any « € R, [x]+ := x[x > 0]. We denote the inner product
of vectors as both z,w € R" as (x,w) = - w = )., z;w,;, component-wise multiplication
xOw = (rwi,...,Tow,) and the norm as ||w|| = /(w,w). If f : § - R and x € RN
then f(x) := (f(z1),..., f(zn)). The xth-coordinate vector is denoted €% := ([z = 2]),ex; we
commonly abbreviate this to €”. We denote the probability simplex as Ay, := {h € [0, 1]*} N {h:
> hen = 1} andset A, := Ap,;. We denote the binary entropy as H (p) := plog %—i—(l —p)log ﬁ.
If v € Ay then h ~ v denotes that h is a random sample from the probability vector v over the set
H. For vectors p € R™ and q € R™ we define [p; q] € R™™™ to be the concatenation of p and q,
which we regard as a column vector. Hence [p; q]" [p;q] =p P+ q" q.

The notation M+ and v/ M denotes the pseudo-inverse and the unique positive square root, re-
spectively, of a positive semi-definite matrix M. The trace of a square matrix is denoted by
tr(Y) := >, Y, for Y € R™*"™. The m x m identity matrix is denoted I"™. A function
K : X x X — Ris a strictly positive definite (SPD) kernel iff for every finite X C X" the matrix
K(z,2"); 2 ex is symmetric and strictly positive definite, for example, the Gaussian kernel. In
addition, we define S™ to be the set of m X m symmetric matrices and let S_T and S_T ' be the subset
of positive semidefinite and strictly positive definite matrices, respectively. We define the squared
radius of M € S as Rs 1= max;e ) M, ;‘ The (undirected) graph Laplacian matrix is defined by
L := D— A where D is the degree matrix and A is the adjacency matrix. The corresponding (strictly)

positive definite PDLaplacian of an m-vertex connected graph is L° := L + ’RZl ( 1 ) (i) "

m m

3 Finite Hypothesis Classes

In this section we present the algorithm and the regret bound for finite hypothesis classes, with
proofs given in Appendix [A] The design and analysis of the algorithm is inspired by [17], which
considers a Bayesian setting where, on each trial, each hypothesis h gives an estimated probability
P(y™ = §|h) of the outcome y”. The idea is for the learner to predict a probability P(y™ = ) and
the loss incurred is the log loss, log(1/P(y™)). Our algorithm, on the other hand, is framed in the
well known “Allocation” setting [38]] where the learner must play, on trial 7, a vector v™ € A,, and
incurs a loss of ¢” - v where all components of ¢” are in [0, 1].

To gain some intuition about the algorithm we observe the following. The algorithm maintains
and updates the following vectors: a “global” probability vector 7™ € Ay, and the “local” task
weight vectors w;, ..., w; € [0,1]*f». Given an hypothesis h € Hgy, the scalar 7] represents our
“confidence”, on trial 7, that hypothesis & is in m(h*). For a given task i, hypothesis h € Hgy, and
local time ¢, the scalar wg , represents our confidence that h = h} if we knew that h was in m(h*).
Putting together, 77, wfy (r),n Tepresents our confidence, on trial 7, that h = h{. The weights 7™ and

w! (for tasks i) are designed in such a way that, not only do they store all the information required
by the algorithm, but also on each trial 7 we need only update 7w” and w! . Thus the algorithm



Algorithm 1 Predicting Hg, in a switching multitask setting.
Parameters: Han, C {—1 1}X' s,m,k, T € N

Initialization: n := [Han|;7w' « L5 ¢ ﬂ11; wi=-=wi<pl; 0:=1— 7= ¢:= m‘and
ni= \/(m log (2) +smH (L) + ( ) —1)(T — S)H(i(m—l)(Tfs))) 2
For r=1,...,T
e Receive task £7 € [s].
e Receive 27 € X'
eSeti< 0"t o(r).
e Predict
v e T let, W™ ~v™, g« h(27)
wy
e Receive y” € {—1,1}.
e Update:
i) Vh € Hsn, ¢ = Lo (h(z),y") i) 6 + w; ® exp(—nc")
iii) f + (n" - w})/(x" - 6) iv) € 1 —wj + 5
v) 7w e vi) wiyq = ($(1 —wy) +088) O e

predicts in O(n) time per trial and requires O(sn) space. We bound the regret of the algorithm in the
following theorem.

Theorem 1. The expected regret ofAlgorithmwith parameters He, C {—1,1}*; s,m,k, T € N
and

o _mlog( ) +smH<Tln) + (T—s)H(T]iS> +(m— 1)(T—S)H<Mw>

is bounded above by

ZZ]E[Em(yi,@i £o1(yt, ( ))<\/7

i=1 t=1

forany h* € HL such that k = k(h*), m > |m(h*)],
C <mlog ( ) + s(log(m) + 1)+ k <10g(m —1)+2log (Tk—s) + 2) .

In further comparison to [17] we observe that we can obtain bounds for the log loss with our algorithm
by defining P(y” = §) := >onvnP(y" = ylh) and redefining cj, := —% log(P(y™ = g|h)) in the
update. The resultant theorem then matches the bound of [17, Thm. 4] for single-task learning with
long-term memory (s = 1) and the bound of [17, Thm. 6] for multitask learning with no switching

(k=0).

4 RKHS Hypothesis Classes

Our algorithm and its analysis builds on the algorithm for online inductive matrix completion with
side-information (IMCSI) from [39, Theorem 1, Algorithm 2 and Proposition 4]. IMCSI is an
example of a matrix multiplicative weight algorithm [40l |6]. We give notation and background
from [39] to provide insight.

The max-norm (or v norm [41]]) of a matrix U € R™*" is defined by

(Ol = e { e 172 o 1251 ©
where the minimum is over all matrices P € R7*? and Q € R"*¢ and every integer d. We denote

the class of m x d row-normalized matrices as N'™% := { P ¢ ®m*d ‘ P, [m]}. The

quasi-dimension of a matrix is defined as follows.



Definition 2 ([39, Equation (3)]). The quasi-dimension of a matrix U € R™*™ with respect to
MeS?" ,NeSt, atvyas

Diyn(U) = min tr (PTMP> Rg + tr (QTNQ) RN, %
PQT=U

where the infimum is over all row-normalized matrices P e N™dand Q € N™% and every integer d.

If the infimum does not exist then Dy; n(U) := +00 (The infimum exists iff [|U || nax < 1/7).

The algorithm IMCSI addresses the problem of the online prediction of a binary comparator matrix U
with side information. The side information is supplied as a pair of kernels over the row indices and the

column indices. In [39, Theorem 1] a regret bound O/ (ﬁ/WQ)T) is given, where 1/42 > ||U||2

and D > Dy n(U) are parameters of the algorithm that serve as upper estimates on U2, and
DX/L ~(U). The first estimate 1/~ is an upper bound on the squared max-norm (Eq. ()) which like

the trace-norm may be seen as a proxy for the rank of the matrix [42]. The second estimate Dis an
upper bound of the quasi-dimension (Eq. (7)) which measures the quality of the side-information.

The quasi-dimension depends upon the “best” factorization (1/7)PQ™ = U, which will be smaller

when the row P (column Q) factors are in congruence with the row (column) kernel. We bound the
quasi-dimension in Theorem [#7]in Appendix [B]as a key step to proving Theorem 3]

In the reduction of our problem to a matrix completion problem with side information, the row indices
correspond to the domain of the learner-supplied kernel K and the column indices correspond to the
temporal dimension. On each trial we receive an 7 (a.k.a. %). Thus the column of the comparator
matrix (now H) corresponding to time 7 will contain the entries H™ = (A7 (z")),¢[7]. Although we
are predicting functions that are changing over time, the underlying assumption is that the change is
sporadic; otherwise it is infeasible to prove a non-vacuous bound. Thus we expect H; ~ H}, and
as such our column side-information kernel should reflect this expectation. Topologically we would
therefore expect a kernel to present as s separate time paths, where nearness in time is nearness on
the path. In the following we introduce the path-tree-kernel (the essence of the construction was
first introduced in [43]]), which satisfies this expectation in the single-task case. We then adapt this
construction to the multitask setting.

A path-tree kernel P : [T'] x [T] — R, is formed via the Laplacian of a fully complete binary tree
with N := 202 TT+1 _ 1 vertices. The path corresponds to the first 7" leaves of the tree, numbered
sequentially from the leftmost to the rightmost leaf of the first 7" leaves. Denote this Laplacian as L
where the path is identified with [T'] and the remaining vertices are identified with [N] \ [T]. Then
using the definition L® := L + (+) (%)T R." we define P(7,v) := (L°)%, where 7, v € [T].
We extend the path-tree kernel to a multitask-path-tree kernel by dividing the path into s contiguous
segments, where segment i is a path of length 7%, and the task vector £ € [s]7 determines the

mapping from global trial 7 to task ¢7 and local trial &'(7). We define P47 7 [T] x [T] — R
as PET" T (7 p) := P (Zizl Tito(r), S T+ a(v)) . Observe we do not need to

know the task vector £ in advance; we only require upper bounds on the lengths of the tasks to be
able to use this kernel. Finally, we note that it is perhaps surprising that we use a tree rather than a
path directly. We discuss this issue following Lemma[49]in Appendix B}

Algorithm requires O(t®) time per trial ¢ since we need to compute the eigendecomposition of
three O(t) x O(t) matrices as well as sum O(t) x O(t) matrices up to ¢ times. We bound the regret
of the algorithm as follows.

Theorem 3. The expected regret of Algorithm2|with upper estimates, k > k(h*), m > |m(h*)

’

C>Ch )= > |k X% +2(s+k—1Lm[logy T +2m* |
hem(h*)
Xz > T . o C’log(QT) .
% > max, ¢ K(z7,27), and learning rate ) = \/ =%~ is bounded by
s T

SN E[Lor (v 8] — Loa (v, hi(x})) < 44/2C Tlog(27) ®)

=1 t=1

. . . T * a’)T
with received instance sequence x € X' and for any h* € 7{(K .



Algorithm 2 Predicting 7—[(;;) in a switching multitask setting.

Parameters: Tasks s € N, task lengths 7", ..., 7% € N, T := >_°_, T", learning rate: n > 0, complexity
estimate: C' > 0, modes: m € [T, SPD Kernel K : X x X — R, P := peTt T [T] x [T] — R, with
max,¢p) K(27,27) < X2, and X% := 2[log, T7].

Initialization: U+ 0, X' < 0, 7'« 0.

For r=1,...,T
e Receive task 7 € [s].

e Receive 27 € X.
eSeti <l t+ o(r);zi =a".

e Define . - ~
K’ = (K(:E7 Z))I,Z€XTU{IT} ; P = (P(Ty v))T,UETTU{T} 5
T
~ VEKTe® VPTe’ VETe*" Pe’
X7 (v) = —; - —; - :
V2xz exz ] | (exz o (2x2
e C\ parieirrise ¢
W7 «+ exp (log <2Tm> I + 1;JnyuX () | -
e Predict

Y" ~ UNIFORM(—7,7); 4 < tr (WTXT) —1; gi:=4 <«sign(g" —Y").
o Receive label yj :=y” € {—1,1}.
o If y"y" < 1 then
U« UU{ty, &« X" u{z"}, and T« T U{r}.
eElse X" ™« XTand 77T « T7.

Comparing roughly to the bound of the exponential-time algorithm (see (5)), we see that the log m
term has been replaced by an m term and we have gained a multiplicative factor of log 27". From
the perspective of long-term memory, we note that the potentially dominant learner complexity term

2 hem(he) |hH§( X2 has only increased by a slight log 27" term. To gain more insight into the
problem we also have the following simple lower bound.

Proposition 4. For any (randomized) algorithm and any s, k,m,I’ € N, with k +s > m > 1 and
I' > mlogy m, there exists a kernel K and a Ty € N such that for every T > Tj:

> ElLoi(y7,97)] — Lor(y7, b7 (@7) € 9 (VT + slogm + klogm) T)
T=1

for some multitask sequence (z*,y%),..., (27, yT) € (X x {~1,1})T and some h* € ['H(;)]T
such that m > |m(h*)|, k = k(R*), 22, |h||§( X2 > |m(h*)|logym, where X% =
max, ¢ K(z7,27).

Comparing the above proposition to the bound of the exponential-time algorithm (see (3))), the most
striking difference is the absence of the log 7" terms. We conjecture that these terms are not necessary
for the 0-1 loss. A proof of Theorem [3]and a proof sketch of Proposition ] are given in Appendix [B]

5 Discussion

We have presented a novel multitask setting which generalizes single-task switching under the long-
term memory setting. We gave algorithms for finite hypothesis classes and for RKHS hypothesis
classes with per trial prediction times of O(n) and O(T). We proved upper bounds on the regret
for both cases as well as a lower bound in the RKHS case. An open problem is to resolve the gap in
the RKHS case. On the algorithmic side, both algorithms depend on a number of parameters. There
is extensive research in online learning methods to design parameter-free methods. Can some of
these methods be applied here (see e.g., [44])? For a non-parametric hypothesis class, intuitively it



seems we must expect some time complexity dependence on 7. However can we perhaps utilize
decay methods such as [45]46] or sketching methods [47/] that have had success in simpler models to
improve running times? More broadly, for what other infinite hypothesis classes can we give efficient
regret-bounded algorithms in this switching multitask setting with long-term memory?
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A Analysis of Algorithm 1]

This section is divided into two subsections: in Section[A.T| we outline the analysis of Algorithm [I]as
a sequence of theorems. These theorems are then proved in Section[A.2] We start with the following
definitions:

Given a finite set X and functions f, g : X — [0,1] with >°__+ f(z) = > cx g(z) = 1 we define:

KL(f.9) =) f(@)In (ﬁg;) '

reX
Given a finite set X and functions f, g : X — [0, 1] we define:

(f.9) =3 F@)g(a).

zeX

A.1 Overview of Analysis

Our general problem is to play the “(Multitask) Allocation gameﬂ > defined as follows. We have n
“experts” and s “tasks”. The game proceeds over 7 = 1,...,T trials. On trial 7 the following
happens:

1. Nature chooses a task ¢7 € [s].

2. Learner chooses a prediction vector v™ € A,,.

3. Nature chooses a loss vector ¢” € [0, 1]™.

4. Learner suffers loss ¢ :=v™ - ¢”.

The goal of learner is to minimise the cumulative loss ) err) Cx -

Note that Algorithm I]is applicable to the Allocation game. We will compare the performance of the
algorithm against an arbitrary sequence 21, 22, . .., 2r € [n]. We define:

e M:={z : 7€[T]}

o m :=|Mj

o k:=|{r € [T]:[Ur # 0] A [2+ # Zminv,)|}| where Ur:={7" € [T] : [7" > 7] A [07 =
(7]} forall 7 € [T).

In the Allocation game we refer to the elements of [n] as “experts”. At the end of the analysis
we will reduce our main problem to the Allocation game which involves enumerating the set of
hypotheses Hay as [n], i.e., each hypothesis h € Hgy corresponds to an expert in [n]. The sequence
21, 22, .. ., zp then corresponds to the hypothesis sequence h*. Hence we have that k = k(h*) and
m = |m(h*)|.

We now begin the analysis of Algorithm[I} We will analyse the algorithm via a reduction of the
Allocation game to another game called the “Specialist allocation game”. We will now define this
game and introduce an algorithm called “Specialist hedge” which is applicable to it.

A.1.1 The Specialist Allocation Game

The Specialist allocation game is the following game between Nature and Learner. We have a finite
set £ of “specialists”. On trial 7:
1. Nature chooses a non-empty set W7 C £ and reveals it to Learner.

2. Learner chooses a function o7 : W™ — [0, 1] with } .,y 07(§) = 1 and reveals it to
Nature.

3. Nature chooses a function ¢” : W™ — [0, 1] and reveals it to Learner.

4. Learner incurs loss ¢ := (07, ¢")

2We mean “Game” in an informal sense.

14



This game is a generalisation of the Single-task allocation game where on every trial only a subset
WT of experts (now called “specialists”) are awake. Note that we have changed the notation from the
Allocation game in that what was represented by vectors in the definition of the Allocation game have
now become, equivalently, represented by functions. Instead of selecting, on trial 7, a probability
distribution (represented by v7) over the set of experts (as in the Allocation game) Learner now plays
a probability distribution 7 over only the set WW7.

A.1.2 The Specialist Hedge Algorithm

Algorithm 3 Specialist Hedge

Parameters:
n €R* and p* : € — [0,1] with }-. . p*(§) = 1.

Initialization:
op' < p*

Prediction on trial 7:
e Receive W™ C &
oY Z&EWT pT 5)
o VEEWT, 07T(§) « pT(§)/YT

Update on trial 7:
e Receive ¢™

© 77 < Yeewr P (&) exp(—neT (€))
o VEEWT, pTHL(E) « L2pT(€) exp(—nET ()
o VL € E\WT, pT (&) « pT(§)

We now introduce Specialist hedge as an algorithm for Learner in the Specialist allocation game.
Specialist hedge generalizes the classic Hedge algorithm for the Single-task allocation game so that it
now may be applied to the Specialist allocation game. The algorithm is seeded with a probability
distribution p* over the specialists: i.e. p* : £ — [0, 1] with } . p*(§) = 1. For a specialist § € £
the quantity p*(£) represents our a-priori confidence that the specialist £ has a low cumulative loss
over the trials in which it is awake. Specialist hedge maintains, over trials 7, a probability distribution
pT over specialists. The quantity p™ (£) represents our confidence, on trial 7, that the specialist £ has
a low cumulative loss over the trials in which it is awake.

A.1.3 The Specialist Hedge Bound

We will now give an inequality for Specialist hedge. The inequality is relative to any arbitrary
probability distribution u over the set of all specialists.

Theorem 5. Let u : & — [0, 1] be any function such that . w(§) = 1. On any trial T we define

u(WT) = Y ulé)

£ewr

and for all £ € W™ we define
u” (&) := u(&)/u(WV7).

Then we have:

S wWN) T — a7, &) < %KL(u,p*) + 23w

TE[T] TE(T]

A.1.4 Definition of a Markov Circadian

We now generalize the proof methodology found in [[L7]] by defining specialists via what we call
“(Generalized) Markov circadians”. (Generalized) Markov circadians are a generalisation of the 0/1
(wake/sleep) Markov circadians found in [[17]. We will drop the word “generalized” in the following.
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A “Markov circadian” is defined as a Markov chain over trials along with, on every trial, a subset of
states which are denoted “awake”. Specifically a Markov circadian is defined by the following:

e A finite set P of states,
e Amap N : ® — [0, 1] with 3°_ 5 N'(p) =1,

e For every trial 7 € [T — 1] amap A" : ®2 — [0,1] with Ypca N (p,¢') = 1 forall
ped.

e On every trial T a set VTJT Cc o,

We define A := ®T. We call the elements of A “Circadian Instances”. Each Circadian Instance
a € A has an associated weight ¢(«) defined as:

g(@) =XN(a(1)) J] A(a(r),a(r+1))

te[T—1]

A.1.5 Reduction to the Specialist Allocation Game and Specialist Hedge

We now show how a Markov circadian converts the Allocation game to the Specialist allocation game.
Specifically we choose each specialist to be a circadian instance paired with an expert. A specialist is
awake whenever its associated circadian instance is in an awake state and the losses of the specialist
equal the losses of its associated expert.

Formally, given a Markov circadian, we define the set of specialists as:
E:=[n]xA.
We then define, for all 7 € [T7:

WT = {(m) A 17\77}

¢ (i) :=c] V(i,a) e W

We will implicitly run Specialist hedge on this set of specialists. We seed the specialist hedge
algorithm with p* defined as:

p*(ira) = ql0).
The choice, v7, of Learner in the Allocation game is then defined from the choice, v” of Specialist
Hedge as follows:
vy = Z 7 (i, @)
a€A:(i,a) EWT
for all experts 7 € [n].

The following theorem asserts the equivalence of v™ and v7:

Theorem 6. Forall T € [T), the loss v™ - ¢™ of Learner in the allocation game (when v" is defined as
above) is equal to the loss (07, ¢™) of Specialist hedge when using the above specialists and seeding
distribution.

A.1.6 Implicit Specialist Hedge Updates and Choices

For all trials 7 € [T, experts ¢ € [n] and states ¢ € ® we define:
SR N ()
acA:a(t)=¢

where p” is defined as in the Specialist hedge algorithm run with specialists and seed defined in
Section[A.T.5] We have the following theorem:

Theorem 7. For all experts i € [n] and states ¢ € ® we have:
1 1 l
7i () = —X(p)
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and, in addition, for all trials T € [T — 1] we have:

T YT T T T T T
W) = Yo M@ enl(@ep(-n) + Y Aol (#)

o' EWT o €D\WT
where:
=> > ()
i€ln] pewr
and:
=3 exp(—ne]) Y. (e
i€[n] pEWT

Also, when v is defined as in Section[|A.1.5|we have:
1
v = yr Z 7 ()
EWT

for all experts i € [n].

A.1.7 A bound for Markov circadians

By Theorem|[6|we can bound Learner’s loss when playing the allocation game with a Markov circadian
(i.e. when using the strategy of [A.1.5)) by the loss of Specialist hedge with a Markov circadian. Hence,
in this section, we will bound the latter.

In this section we assume (in retrospect) that we have, for all ¢ € M, a Circadian Instance &° with:
{rellla'(n) eW={re(l]|z =1

We will now bound the loss of Specialist hedge via the following intermediate theorem:

Theorem 8. Ifu : & — [0, 1] is defined as:

1 )
ba)=—l([1eM A a=a
u(i, @) — (i a=a'")
then we have:

mKL(u, p*) mln( ) S N@ ) -> Y LQi(r + 1))

1€EM €M re[T—1]

By combining Theorem [§]and Theorem [5] (with choice of w as in Theorem [8) we obtain the following
bound on the Specialist hedge algorithm with a Markov circadian.
Theorem 9. The regret of Specialist hedge with a Markov circadian is bounded by:
1

S -d)<Iry-c

T 2 ,r}

T€[T]

where

C mln( ) Zln)\' Z Z Q4T+ 1))

€M iEM re[T—1]

A.1.8 The Multitask Markov Circadian

Algorithm [T] implicitly follows the reduction given in Section[A.T.5] using the following Markov
Circadian.
Our state set is defined as ® := {0, 1, }* where 9 is a symbol that denotes that a particular task will

not be seen again. On each trial 7 we have W™ := {¢o € ® : ¢, = 1}. Since ® is now a set of
vectors we now use vector notation for its members. Our transition matrices are defined as follows.

We define Q := {7 € [T] : V7' > 7, {7 # {£7}. The (modified) Multitask Markov circadian is
defined as follows:
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For all states ¢ € ® we define:

N(p) =[] (ull(p; =1)+ (1= @) I(p; =0))

Jj€ls]
and for all trials 7 € [T' — 1] and pairs of states ¢, ¢’ € ® we have:

o If 7 ¢ Q) then
- If ¢}, = 0 then:
* If ppr = 0then A (o', ) := (1 = ¢) I (VJE[]\{W} vj = ¥})
* I ppr = 1then N (@', ) == ¢ L (V) € [s]\ {£7}, v; = ¥))
0

* If pgr = 1 then A7 (¢’ go)
- If ¢}, =1 then:

* If oir = Othen (¢, ) := (1= 0) I (V5 € [s] \ {£7}, »; = ¢})

* If pgr = 1 then X7 (@', ) := 01 (Vj € [s] \ {£7}, @5 = &)
x If ppr = then N (¢, ) :=0

o If 7€ Qthen A (', ) := 1 (ppr =) 1 (Vj esIN{l"}, ¢ = ‘F’;)

where p, ¢ and 6 are as in Algorithm

A.1.9 Derivation of Algorithm ]

Here we will show that the choice v of Algorithm|[I]on trial 7 is equal to that in Section[A.T.5when
using the Multitask Markov circadian. For all j € [s] we first define:

Q= {re[T] | =7, 7 #j}
Also, forall 7 € [T7, all j € [s] and all b € {0, 1} we define @] (b) by:
o If 7 ¢ Q; then w](b) = b
o If 7 € Q; then w}(b) =1

In addition, for all o € ® and b € {0, 1} we define 7! by:

o 0= Viels\{}

° cpzflb =b

In this section we take the vectors 7 and w as in Algorithm (] (with subscript and superscript removed).
For every task j € [s] and every trial 7 € [T'] we define the vector w™7 as follows:

° wl-,j—u

T+1,47 ZT
a'(r)+1

o Ifj # (7 then w™ ™17 := w™

e W

We now analyse the values v/ (¢) for all 7 € [T], i € [n], and ¢ € ®. Theorem [7|leads to the
following theorem:

Theorem 10. For all trials 7 € [T and experts i € [n)

o If 7 € Qwe have, forall p € ®:
T T T T T YT
% Hp) = L(per =) <%— (@71 + 7 (™) exp(—ne]) - )

T

o If T ¢ Q we have the following:
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— Forall p € ® with py- = 0 we have:

W) =(1 = O (™) + (1 = 077 (™) exp(—ne])
— Forall ¢ € O with pp- = 1 we have:
W) =77 (¢71°) + 0] (™) exp(—ne]) =
— Forall p € ® with gy~ = Y we have:
7 ) =0

Induction with Theorem[T0|leads to the following theorem:

T

Z‘r

T

ZT

Theorem 11. For all T € [T and for all p € ® we have:
=] H (@771 (s = =} (1) + (1 = ] (05 = =5 (0)) )

which implies:

> vile) =]t

4,0617\77

Theorems [TT]and[7)then lead to the following theorem:

Theorem 12. The prediction v™ of Algorithm([l]is equal to that defined in Section[A1.3|when using
the Markov circadian defined in Section[A.1.8|

A.1.10 Participating Circadian Instances

In this section we define the Circadian Instances {&* | i € M} used in Sectlonto bound the
loss of Algorlthml Firstly, for all j € [n] and 7 € [T] \ ©; we define 7; () as:

(1) := min {T’ e |r>7nl :j}
For all i € M, we define the Circadian Instance &' by, for all j € [s]:

e Forall 7 € [T]\ ©; we have:
&'(7); =1 (i = 25,(r))

e Forall 7 € ; we have:

A.1.11 The Bound
We now bound the performance of Algorithm Firstly, for all 7 € [T] \ Q we define v(7) as:
v(r) :=min{r’ € [T] |7 >7 A (7 =j}

We start with the following theorem:
Theorem 13. For all i € M we have:

Im(N(@'(1)+ > In(\(&'(r), ' (r +1)))

TE[T—1]
= Z (In(p zl, a = z) +In(1 —p)I (z,;j(l) + z))
J€ls]
+In(0) Y T(zr=1i A 2 =1)
TE[T\Q
+In(1l —¢) Z H(zT #i N 2y(r) 752)
T€[T\Q
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+1In(l - 0) Z I(zr =i A 2y(r) # 1)

T€[T\Q

+ In(¢) Z I (ZT Fi N 2y) = z)

TE[T\Q

Substituting the inequality of Theorem[I3]into that of Theorem[9] gives us the following theorem:
Theorem 14. The regret of the Algorithm|l|is bounded as:

T n 1
Z (C* _Cz.r) S §T+;C

T€E[T)
where:
C: mln( ) +s(n(p)+(m—1)In(1—p))
+n0) (T —s—k)+In(l—¢)(T—s)(m—1)—k) +1n(l — 0)k + In(¢)k
Tuning the parameters then leads to the following theorem:

Theorem 15. Setting pp:=1/m, 0 :=1—k/(T — s) and ¢ := k/((m — 1)(T — s)) we have that
the regret, y e[ (CI — c;) of Algorithm|l|is bounded above by:

\/2T (m log ( ) + s(log(m) + 1) + & (log(m — 1) +2log (Tk_s) + 2)> )

and also, more tightly, bounded above by:

\/ﬁ\/mlog (%) + smH@) +(T - S)H(T’is) 4 (m—1)(T - s)H((m_lf(T_S)) .
(10)

We now reduce the finite hypothesis class setting to the Multitask Allocation game, which will prove
Theorem|l| First, we let n := |Hgy|, define a bijection  : [n] — Hgy, and for all 7 € [T define
z, = £~ '(h;). On trial 7 the Learner randomly draws i” € [n] with probability v}, and predicts
with §7 := [k(i7)](«7). We then define ¢™ by ¢ := Lo1(y", [£(7)](z7)).

Theorem 16. We have the following equivalence,

Ry = Z Z E[Lo1 (yi, 91)] — Loi (v, hi (7)) = Z (cT—cl).

i€[s] te[T7] T€[T]
Theorem ] follows from theorems [15]and[16] noting that k = k(h*) and m = |m(h*)|. [ |

A.2 Proofs

We now prove the theorems of Section[A.T]in order.

A.2.1 Theorem

Proof. The proof is similar to that in [48]], and utilizes the allocation model introduced in [38]].

We first show, by induction on 7, that for all 7 € [T] we have Zé ce PT (&) = 1. This is clearly true
for 7 = 1since } . ¢ pr(€) = >cce P*(§) = 1. Now suppose that it is true for 7 = 7’ (for some
7' € [T]). We now show that it is true for 7 = 7/ + 1.

Sote = Y O+ DD e (11)

ge€ cee\w’ cew’
= Y O+ > (12)
cee\w’ cew’
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S AGE Z,pf’@)exp(—néf’(&)) (13)

gee\w’ cew’
&) exp(=ne" (€)) Xerew p7 (€)
— e 14
P &% zg e 77 ) exp(—ne (©) o
Egew pr (f)exp( nc’ (O)Zg'ewf’ pT(gl)
= 3 15
O e @ e €) 1
= Y O+ > E©) (16)
gee\w’ gewr’
=> 0 a7
£e€
=1 (18)
With this in hand, we now have that KL (u, p7) is defined and positive for all 7 € [T7].
Let AT := 3 e/ cyy- 07(€') exp(—nc™ (£')). By definition of 07 we have:
Derewr P (§) exp(—neT (§))
AT = 19
Zg/gwf P (&) {19
so:
KL(u, p") — KL(u, p™)
) o (249 g (1)
gegu(g) ( o8 (pf(é) AV
T+1(£)
WG EAY
ey 7€)
'r+1
_ 1og< ) 0)
ewr
=u(WT) Z (p”‘l )
Eewr
=u(WT) Z ( )
cewr
=u(W") Y " < ) @1
cewr
exp(— Zg rew P (§)
=u (W™ 22
U( )5.521/\;7 <Z§ e P exp 770T(§'))> (22)
—uW7) 3 <eXp > (23)

cewr
—u(W")n ( > uf(é)cT(ﬁ)) —u(WT)log(AT) ( > uT(ﬁ))
gewr Eewr
—uWT)n(a", ") — u(W7)log(A")

—u(WT)n(u",c") — u(W")log ( > () eXp(—ncT(E)))

gewr
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> —uW )~ oe | 3 00 (1w @+ g @ ©F) | ew

Eewr

=—uWn(a", ") —u(W)log | 1 —n(v",c") + %772 > UOE©)

Lewr
1
> w7 — uW ) log (107 + 307 3 (E)
Lewr
= uOV ) = o (1 )+ )
1
> —u(WT)n(a”, &) + (W (o™, &%) — w(WT)5n’® (25)

1
—u(W e — 07, — u(VT) S

where Equation (20) comes from the fact that if £ € £ \ W™ then p™"1(&) = p7(£) so
log(p™™1(€)/p7(€)) = 0, Equation (ZI) comes from the update of p”(£) to p” (&) when
¢ € W7, Equation (23) comes from Equation (I9), Equation (24) comes from the inequality
exp(z) <1 -z + 2%/2 for z > 0, and Equation (23)) comes from the inequality log(1 + z) < z.

A telescoping sum then gives us:
KL(u', p*) = KL(u', p*)

> KL(UI’ pl) - KL(U’ pT+1)

= Z KL(u,p") — KL(u, p™ ™)
TE[T]

T ~T =T =T T 1 2

=D (wV(" =@, &) —uWT) o ).

TE€[T]

Dividing by 7 and rearranging then gives us the result. O

A.2.2 Theorem[d
We have:

@7, &) = Y ()

Eewr

= Z 7 (i, )" (i, @)

(i,0)EWT

= Z 7 (i, a)c]

(ia)ewr

= Z cl Z 7 (i, @)

i€[n] a€A:(i,a)EWT

=Y
1€[n]

:v’T.c’T

A.2.3 Theorem[7|

We start with the following definition:
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Definition 17. Given some 7 € T and some o« € ®7 we define:
B(a):={a' € A: V7' €[r], /(1) = a(r)}
and define:
q(a) := ) I A a),alr +1))

TG[T 1]

Lemma 18. Given some 7 € T and some o« € O™ we have:

> ) = gla)

a’eB(a)

Proof. We prove by reverse induction of 7. i.e. from 7 = T to 7 = 1. It is clear that it holds for
7 =T asif a € ®T we have B(a) = {a}. Now suppose it holds for 7 = 7 (for some 7 € [T] with
7 > 1) and suppose we have some o € ®7 1. For p € ® define a¥ € ®7 by a?(7) := ¢ and for
all 7' < 7, a®(1") := a(’). The sets {B(a¥) | ¢ € @} are pairwise disjoint with union B(c) and

| S - Y

a’eB(a) PpEP a’eB(av)
so by the inductive hypothesis, and noting. that ¢(a¥) = q(a)A™ "} (a(7 — 1), ¢) we have:

> al@”)

o’ €B(a)

=2 D«

YEP® o’ eB(a®)

:anw

ped
= Z )N Ha(r —1),¢)
ped
a) Y N Ha(r = 1))
ped
=q(c)

O

Lemma 19. Forall T € [T], all i € [n] and all o € ®7 there exists some value f7 (i, ) € R such
that for all o/ € B(a) we have p™"1(i,a') = f7(i,a)q(c’). In addition, if we define & € ®™1 by
a(T) = a(T) for all T € [T — 1] we have:

o Ifa(r) € W then f7(i, ) = fT_l(i,d)g—: exp(—ncl)
o Ifa(r) ¢ W7 then f(i,a) = T, a)

Proof. We prove by induction on 7. For 7 = 0 we can define f7(i,a) = 1 so for all o € B(«)
we have p™ (i, /) = pl(i, o) = q(o’) = f7(i,)q(a’). Now suppose it holds for 7 := 7/ (for
some 7' € [T]). We shall now show it holds for 7 := 7/ 4 1. Define & € ®” by a&(7) = () for
all 7 € [7']. Choose any o € B(«). Then we have o € B(@) and o’ (7' + 1) = a(7’ + 1). Since
o/ € B(a) we have, from the inductive hypothesis, that p™ *1(i, ') = f7 (i, @)q(a’). We have two
cases:

o If a(7) € W™ then o (7' + 1) = a7’ + 1) = a(r) € W™ L s0 (i,0/) € W™+ and
hence:

(i) = 72, o)
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Y‘r'—i—l , ,
= T (i, o) exp(—nd ™ T (i, a"))

- ZT/+1p
YT/-‘,-l , ,

= ZerP” i o) exp(—ne] T
YT/Jrl e - ’ T’—‘rl

= Ff (i, a)q(a’) exp(—nc; )
Y™ .. _ -

= ?JN H(i,@)q(a’) exp(—nc])

and hence we have the result with f7(i, o) := f7~1(4, c‘v)g—: exp(—ncl)

o Ifa(r) ¢ W then o (7' + 1) = a7’ + 1) = a(r) ¢ W™+ s0 (i,a/) ¢ W™+ and
hence:

pT"H(i,o/) _ T/+2(Z"al

(
and hence we have the result with f7 (i, a) := f7~1(i, @)

O

Definition 20. Forall T € [T}, all i € [n] and all o € @ let f7 (i, ) be defined as in Lemma|[I9}
For all p € ® and i € [n] we define:

g o) = Y.  [i,a)qq)
a€EPT:a(T)=¢
In addition, given o € ®7, define & € ®" 1 by a(7) = a(7) forall 7 € [T — 1]
Lemma 21. Given 7 € [T] with T > 2 and some ¢ € ® we have:
o Ifp €W then g7 (i, 0) = % exp(—nc]) Y pca A (¢ 0)g™ (6 )
o Ifp €W then g7 (i,0) = 3o X (¢ 90)97 (i, ¢")

Proof. Given o € &7, define @ € @™~ by a(7) = a(7) for all 7 € [r — 1]. Let z be defined as
follows:

o Ifoc W thenz := g—: exp(—ncT)
o If o ¢ W7 thenz := 1

From Lemmawe have, for all « € @7, thatIf p € WT we have, from Lemmathat i) =
xf71(i,a). Hence, we have:

ge)= Y. fi,a)

aedT:a(T)=¢p

= Y Flag@n (- 1),a(n)

aedT:a(T)=¢p

= > fla)g@ N a(r-1),9)

a€PT:a(T)=¢

S L a)@n T 6l 1))

a€PT:a(T)=¢
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Y afT i a)a@ T alr - 1))

aedT1

Yo xfTH L a)g(@N T a(T — 1))

aedT—1

Z Z ofT 6, ) (o)A Ha(r — 1), 9)

P EPL acdT Lia(r—1)=¢’

=y > 2 fTH (i, @)g()NH ¢ )

' €P acdm lLia(rt—1)=¢’

YN Y e

p'eD a€d™ Lia(r—1)=¢’
=z Y NN ) (0, ¢)
p'ed

Lemma 22. For all trials T € [T with T > 1, experts i € [n] and states ¢ € ® we have:

W)=Y AN )T )

@' e
Proof. Let x be defined as follows:

o Ifpe W7 then x := 32/—1 exp(—ncl)

e Ifp ¢ W thenz :=1

Note first that {@’ € A : &/(7) = ¢} = U, car.a(r)—, B(c) where the sets in the union are disjoint.
So from Lemma[I8 we have:

7 ()

= Z pT(i7O‘/)

a’eA:al (T)=¢p

> > (i)

a€dm:a(r)=¢ o’€B(a)

S Y Flae)

a€PT:a(T)=¢ ao’€B(a)

Y rwa) Y @)

a€PT:a(T)=¢ a’eB(a)

S G aa)

a€dT:a(T)=¢p

Yo STHEaNT el - 1), a(n)a(a)

aedT:a(T)=¢p

Yo TG aNTHalr - 1), 9)a(a)

aedT:a(T)=¢

Yo TG aNT Al - 1), ¢)e(@)
acdT—1

Y TN alr — 1), p)a()

aedT—1

> > T )Nl — 1), 9)q(a)

P €D acdT Lia(rt—1)=¢’
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-y 3 FTHE )N TN p)a(e)

P EPL acdT Lia(r—1)=¢’

_ Z AN @) Z 16, a)q(a)

p' D acd™Lia(t—1)=¢’
=Y NN 0)g ()
p'eD

Lemma 23. We have v} (¢) = N (¢)/n

Proof. Let a € ®' be such that a(1) := . We have, from Lemma|[18}
)= > PG

a’eA:a’(1)=¢p

= Z P (ia O/)

o/ €A (1)=¢

Lemma 24. For all T € [T] we have:

YT
W) =7 D V(¢ 9Nl (¢) exp(—nc])

o W
+ Y N oY)
o' eDP\WT
Proof. From Lemma [22] we have:
7 p)
=Y N 0)g (i, ¢)
p'ed
= ) N e+ D N9 ¢)
o EWT @ €B\WT
So by Lemma[2T] we have:
%)
i YT . _ 1
= > A (¢, ) 7= exp(=nef) > AT g ¢
o' eWT p’'ed
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+ Y N D N g )

LP/ E‘I’\VV/T 59// €d

on which the application of Lemma[22] gives us the result

Lemmas 23] and [24] give us the first part of the Theorem. The rest is proved as follows:
For all trials 7 € [T'] we have, from the Specialist hedge algorithm, that:

YT= > p7(9)

Eewr

= Z pT(iv Oé)

(i,)eEWT

- > P’ (i, )

(i,0)€[n]x A:a(r)EWT

= Z Z pT(i,a)

i€ln] ae Aa(r)EWT

PO

i€[n] peWwr a€Aia(r)=
DD IEIE
i€[n] pewr
and that:

Z7 =) (&) exp(—nE (€))

Eewr

= Z p" (i, ) exp(—né (i, )

(i,0)EWT

= > p(i,a)exp(—nc])

(i,0)EWT
= > p" (i, a) exp(—ncy)

(i,a)E€[n] X A:a(T)EWT

= Z > o) exp(—ne])

[n] acAra(r)eWT

= Z exp(—nc;) Z p" (i, a)
i€[n]

O(E.A'O((T)EWT

= Z exp(—ncl) Z Z pT(i,a)
i€[n]

LPEWT acA:a(r)=
= Z exp(—ncl) Z 7 ()
ie[n) eEWT
and for all 7 € [n]:
UZ- = Z ﬁT(iaa)
a€A:(i,a) EWT

= Z pT(Z-’ a)/YT

a€A:(i,a) EWT

= Z pr(i,a)/YT

aeA:a(T)eW"
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= % Z p (i, )

OtEAZOt(T)EWT

-2 Y Y s

wEWT acA:a(r)=¢p

1 T
T yr o v ()
PEWT
[ |
A.2.4 Theorem[§
We have, from the definition of u:
mKL(u, p*)
9)
T (
gee 5)
=m Z u(i, ) In <u(z,a)>
: ’ p*(i, @)
(i,a)€[n]x.A
—mzz laln( uli, )>
i€[n] a€A ( OZ)
:mz u(i,@") In ( 11(%’ aw) )
e (i, )
1 1
2 "\ (i an

o
£ (35)
:EM<m(Z)**“<ﬂé@>)
_mln ;)+g%m<ﬁ20
=mln () = 3 Ing(a")

A.2.5 Theorem

Choose u as in Theorem and for all 7 € [T'] let @™ and uw(WT) be defined from w as in Theorem
We start with the following lemma:
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Lemma 25. Forall 7 € [T] we have u(W7™) = 1/m

Proof. From the definition of u and & we have, for all 7 € [T:
u(WT)

= > ()

§ewr

= Z u(i, o)

(i,a) E[n] X A: (i,0) EWT

= > u(i, o)

(i,0) €[n] X A:ar(T)EWT

= Z Z u(i, @)

i€[n] (NEA:O’(T)EWT

=y > %H(ieM/\a:di)

i€[n] aeA:a(r)eWwr

=Y > %H(ieM)H(a:di)

i€[n] aecA:a(r)eWwr

:%ZH(ieM) Yoo I(a=d)
i€[n]

OtE.A:Ot(T)EWT

_ % S T eM) 3 T(a=a)I(a(r) € W)
ierl

acA

:%Z S 1(a=a)1(a(r) € W)

i€EM a€eA

= S 1(ain) e W)

i€M

= %Zﬂ(zfzi)

iEM
1
= Z 1

i€EM:i=z,

1
m

Lemma 26. We have:

S wV T ) = 3 ()

TE[T) T€[T)

Proof. Utilising Lemma we have, for all 7 € [T,



We also have that:

(i,0) €[] x A:a€WT

=m Z Z u(i, a)c]

i€n] qewr

=m>y > %H(ieMAa:di)CZ

i€[n] aeWwr

:Z Z [(ieMAa=a")c

i€n] qewr

=3 > I(ieMI(a=a")c

i€[n] aEW"'

=Y I(eM) Y I(a=d')c

i€[n] aeWT

:Z Z ]I(a:di)c[

ieMaEW’
-1 (a c VT/T) o
€M

:Z]I(i:zr)cz

1€M

T
=c,

(5, &)

ewr

= > o7 (i, ) (i, )

(i,0) €[n] x A:(i,0) EWT

= Z 7 (i, a)e]

(i,a)E€[n] x A:(i,a) EWT

= Z Z 07 (i, a)e]

i€[n] a€A:(i,a) EWT
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= Z el Z 7 (i, @)

i€[n] a€A:(i,a) EWT
-
i€[n]

:cT'vT
:CI

Utilising these two equations, along with that of Lemma [25] gives us:

S wW) T ) = Y %@T —ar e

T€[T] T€[T]
1 ~T =T T =T
=— ) (o7& —(a",¢c"))
TE[T]
1
=— ) (c—c)
T€[T]
O
From Lemma [26] and Theorem [3] we have:
1 T T _ T ~T =T =T
3 = Y wV T )
T€[T] T€[T]
1 o N T
< 6KL(U7P )"‘5 Z u(W7)
T€[T]
Applying Lemma 25| and multiplying through by m then gives us:
> (e —e) < TKL(u,p') + 3T
TE[T] n
Applying Theorem [§]then gives us the result: ]

A.2.6 Theorem

We start with the following lemma:
Lemma 27. Forall T € [T] and ¢ € ® with - = 1) we have v] (¢) =0

Proof. Suppose, for contradiction, that we have a circadian instance @ € A with a(7) = ¢ and
q(a) > 0. Then since ppr = 1 and, as X (o) # 0, a(l)er # 2 there exists 7/ € [7 — 1]
with a(7")¢» # 1 and a7’ + 1)~ = 9, so choose such a 7’. Since ¢(a) > 0 we must have
A (a(r'), a(r’ 4+ 1)) > 0. We have two cases:

o If /7" = (7 then since o(7')s- # (7' 4 1)¢ we have, from the definition of the Multitask
Markov circadian, that \™ (o(7'), a(7’ + 1) = 0 which is a contradiction.

e If /™ = {7 then since 7 > 7/ we have 7/ ¢  and hence, by the definition of the Multitask
Markov circadian, we have, since ™ (a(7'), a(7’ + 1)) > 0, that (7" + 1) # ¢ and
hence that a(7" + 1), = a(7’ + 1), # 1 which is a contradiction.

So either way is a contradiction and hence we have shown that for all « € A with a(7) = ¢, it is
the case that g() = 0 and hence that p' (i, «) = p*(i, ) = 0. By a simple induction on 7" we then

have, from the Specialist hedge algorithm, that p™ (i, ) = 0 for all 7 € [T']. This implies:

W) = > pli,a)=0

acA:a(T)=¢
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We first consider the case that 7 € Q. From Theorem and Lemma we have:

TR = o Y N @ eni@ e+ Y N (e oni(e)

50’617\77 4,9’6@\17\77
Y’T
=2 2. NE@eni@ep-ne)+ Y N enl(@)
@'ED: =1 p'e®: ), {04}
YT T T T T T
=5 2. N@enl@en-n)+ Y N enl(@)
@ ED: =1 P’ €D: @, =0
YT . T T T
=27 2. er=v) (Vi € )\ {7}, 95 = ¢)) 7] (¢) exp(-nc])
S |
+ ) I =v) (Y €[S\ {7} 0 =) 7] (&)
@' €P: LP;gT =0
=27 > L =) I(plr =1 A VG €[]\ {7}, 95 = ¢)) 7] (#) exp(—ne])
p'ed
/ . T / T /
+ ) T(per =9) 1(¢)r =0 A V)€ [s]\{€}, 0; = &) 77 (¢')
p' €D
YT T T
=;ZH(¢—¢‘1) (@) exp(—ne) + > L(per =) (<P—<p‘°) T(¥)
p'ed p'ed

= (e = )T (@7 exp(—c) + e = ¥)77 (™)

=1(per =) (%T(W'O) +97 (™) eXp(-??C?)?Z)

We now consider the case that 7 ¢ Q. Define x and y as follows:

o If pyr =0thenz:=1—fandy :=1— ¢.
o If pyr =1thenz:=0andy := ¢.
o If pyr =¢pthatx:=0andy :=0

From Theorem[7] and Lemma[27] we have:

T YT T T T T T
e = D0 N@eni(@em(-n)+ Y (g ehi(e)
o o DI
YT
7z > N e (¢ exp(—ne]) + > A (@' o) (#')
@' el =1 @’ €P: ) €{0,1}
YT T T T T T
= 2. N@eni@ep-ne)+ Y, N enl(@)
p'ed: p)r=1 @' €D 9, =0
YT . T T T
=—r > rLV e\ {7} 9 = ¢)) 2 () exp(-ne])
P’ €D =1
+ > yI(ViesN\{Y, 0 =¢)) AT (¢)
P ED: <p27-:0
YT / - T / T / T
=7 > v l(er =1 A€ [\ {C} ¢ = ¢)) 7] (@) exp(—ne])
p'ed
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+ >yl =0 A Vi e[\ {7}, 5 = ¢)) 2] (¢)

p'ed
YT T T T
= D xﬂ(cp = '1) T(@') exp(—ne]) + > yﬂ(cp =¢ 'O) 7(¢)
p'eP p'ed

T

Y
= 7] (™) exp(—nc]) + y77 (¢

|0
z7 )

T

=7 (¢") + ] (@) exp(—ne])

A.2.7 Theorem[I1l

We take the inductive hypothesis:

)=l H(’”I = w7(1) + (1~ 271 (o = =5 (0)) )

and prove it by induction on 7. We first consider the case that 7 = 1. In this case we have, from
Theorem [7]and definition of )/, that:

ﬁwﬁgmm

*Hﬁm%—1< W1 (p; = 0))

JEls]

i H (ul(p; = 1) + (1 — p) I (p; = 0))

=1H(ww = 1)+ (1 - @) (p; = 0))

1H(4W @ (1) + (1= @) (5 =

<
—~
(=]
=
SN—
N—

So the inductive hypothesis holds for 7 = 1. Now suppose the inductive hypothesis holds for 7 = 7/
(for some 7 € [T — 1]). We now show it holds for 7 = 7/ + 1. To do this suppose that §, € and J are

as created in Algorithm [1|during the update of trial 7’ and let w := w*, "o noting that this is equal

O‘(T

tow™*" We start with the following lemmas:

Lemma 28. Forall T € [T] and all j € [s] we have:

S (@716 == (W) + (1= @] T (s = = (0)) = 1

;€{0,1,4}

Proof. If T € Q; then w] (0) = @] (1) = ¢ and if 7 ¢ Q; then @] (0) = 0 and @} (0) = 1. In
either case we then have that: '

S (@ = =) + (=] T (g = w7 (0)) =@+ (1—w] ) =1
©;€{0,1,9}
O

Lemma 29. We have:
Yo AT () =a w]

peW™’

Proof. Without loss of generality assume 0™ = 1. Forall X € [s] we take the inductive hypothesis:

> I (@771 (e = =7 ) + (0 =a] ) (g = =7 (0)) ) = =7 ]

pe{0,1,¥}x: p1=1 J€lx]
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This is since:

o= Y (e

LPEWT/ ped: LpZlel
’
_ T
= E i (@)
ped: p1=1

S I (0771 (vs = =5 (1) + (1= @] ) (¢ = =7 0)))

peP: pr1=1 J€ls]

S w I (@1 (e ==y ) + (0= w0 (= =7 (0))

©€e{0,1,9}5: p1=1 JE[s]

For Y = 1 we have /7 = 1s01 = 7/ ¢ € and hence w}l (0) = 0 and w;/(l) = 1. Hence, for
x = 1 we have:

3 IT (771 (05 = w7 ) + (1~ a1 (g = =7 (0))
@e{0,1,9}x: p1=1 JG[X
. IT (7 1(e; = 1)+ (= 0] )(g; = 0))
Pe{0,1,9}x: p1=1 J€lx]
- ¥ IT (w7 = 1) + (1= @] ) (p; = 0))

Pe{0,19}: p1=1  je[1]
> (w;/71]1(%01 = 1)+ (1= @] (e =0))
pef{0,1,}1: p1=1

=7 (@] "1+ (1= @] o)

so the inductive hypothesis holds for y = 1. Now suppose it holds for xy = x’ (for some x’ € [s]).
We will show that it also holds for xy = x’ + 1. Specifically we have, by Lemma and the inductive
hypothesis:

> 7 I (@1 (e == @) + (-] (e, = =] )

Pe{0,1,y}¥ +1: p1=1  jJEX'+1]

> > I (@1 (e == ) + 0= w] 0 (¢ = =7 0))

Oy +1€{0, 1,9} e{0,1}x": p1=1 JE+1]

S (@ (e == ) + (1= @] Y (e =7 (0)))

Px’ 41 €{0,1,9}

<l T (271 (05 = =5 () + (L= @] ) (5 = =7 (0)) )

JEX]

= X (@M (e == @) + @ =] Y (e =7 (0))) | 0]
©x+1€{0, 1,9}

i
—WTsz

were the last equality is due to Lemma[28] This proves the inductive hypothesis. O

Lemma 30. We have:
v
77 =7
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Proof. From Theorem [7]and Lemma [29) we have:

YT=3 > (%

i€[n] peWwr’
= Z wa:/’é#
i€[n]
= Z ™ W
i€[n]
=x" -w
and we have:
Z7 = exp(—nc] ) D A ()
i€[n] pEWT
= 3" exp(—ne] )l @]
i€[n]
= > exp(—ne] )] w;
i€
= > (exp(=nef i)
i€
="'
i€n]
=77 .5
so:
Y© o oaw
Z7 " w8

Definition 31. Let us define v as:

gimrl T (a1 (e = =7 ) + (0= al ) (4, = = ©))

J€ls\e’

Lemma 32. We have:

and:

Proof. Take any b € {0,1}. Since 7/ ¢ Q,.» we have w;,(l) =1and w;,(o) = 0. From this
result and the inductive hypothesis we have:

! ! - _le- 7_/ b - _7_/,, T/ b -
7™y =m TT (@771 (9] = () + (1= a9 (] = =7 (0)
Jjels]

P N e - N [b -’
=] <wl I (goZT! = wﬁ,(l)) +(1—w " )I (%J = wj- (0)))

< I (w[l’jﬂ (@;"b - w;-/(l)) +(1—al NI (ga;'“’ - w;’(O)))
jelsh{ery

= a7 <w§"” I(ep =1) + (@ —a] (o)) = ))
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< I (@71(¢ " == ) + 0 —a] 1 (¢ " == )
selshier)

JE[SIN{eT}
=x7 <w;/f'ﬂ b=1)+1—a " b= 0))
< JI (@771 (e == ) + 0= 0] (g = =7 (0))

Jels\{¢7}

O
Lemma 33. We have: ,
@] M= (61— wi) + 080) e
and for all j € [s]\ {¢"'} we have:
e
Proof. Direct from Algorithmand the definition of wZ,H’j (for all j € [s]). O

Lemma 34. We have:

7 () = 7ei (w P (per = =] () + (1= 6] O (per = 7 <o>))

Proof. We first consider the case that 7/ € Q. Note that since 7/ € Q we have (7 # ¢ for all

"> 7/ and hence 7" € Q,./ so we have ww(l) = ww( ) = v . Combing this result with

Theorem [0} Lemma 30, Lemma[32]and Lemma 33 we have:

¥ ) = L(per =) <% (™) +v{<sof'1>exp<f70?)}z/:>

= T(eer = ) (7 () + 97 (™) exp(—ne])8)
=L(per =) (F(1 — wi) + Jw; exp(—nc; ) B)

ar ey (1 e )) I(per =) (3(1 - wy) + Fws exp(—nel))

@ TV (WT =@}, (1)) + (=@ I (WT =wl,

(

- @;’HM (per =) + (1 — @] T Y (pyr = w>) 7 (1 —w;) + wi exp(~nef)B)
< ) (1 = wi) + w; exp(—ne])B)
(

)
)

= Je (w AT (WT = @], (1)) (-] T (WT =@ (o)))

wzl-s-l,ﬁ I (9027 = wzf’, (1)> . wz/+1,f )I (‘P@T = w ) (1 —w;) +6;)

We next consider the case that 7/ ¢ Q. We have two subcases. We first consider the subcase that
@4~ = 0. From Theorem 10} Lemma 30} Lemma [32]and Lemma 33| we have:
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Tl T/ T T/ T, ’T'I YT/
1) = (=] (@) + 1 =017 (¢" M exp(—ne] )

(
= (=007 (@) + (1= 0] (¢ ) exp(-ne] )
(1= ¢)3(1 — w;) + (1 — O)yw; exp(—ncl )B
=7 ((1 — o) (1 —w;) + (1 = O)w; exp(—ncz/)b’)
(
(

[
I

1= ¢)(1—w;)+ (1 —0)d3)
L—w;) + 08 — (¢(1 — w;) + 06;8))

(

(
v<<1—wz+66) e )
= (e —a] )

Fei(l— @] )

We next consider the subcase that ¢, = 1. From Theorem [I0} Lemma [30} Lemma[32]and Lemma
33l we have:

T ! T ! ! T’ Y
7 @) = 607 (@710 + 097 (07 1) exp(—ne] )

= 77 (¢71°) + 07 (" M) exp(—ncl )
$Y(1 — w;) + 05w; exp(—nel ) B

:ﬁ/( (1 — w;) + Ow; exp(— ncZ/)B)
=7 (0(1 —w;) + 65:;8)
=]

Putting together gives us:

T . _ 41,0 1
Yi H(‘P) =€ <wz i I(ppr =1)+ (1 —w; i M (ppr = 0))

Since T’ ¢ Q) there exists 7/ > 7/ with £7" = ¢ and hence we have 7/ ¢ Q,,/ so 1 = w;/ (1) and

0= wﬁ/ (0). The result follows.

By Lemma|[33]and the update of 7; we have:

ca=tenl) 1 (78 (os =] ) + (- a7 ) (5 = =] )

jelsi\er’
= ] (071 (05 = =5 ) + (1= 0] ) (g5 = =5 (0)))
JElsI\er’
=TT (1 (e = =y ) + (= @] T (05 = =7 ()
jelsi\er’

and hence, by Lemma 34}
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J€[s]

which proves the inductive hypothesis. Lemma 29 completes the proof.

A.2.8 Theorem

By Theorem|[TT| we have that:
> () =mfw 7
peW
so, by Theorem we have:
Z Z i ( :Zﬂ'fu?:’a( =a" .
i€[n] pewr i€[n]

which, by Theorem([7} implies that the vector component v defined in Section[A.T.5]is equal to:

1 _T,0(T T T
=g 2, ) =@ a7 ) /(T w )
pEWT

Since w7 (") = wﬁT(T) this is also the vector component played by Algorithmon trial 7.

A.2.9 Theorem

Since &(1); =1 (i = 25,(1)) we have:

In(N (@ (1)) =In [ J] (uI(a'(1); =1)+ (1 —pI(a'(1); =0))

J€ls]

=In | [T (uI(T(=2,0)) =1) + (1 = W) I(I (i = 25,1)) =0))

J€l[s]

=In | [T (i =20,00) + (=) T (i # 25,1)))

JEls]
=D (Ui = 2,0) + (L= ) L(i # 25,1))
j€ls]
= Z (i = zp,;(1)) In (1) + L (i # 25,(1)) In (1 — )
J€ls]

We have the following lemmas:
Lemma 35. Forall 7 € [T]\ Q we have:



Proof. By definition of 4*(7),- and since ;- (7) = T we have:

ézi(T)g-r =1 (Z,;N(T) = Z) = H(Z = ZT)

Lemma 36. Forall T € [T]\ Q we have:
OAzi(T + ].)gr =1 (Z = ZV(T))

Proof. Note that since 7 ¢ Q we have that there exists 7/ € [I'] with 7/ > 7 and {7 = (7 so
T+ 1 ¢ Q- and hence:

&1+ 1)er =1 (2ppr (r41) = 1)
By definition of 7y- (7 + 1) we have
Uer(t+1) =min{r’ € [T] |7 >7+1 A7 =07}
—min{r’ € [T] |7 >7 A L7 =("}
= v(7)
Putting together we have:

&7+ Der =1 (20 (r41) = 1) =120 =)

Lemma 37. Forall T € [T — 1] we have:
L(vj € [s]\ {7}, &'(r); =a'(r+1);) =1

Proof. Suppose we have some j € [s] \ {£"}. We have two cases. First consider the case that 7 ¢ ;.
Then since {7 # j we have:

pi(r) = min{r' € [T] |7/ > 7 A £ = j}
=min{r' € [T]| 7' >7+1 A {7 = j}
=vi(r+1)
Hence we have
&' (7); =L (zi,(r) = 1) = 1 (25,(r41) = 0) = G'(7 + 1);

Next consider the case that 7 € ;. Then we immediately have, by definition of 2;, that 7 41 € ;.
Therefore we have:

Q'(r); =¢ =a' (1 +1);
So in either case we have: _ 4
a'(r); = a'(r +1);
The result follows. O

Lemma 38. For all T € Q) we have:
In (/\T(ééi(T),ééi(T + 1))) =1
Proof. Since T € Q there does not exist 7/ € [T'] with 7/ > 74 1 and £ = (7. Hence we have that

T+ 1€ Qg s0 & (7 + 1)~ = 1. By the definition of the Multitask circadian and Lemma we
then have:

AT (&' (1), &' (1 + 1))

L&' (7 + 1)er = ) (V] € [s]\ {7}, &' (7 +1); = &'(7);)
1(Vj € [s]\{"}, &(r +1); = &'(r);)
1
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Lemma 39. Forall T € [T]\ Q we have the following:

o Ifz =i A 2, =i then N"(&i(), 6 (r + 1)) = 0
o Ifz £ A 2 £ ithen NT(&3(r),6i(r + 1)) =1— ¢
o Ifzr £ A 2n) =i then NT(&(),&i(T + 1)) = ¢

o Ifz, =i A 2, #£ithen N"(a3(r),6i(r + 1)) =1—0

Proof. We only explicitly prove the first item - the rest are proved in exactly the same way. If
2r =1 N z,(r) = i then we have, by Lemma | that &°(7),- = 1 and, by Lemma that
&'(T + 1) = 1. By definition of the Multltask Markov circadian this implies that A™(&*(7), &% (T +
1)) = 0L (Vj € [s]\ {¢"}, &'(7); = &'(T + 1);) which, by Lemmals equal to 0 O

Combing Lemma 38]and Lemma [39] with the equation derived at the start of the proof we have the
result.

]
A.2.10 Theorem [14]
By Theorem 9] we have:
1
S -a)<Iry-c
T 2 ,’7
TE€[T]
where
C mln( ) Y@y -3 Y L&i(r+ 1))
€M i€EM re[T—1]
We now compute the value of C. We start with the following lemmas:
Lemma 40. We have:
Z Z (i = 2zp,1)) In (1) + 1 (i # z5;1)) In (1= p)) = s (In () + (m — 1) In (1 — p))
iEM j€[s]
Proof. Given j € [s] we have:
Y Ii=zw)h@= Y Ii=zm)h@+ D I(i=2m)nEk
€M =25, (1) i€M\{zp; (1)}
= > W+ >, 0
1=2p; (1) ieM\{zp, (1)}
=In(p)
and:
D I(i#mm)n(l-p)= D> Li#mu)hl-p+ Y I(i#zmaw)hl-p
ieM =25, (1) ieM\{zp, 1)}
= Z 0+ Z In(1—p)
1=2p, (1) i€M\{zp, (1)}

(m—1)In(1—p)

Hence, we have:

ZZ zfzyj(l) In(u) + H(Z‘#ij(l))ln(lfp,))

1EM j€([s]
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=33 (10 = zo,0)) In () +1(i # 25,0
jEls] ieM

=Y (n(p) +(m—1)In(1 - p)
j€ls)

=5 (In(p) + (m — 1) In (1 — p))

Lemma 41. Given 7 € [T\ Q we have:

o Yiem I (zr =i A zu(r) = 1) =1 (20(r) = 2r)

) In (1= p)

¢ Yiewl(zr =i N2 #8) =Lz # 2)
¢ Yieul(zr #i N 2y =) =12 # 2)
o Y ieml(zr #i A 2y #i) =n—1-1(2,¢r) # 2r)

Proof. We have:

ZH(ZT:Z N Zy(r) :Z) =

H(zT:i A zV(T):i)Jr Z ]I(zT:i A ZV(T):’i)

ieM =z, i€M\ {2, }
:ZH(ZT:iAZV(T):i)Jr > oo
i=2 i€M\ {2, }
=1 ( =2zr N\ 2y(r) = zT)
=L (2u(r) = 2r)
and:
ZH(Z’T:’i/\,2‘,/(7.)7é :Z —iAZV(T)#i)+ Z I[(ZT:’L'/\ZV(T)#Z')
€M 1=z €M\ {z,}
= Z =1 A 27 #1) Z 0
1=z, €M\ {z-}
= (ZT =2 N Zyr) # zT)
( 2u(T) 7& Z’T)
and:
ST(zr#i N zyy=i)= Y T(ze#i A zyemy=i)+ Y T(zr#i A 2y =1i)
ieM 1=2y(r) i€M\{z, ()}
= Z H(ZT#Z'/\ZV(T):Z')-F Z 0
i:ZV(T) iEM\{ZV(T)}
I(zr # 20 A 2u) = 2u)
=1 (ZT 7é Zl/(T))
and:
Z]I(ZT#Z'/\ZV(T)#Z'): Z ]I(zTyéi/\zl,(T)#i)ﬁL Z H(ZT#i/\zU(T)#i)
1EM 1€{2zr,2u(r) } 1EM\{2r,2,(7) }

>, 0+ D

i€{zr,20(r) } 1€EM\{2r,2, ()}
= M\ {27, 2(r) }|
- |{Z'rv Zu(T)}|
=m— 1—]1(27— ;éz,,(T))
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Lemma 42. We have:
Z I (ZV(T) ?é ZT) =k

TE[T\Q

Proof. Direct from the definition of & and v/(-). O
Lemma 43. We have || = s

Proof. For every task j € [s], the number max{r € [T] | {7 = j} is the unique 7 € [T] such that
¢™ = jand forall 7 > 7 we have ¢7 = j. The result follows. O

Lemma 44. We have:

* Yiem Lrerpal( )
o Yiem Lrernal(zr =0 A 2y # 1)
® > icm ZTe ol (Z TN Zyr) = Z)
* ZzeszeT] I(zr #i A 2y #0) = (T —s)(n—1) — k
Proof. From Lemma 1] Lemma2]and Lemma 3| we have:

Z Z Z.,- =1 A Zy(r) = Z) = Z I (ZV(T) = ZT)

T—

Z2r =1 N Zy(r) =1

EM re[T\Q re[T\Q
= > (1-I(zm #2))
TE[T\Q
= ‘Q| Z H Zl/ (1) 7& ZT)
TE[TI\Q
= (T -10)) -
=(T—-s)— k
and:
> Z =i N #i)= Y Tam#2) =k
ieM e [T\Q T€[T\Q
and:
) Z (zr#i Az =)= D> I(am#2)=k
ieM e [T\Q TE[T\Q
and:

Z Z ZT#Z'/\ZV(T)#Z'): Z (m_l_ﬂ(zu(r)#zr))

€M re[T)\Q TE[TN\Q

=T —19)(m-1)— > (20 #2))

re[T\Q

=(T—[Q)(m—1) -k
=(T—-s)(m—-1)—k

From Theorem [13] we have:

Zln +Z Z L84 (T + 1))

1€M i€EM re[T—1]
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Yo (Y@ + Y Wm(V(@(r),d' (7 + 1))

i€EM TE[T-1]
=2 > (i =2,0) () + L(i # 25,00)) In (1 = pr))
ieM je(s]
+ In(0 Z Z ZT:i N Zu(T):i)
iEM re[T\Q
+In(l—¢ Z Z ZT#i/\ZV(T)#i)
€M re[T\Q
+In(1=0)> " > T(zr =i A zy(r) #1)
€M re[T\Q
+1H Z Z ZT%Z' A ZV(T):i)
iEM re[T\Q

So by Lemma 40| and Lemma 4] we then have:

DomN@ M) +Y, D W@ (r),a (r+ 1))

1€EM i€EM re€[T—1]
=s(n(p)+(m-1DnQ—-p)+Wm@) T -s—k)+In(l—¢)((T—s)(m—1)—k)+1n(l —0)k + In(¢)k

Substituting into the definition of C' in Theorem 9] gives us the result

A.2.11 Theorem

We start with the following lemma:
Lemma 45. Given z,y € RY, if we set z := -2 ; then:

—xlog(z) —ylog(l —2) = (z + y)H<x -T— y>

and
—xlog(z) — ylog(l — z) < zlog (T) + .

Proof. Wehave x = (x+y)zandy = (z +y)(1 — 2) so

—zlog(z) —ylog(1 - z) = (z + y)(—zlog(z) — (1 — 2)log(1 — 2))
= (z+y)H(2) (26)

B (x+y)H<wiy>'

We recall the standard inequality:
1
;H(z) <log(1/z)+1

Plugging this into Equation (26) gives us:
—zlog(z) — ylog(l — z) < (z +y)(zlog(1/2) + 2).

Substituting in the value of z then gives us the result. O

The next lemma utilizes the inequality in Lemma[d3]to give us the values of certain quantities when
u, 0 and ¢ are tuned.
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Lemma 46. Setting p:=1/m, 0 :=1—k/(T — s) and ¢ :=k/((m — 1)(T — s)) we have:

1. —log(p) — (m —1)log(1 — p) = mH(;)

<log(m)+1

2. =(T — s —k)log(#) — klog(1 —0) = (T — S)H<Tli S)

< klog (Tk_5> +k
3. —klog(¢) + ((m — 1)(T — s) — k) log(1 — ¢)
k
=m0 =00 (i)
< klog (W) +k

Proof. All three items follow from Lemma@with x, y and z defined, for each item, as follows:

l.z:=p=1/m,z:=1landy:=m —1
2.2:=1-0=k/(T—s),z:=kandy:=T —s—k
3.z:=¢=k/(m—-1)(T—3s)),z:=kandy:=(m—1)(T —s) — k.

O

Substituting the inequalities of Lemma [A6]into the definition of C' in Theorem [T4] gives us the result.

|
A.2.12 Theorem[16
We have:
c,=v"-c"
=Y v
1€[n]
= PG™ =i)c]
i€[n]
=Y PG =)Lo(y, [k()(z:)
i€[n]
=E (Lot(y", [(i7)](2)))
=E(Lo(y".97))
Noting that Lo (yf, hi(x})) = Lo (yf, [k(2])](x})) = ¢. _, then gives us the result.
|

B Proofs for Section 4

We prove Theorem [3]and give a proof sketch of Proposition[]in this section. We first provide a brief
overview of the proof of Theorem 3] and a discussion of Theorem 7] which is a key result in the
proof of the theorem.

44



Sketch of Theorem [3land Proof of Theorem

In the proof, we give a reduction of Algorithm[2]to [39 Alg. 2] (IMCSI). Two necessary additional
results that we need include Theorem [#7]and Corollary [50} In Corollary [50} we bound a normalized
margin-like quantity of the multitask-path-tree kernel used in the algorithm. Then in Theorem
we bound the quasi-dimension which indicates how to set the parameters of Algorithm 2]as well as
determines the value of C'(h*) in the main theorem. As this bound of the quasi-dimension is a key
element of our proof, we contrast it to a parallel result proved in [39, Thm. 3].

We recall that the regret (see [39, Thm. 1]) of IMCSI is O(y/(D/42)T) where 1/42 > |U|2,, and
D> Dis.n(U). We will prove in our setting 1/9% = m > |U||?, in the discussion following (@4).

max

We now contrast our bound on the quasi-dimension (Theorem to the bound of |39, Thm. 3].

The quasi-dimension depends on 7y so that if v < 4/, then D}, 5 (U) < DXLI ~(U). In [39, Thm. 3]
the given bound on quasi-dimension is independent of the value of . Thus to minimize the regret

bound of O(y/(D/42)T), it is sensible in [39] to select the smallest possible 1/72 = [|U||2,,.

The situation in this paper is essentially reversed. In the following theorem, it is required that
1/9% = m > ||U||?.- In fact, m is the maximum possible value of the squared max norm in the case
that m = |m(h*)| with respect to all possible comparators h* (see (@4)). Thus in contrast to [39]

Thm. 3], our result trade-offs a potentially larger value in 1/~2 for a smaller possible D. If we were
instead to use the bound of [39 Thm 3], then the term in this paper 3=, ¢, 7, |h||% X% would gain

a leading multiplicative factor of m? (terrible!).

We introduce the following notation. We recall the class of m x d row-normalized as N"™% :=
(P c jmxd H]%
{R C {0,1}™*4 : |R;|| = 1 fori € [m],rank(R) = d}. Block expansion matrices may be seen

as a generalization of permutation matrices, additionally duplicating rows (columns) by left (right)
multiplication. The class of (k, £)-binary-biclustered matrices is defined as

B']Zfén _ {U = RU*C™ ¢ {_1)1}m><n CU* € {_171}k><£7R c Bm,k ,C c Bn,é} .

‘ = 1,4 € [m]} and denote the class of block expansion matrices as B"™¢ :=

Theorem 47. IfU € BY, v = 1/y/m and if

Dirn(U) =¥ tr(U*) " MU*)Rps + tr(CTNC)Rn 27

is defined as the minimum over all decompositions of U = U*C'" for U* € {—1,1}?*™ and

C < BT'"™ then
Dy nU) <Dy NU)  (v=1/vVm).

Proof. Recall by supposition v = 1/y/m. Set P’ := AU* and Q' := C hence P’ € NP™,
Q e NT'™and P'Q'™ = ~U.

Recall (7),
Dy nU):= min tr (PTMP) Ras + tr (QTNQ) RN . (28)
PQT=1U
Observe that (15’ Q' ) is in the feasible set of the above optimization. Hence
DYy n(U) < tr (P’TMP’) Rg + tr (Q’TNQ’) RN
=72 tr((U*) " MU*)Rpr + tr(C"NC)Rn

Proof of Corollary

In this section, we prove Corollary [50] which is utilized in the proof of Theorem 3}

We recall the notions of effective resistance between vertices in a graph and the resistance diameter
of a graph. A graph may naturally interpreted as an resistive network where each edge in the graph is
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viewed as a unit resistor. Thus the effective resistance between two vertices is the potential difference
needed to induce a unit current flow between them and the resistance diameter is the maximum
effective resistance between all pairs of vertices.

To prove the corollary, we will need to bound the diagonal element of the Laplacian pseudo-inverse
by the resistance diameter. In the following Lemma, we will improve upon [49, Eq. (9)] by a factor
of % for the special case of fully complete trees.

Lemma 48. For the graph Laplacian L € RN *Y of a fully complete tree graph,

1
R = LY < =Raiam(L),
L =maxli < 5Ra (L)

where Rgiam (L) is the resistance diameter of the graph described by L.

Proof. Before proving the result, we shall recall 4 general facts about graphs, trees and Laplacians.
We also denote the set of vertices at a given depth a level. The root is at level 0.

1. The effective resistance between vertices ¢ and j is given by (see [50]),

R(i,§) = L + L}, — 2L}, (29)

2. The diagonal element of L™ is given by (see eg. [51]])

R()  Ruot
N N2’

where R(i) = Y0 R(i,5) and Ryot = 3, ;; R(i, ).

L = (30)

3. For fully complete trees, we have that R(i) = R(j) and L}, = L;rj if ¢ and j are in the
same level due to symmetry.

4. For trees, the effective resistance between vertices ¢ and j is given by the geodesic distance
(path length) between the two vertices.

Next, we prove the following intermediate result.

Lemma: For a given vertex i, the vertex j that minimizes L:“j is the leaf vertex
with the largest geodesic distance from .

Proof. Define h to be the height of the tree. We take vertex i’ to be at level
k € [h — 1] and vertex j' at level k£ + 1. Recalling that R (i) = Zjvzl R(i,7), we
will consider the individual summands that compose R(j') and R(¢’), given by
the geodesic distances between ¢’ and j’ respectively and the other vertices due to
fact 4. From fact 3 (with respect to the summands), we can assume without loss of
generality that vertex j’ is the child of i’. Going from the summation of R(j’) to
the summation of R(i’), there are 3 possible changes to the geodesic distances in
the summation:

1. the descendants of j’ will have a geodesic distance reduced by 1
2. the geodesic distance between ¢’ and j' remains constant
3. all the other vertices will have a geodesic distance increased by 1.

Hence, defining D, to be the set of descendants of node j i

R(G)=RE) - > 1+ > 1

i€Dy ' €[N\D,; U{j'}
=R(@")+ N —2|Dj| — 1.
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This gives that R(j') — R(i’) < N, and
R(") = R(#)
— 7 <. 31
—— < (3D
We show that vertex j that minimizes L;'; must be a leaf vertex by contradiction.

Suppose j is not a leaf vertex then there exists a child of j # . Call the child j’
which thus satisfies R (¢, j') — R (4, j) = 1. Hence, Equations ([29) and (30) give

L (R(G) _RG) o -
Liy —Lij =5 (N - — R+ R(m)) (32)
<0, (33)

where the inequality is due to (3I)) for which we let i/ = j. Hence, we have that
ij > L;rj, which is a contradiction.

Then, using Equations (29) and (30), we have
R{)
N

_R(Zaj)

argmin L;-"j = argmin
J J

Since all leaf vertices have the same R (%), the leaf vertex that minimizes must be
the one with the largest geodesic distance from . O

Recall that for a tree, the resistance diameter is equal to its geodesic diameter, and hence the vertices
that maximize the effective resistance are given by the two leaf vertices with the largest geodesic
distance. We therefore proceed by considering ¢ and j to be any of the vertices that maximize
the effective resistance, giving the resistance diameter. Due to fact 3, we have LZ = ij Then,
from (29), we obtain,

1
§Rd1lam(L) = Lj; - L;S

= Lj; —min L}, (34)
1 N
> L - N Z Ly,
k=1
> L (35)

where comes from the intermediate lemma, and comes from the fact that Zjvzl L;; =0 for
all i € [N] since L1 = 0 for connected graphs. O

The following Lemma is essentially a simplification of the argument in [43 Section 6] for Laplacians,
Lemma 49. (See [43| Section 6].) If f € Hp N {0,1}T then

max P(t,t) < 2[log, T']
T€[T]

||f||?a§g%2§P(t,t) < k(f)logy T1? + 2,, (36)

where k(f) == 32, [f(t) # f(t+1)].

Proof. First we recall the following standard fact about the graph Laplacian L of an unweighted

graph G = (V, E),
u'Lu = Z (u; —uj)?,
(i.J)€E
where V is the set of vertices and I is the set of edges in the graph. Call this quantity the cut of the
labeling u. Consider a fully complete binary tree with a depth of [log, T'] + 1. For simplicity now
assume that there are exactly 7' leaf nodes, i.e., log, T' € N. Assume some natural linear orderin of

3Given every three vertices in ordering (a, b, ¢) we have that d(a, b) < d(a,c) where d(p, q) is the path
length between p and q.
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the leaves. This ordering then defines our path. We call each set of vertices at a given depth a “level”
and they inherit a natural linear ordering from their children. Suppose that there are n vertices at a
given level ¢, and define w? := wu, ., where v/ is the ith vertex on level £. The path-cut at this level is

. n—1
given by Y1) [wf — w4
We now proceed to argue that for a given binary labeling of a path with associated path-cut k(f),
we can identify a (real-numbered) labeling of the tree, such that: a. the labeling of the tree leaves is
binary and consistent with that of the path and b. the tree has a cut of no more than 1k (f)[log T'].

The construction is as follows: each parent inherits the average of the labels of its children. We make
two observations about the constructed labeling:

1. The path-cut at a higher level cannot be more than the level below. Consider two adjacent
levels with the lower level ¢ having n vertices. Denote the set of odd numbers that is a subset
of [n — 1] as I,q4, and the set of even number that is a subset of [n — 2] as Iy, Recall that

the path-cut of the lower level is Z;:ll lwf — w¥, ;|. This can be upper bounded as follows:

n—1
Z |wf - wf+1|
i=1

0 0 0 0
w; + w; w; + w;
_ V4 i i+1 4 i+1 4 14 14
= E w; — 5 + 5 —Wiyq| + E |w; — wj ]
1€1odd 1€1leven
¢ Wi T wiy wi +wiy, ¢ ¢ ¢
= E w; 5 5 — Wiy | T E |Wit1 — Wigol
€144 ’iEIOdd\{nfl}
Y Vi Vi 0
wy; + W w; + wj
4 i i+1 ) i+1 4 L 4
2 E w; — B + E —— — Wi |+ Wi — Wil
i1€1load i€loaa\{n—1}
Vi 0 Vi 0
w; + wj; w; + wj;
Y4 7 1+1 7 1+1 Y4
> E wi—#—i— E — — Wj4o 37
i€1odd iElodd\{n—l}
Vi Vi 0
S Ui + Wity wi t Wit
= Ui — 5 5 T W42
1€1,qa\{1} 1€1oaa\{n—1}
Y 0 0 Vi
_ ¢ W9 + Wii3 w; + Wiy ‘
= Wiyg — B D) — Wita
ie[odd\{nfl}
Vi 0 0 Vi
w; + w; W; o + W;
Z z : 7 1+1 _ 1+2 5 i+3 (38)
ie]odd\{nfl}

where and (38) follow from |a — b| + |b — ¢| > |a — ¢| (triangle inequality). Observing
that the R.H.S. of (38) is the path cut of the upper level, we are then done.

2. If we denote the set of edges between two adjacent levels by E, we have that E( i) EE (u; —

u;)? is at most half the path-cut of the lower level. This can be seen by considering the
edges between a given parent ¢ and its two children j and j'. Let us define x as half the
path cut due to the children, i.e. 1|u; — u;|. Since all labelings are in [0, 1], we have that
x € [0,1/2]. The cut made due to the parent and the children, i.e. (u; — u;)? + (u; — u;r)?
is then given by 222, Using the inequality x — 222 > 0 for = € [0, 1/2], and applying this
to all the parents on the same level as vertex ¢, we then prove the statement.

Hence, combining the two above observations and recalling that there are [log, T'] 4 1 levels (and
therefore [log, T'] transitions between the levels), we have that

[log, T' 1 [log, T'

S w-wrs Y g0 Y Sk,

(i,j)€E (=1 k=1
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where p(¢) is the path-cut of the tree at level 4, the first inequality is due to observation 2, and the
second inequality is due to observation 1. Hence we have shown our premise that the cut is upper
bounded by $k(f)[log, 7. Observe that our premise still holds if there are more than 7 leaf nodes,
as we can treat any additional leaves on the bottom level as being labeled with the last label on their
level; thus the cut will not increase. Hence we have shown the following inequality where L is
the Laplacian of a fully complete binary tree with N vertices and a path of 7" leaves labeled by an

fe{o, 1},

1
min u' Lu < =k log, T . 39
weRIN u= 1 (i) i€[T] =2 (£)[og, T' (39)

We next observe that
Rr < [logy, T . (40)

This follows from Lemma where R = max;c|n L; is bounded by half the resistance diameter,
which is then just bounded by half the geodesic diameter. Furthermore if L is the Laplacian of a
connected graph and L := L + (1) (1) " Rp! thenif u € [~1,1]™ we have
RLO - QRL 3
1
TL°u<u'L e
u u<u Lu-+ Ry

Thus combining the above with (39) and @0), we have,

Rro <2[log, T,

min w L°u)Rro < k(f)[log, T1* + 2,
ueR[N]:m:f(i),iE[T]< JRie < k(f)[logy T

which proves the Lemma. O

Observe that the left hand side in (36) is up to constant factors, the normalized margin of f in
the sense of Novikoff’s Theorem [52]]. The construction is somewhat counterintuitive as one may
expect that one can use a path graph directly in the construction of the kernel. However, then
max; e[| P(t,t) € ©(T) which would lead to a vacuous regret bound. Also one may wonder if one

can reduce the term (log 7")? while maintaining a linear factor in k(f). In fact the term (log T')? is
known [53], Theorem 6.1] to be required when k(f) = 1.

As a straightforward corollary to Lemma[49] we have
Corollary 50. If f € H N {0,1}7T then

117 masx P(r.7) < (K(F) + (/) [logs T +2. (41)
wherg P = PAT T Hf) o= S G A f)] and s() = S5 G) #
)l

Proof. Since each task is laid out contiguously along the bottom layer, we pay the path-cut for each
task individually and we pay s(f) for the intertask boundaries. O

Proof of Theorem 3

We first recall some of the notation introduced earlier in the section. The block expansion matrices
are defined as B™4¢ := {R C {0,1}™*? . |R;|| = 1 for i € [m],rank(R) = d}. The class of
(k, £)-binary-biclustered matrices is defined as B;"}" = {U = RU*C" € {-1,1}"*" : U* ¢
{~1,1}**¢ R € B™* C € B} . Next, we recall Theorem [3|and provide a proof.

Theorem 3| The expected regret of Algorithm 2| with upper estimates, k > k(h*), m > |m(h*)|,

C>C(h*) = Z ||h||§(X%<+2(s+k—l)mﬂong—\2+2m2 ,
hem(h*)
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Xz > max,e(r) K (x7,27), and learning rate 1) = él;%im is bounded by

s T

> ElLoi(yi, 4] — Loi(yi, k(7)) < 4/2C Tlog(2T) 42)

i=1 t=1
. o , T v o )T
with received instance sequence x € X' for any h* € Hy~ .

Proof. Algorithm [2] is the same as [39, Algorithm 2] (which we call IMCSI) except for some
redefinitions in the notation. For convenience we recall IMCSI belowf]

Algorithm 2 ([39]).

Parameters: Learning rate: 0 < 1 quasi-dimension estimate: 1 < D, margin
estimate: 0 < v < 1 and side-information kernels M™ : Z xZ — R, N :
J x J — R, with Ry := max;ez M7 (4,7) and Ry := maxje s N7 (4,7),
and maximum distinct rows m and columns n, where m + n > 3.

Initialization: M« (0, U+ (0, 7' «+ 0, J' « 0 .

For t=1,...,T
e Receive pair (i, j:) € Z x J.

o Define

(Mt)Jr = (M+(ir7is))r,seItU{it}; (Nt)+ = (N+(jr,js))7-,sejtu{jt} )
o) i [( L) e’ | <Nt>+>ejs] [( L) e’ | <Nt>+>efsr
wt + exp (10g <’rn,"in> I\It|+|Ji|+2 +Znyth(s)> )

seU

X

e Predict

Y; ~ UNIFORM(—7,7) ; i < tr (WtX't) —1; < sign(g — Yy).
e Receive label y; € {—1,1}.
o If 4,4, <~ then

U« Uu{ty, 7" <« 7' U {i;}, and T < T U {4}
o Else Z0+! «— Tt and J**! « J?.

The following table summarizes the notational changes between the two algorithms.

Description IMCSI Algorithm 2
Row space 7 X
Column space J [T)
Row kernel MT K
Column kernel Nt | Pi=peTh Tt
Row squared radius Rm X%
Column squared radius | R X2
Margin estimate y2 m
Complexity Estimate ﬁ’y’2 C
Dimensionsﬂ m,n T,T
Time t T
Instance (it, jt) (x7,7)

We now recall the following regret bound for IMCSI.

“Since we are only concerned with regret bound we have set the parameter NON-CONSERVATIVE = 1 in
our restating of the algorithm.
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Theorem 1 ( [39, Theorem 1/Proposition 4]) The expected regret of [39 Algo-

D 10g(m+n)

rithm 2] with parameters v € (0,1}, D > Dy, (U), 1 = , p.d.

matrices M € ST', and N € S | is bounded by

D
Z E[Lo1(ye, 9¢)] — Lo1(ye, Ui, j,) < 4\/272 log(m +n)T (43)

te[T]

SJorallU € {—1,1}™*" with ||U ||pax < 1/7.

We introduce the following notation: the matrix H := (h"(x) : z € X 7 € [T]), the set X" :=
Ureir{z"}, the matrices K = [(K (z,2') : #,2/ € X™)]7!, and P = [(P(7,v) : 7,v € [T])] 7.

Initially we note that we very minorly extend the algorithm and thus its analysis [39, Theorem 1] in
so far as we use the upper bounds and X% > R and X3 > Rp.

It now remains that in order to complete the reduction of Theoremto [39, Theorem 1] we need to
demonstrate the following two inequalities,

| H s < ViR (44)
m 1 *
DY (H) < —C(h"). (45)

First we show (@4)). Initially we derive the following simple inequality,

HU”max < min(mv \/ﬁ) s (46)

which follows since we may decompose U = UI" or as U = I"U. Let p = |X"|. Recall
by definition m > |m(h*)| and thus there are only at most m distinct columns which implies
H = I?PH*C" where H* € {—1,1}?*™ and C € BT hence H € Bgﬂ. We now show,

[ [lmax = [ H [|max - (47)

For every factorization H* = P*Q*" there exists a factorization H = P*(Q*"C™) for some
C € BT™ such that

*
max [P max @ = max |P7] max [(€Q)yl,

since for every row vector Q7 there exists a row vector (CQ*) i such that Q7 = (CQ"); and
vice Versa Therefore since the max norm (see (6)) is the minimum over all factorizations we have
shown @7). Since H* € {—1,1}?*™ we have || H ||max < || H*|lmax < min(y/p, v/m) by (@6) and
thus we have demonstrated (44] -

We now show ([@3]). We recall the following useful equality,

uw K lu= argmin 1% - (48)
fEHK: f(x)=uz:z€X

where K = (K (z,7))s.2ex, u € R¥ and K is invertible and K is a kernel. By Theoremwe
have
1

DL (H) < —~ tr((H*)" KH*)X% + tr(CTPC)X?%,

where H = H*C" with H* := (h())cxm pem(n+) and C := ([h7 = h])re[r],hem(n-) (note
C e BT'™),

Simplifying and using [@8) we have,

m 1 % D %
DL (H) < — > |l Xk +u(CTPC)XE. (49)
hem(h*)
From (@8] we have,
w(CPC)= Y ePa= Y |fl}p (50)

hem(h*) hem(h*)
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where ¢y, is the column vector formed by taking the h'" column of C. The vector ¢;, € {0,1}7
indicates if hypothesis h is “actlve ontrial 7, i.e., ¢}, = [A” = h]. Next we define f (1) := ¢}, for
7=1,---,T. Recalling 7 = U(T), we also have fh( )= fn (U )

From (50) and Corollary [50] we have,

w(CTPC)XE= > |fulp X3 (51
hem(h*)
< > (k(fh)+s(fh))ﬂogz T)? +2)
hem(h*)
< Y (k(fa) + s(fn) [logy T1* + 2m(h")
hem(h*)
< Y (k(fn) + s(fn)) [logy T1* +2m
hem(h*)
< 2(s+k—1)[logy, T7° + 2m (52)
where ‘
s T'—1 s—1 ‘ ‘
Z DG # FG))s s(f) =D [FGr) # FEHI,
=1 t=1 i=1

and where (52) comes from using 3=, ¢,y K(fn) = k(h*) <2k and 37, ¢, ey 8(R) < 2(s — 1),
where the factors of two are due to each switch of f}, on successive time steps as well as intertask
boundaries being counted twice.

Substituting (32)) into {@9), we have

™ 1 A
DY H) < — 3 Al X +2(s + b~ 1)[logy T) + 2m,
hem(h*)

This demonstrates (3) thus completing the reduction. O

Proof Sketch of Proposition 4]

First we recall and then give a proof sketch of Proposition ]

Proposition[d} For any (randomized) algorithm and any s, k,m,I' € N, with k + s > m > 1 and
I' > mlogy m, there exists a kernel K and a Ty € N such that for every T > Tj:

> ElLoi(y7,97)] — Lor(y7, b (27) € 9 (VT + slogm + klogm) T)

for some multitask sequence
such that m > |m(h*)|,
max ¢ K(27,27).

b, (@t yT) € (X x {1,117 and some h* € [H&?)]T
( *

(!
k = ), ZhEm(h* |h||KX2 im(h*)|logy m, where X3 =

Proof Sketch. We recall the following online learning terminology. A sequence of examples
(z1,y1),- .-, (x7,yr) is realizable with respect to a hypothesis class H if there exists an b € H, such
that Zthl Lo1(ys, h(z¢)) = 0. The optimal mistake bound (Ldim(H)) with respect to a hypothesis
class H also known as the Littlestone dimension [54}155]] is, informally speaking, the minimum over
all deterministic learning algorithms, of the maximum over all realizable example sequences of the
number of mistaken predictions.

We will apply the following useful result [S5) Lemma 14] which we quote below for convenience,
Lemma 14 (Lower Bound). Let H be any hypothesis class with a finite Ldim(H).

For any (possibly randomized) algorithm, exists a sequence (x1,y1), .- ., (xT,yT)
such that

Ldim(#)T

Ezﬁm Yt, Ut) — Hémﬁol(lltvh(xt)) > 3

t=1
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In essence, this allows one to go from a lower bound on mistakes in the realizable case to a lower
bound in the non-realizable case. However, Lemma 14 only applies directly to the standard single-task
model. To circumvent this, we recall as discussed in Section @ that the switching multitask model
may be reduced to the single-task model with a domain X’ = X x [T] x [s] and hypothesis class H'.
Therefore a lower bound in the switching multitask model with respect to H implies a lower bound in
the single-task non-switching case for 7’ via the reduction. There are some slight technical issues
over the fact that “time” is now part of the domain X and thus e.g., valid example sequences cannot
be permuted. We gloss over these issues in this proof sketch noting that they do not in fact impact
our arguments. The argument proceeds by demonstrating that there exists for any s, k,m,I"’ € Na

kernel K and a realizable multitask sequence (x!,y%), ..., (zT,yT) for which
T
Zﬁ()l(yT,yT) € Q(T + slogm + klogm) , (53)
T=1

where ¢ € X7, X7 = max,¢r) K(z7,27), T > 2 hem(h*) b))% X2 > mlogym, k > k(h*),
m > |m(h*)| and k + s > m > 1. After demonstrating that there exists such an example sequence
we can apply [55) Lemma 14] to demonstrate the proposition. Since the lower bound is in the form
Q(P + Q + R) which is equivalent to Q(max(P, @, R)), we may treat P, ) and R, independently to
prove the bound. Before we treat the individual cases, we give a straightforward result for a simplistic

hypothesis class.

Define X; := [d] and H4 := {—1, 1} (i.e., the set of functions that map [d] — {—1,1}). Observe
that Ldim(#4) = d, as an algorithm can force a mistake for every component and then no more.

Also, observe that if we define a kernel K4(z, z') := [z = '] over the domain X that Hy = H%]),
max,e(g Kq(x,2) = 1 and that Hh||§(d = d for all h € Hg4. Finally, note that if m = |H4| then
Y heny Ill%, X5, =mlogym.

We proceed by sketching an adversary for each of the three cases.

Case I' is the max.

To force T" mistakes, we choose K = K, and set d = I'/m and without loss of generality assume
that d is an integer and recall that k + s > m. Since Ldim(H,) = d, an adversary may force d
mistakes within a single task in the first d trials. This strategy may repeated k£ more times within a
single task thus forcing (k 4 1)d mistakes. If k + 1 = m, we are done. Otherwise, the constraint
k + s > m implies that we may force d mistakes per task in m — (k + 1) other tasks. Thus after md
trials, md = T’ mistakes have been forced while maintaining the condition m > |m(h*)|.

Case k logy m is the max.

Set d = log, m and without loss of generality assume d is positive integer. Using H 4 we force
kd mistakes by first forcing d mistakes within a single task then “switching” k£ — 1 times forcing
kd = klog, m mistakes, while maintaining the conditions m > |m(h*)| and k > k(h*).

Case slog, m is the max. Same instance as the above case, except we force d mistakes per task. [

C Proofs and Details for Section 2]

For the reader’s convenience, we collect some standard well-known online learning results or minor
extensions thereof in this appendix.

C.1 Proof the MW Bound

The algorithm and analysis corresponds essentially to the classic weighted majority algorithm
introduced in [3]. In the following, we will denote |Hgy,| as n. We introduce the MW algorithm and
give the corresponding regret.

Theorem 51. For Algorithm setting n = +/(2logn)/T

> ElLor (s, 50)] = Lor(ye: hlr)) < /2log(n)T (54)

t=1
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Algorithm 4 MW Algorithm
Parameters: Learning rate 7; finite hypothesis set {h!,... h"} = Hg, C {—1,1}*

Initialization: Initialize v; = 117
For t =1,...,T
e Receive instance x; € X.
e Set hy = (h'(x;)...h"(x;)) € {—1,1}".
e Predict ,
Z't ~ V¢, :Igt(—hét .
e Receive label y; € {—1,1}.
e Update

1
— —|ht — 91
2| t yt|

Wiy < wy @ exp (—nky)
Wi41

Vigl & =
Zi:l Wi41,i

forany h € Hgy.

Proof. Recalling that £, = W, we have that v; - £, = E[Lo1(ys,9¢)] and that € - £, =
Lo1(ys, h*(z¢)). In what follows, we will therefore bound v; - £; — e’ - £;. We first prove the following
“progress versus regret” inequality.

) 1 ) ) n
(O @t —e'- Et S E (d(e’,vt) — d(e’,le)) + g Z'Ut’igzi. (55)

Let Z, := Y1, vg,i exp(—nty,;). Defining d(u, v) as the relative entropy between w and v € A,,,
observe that from the algorithm

d(6i7'l)t) - d(ei7vt+1) = Zej 1Og t+17j

Ut,j

=-n Z e;'-ém- —log Z;

j=1
= -—ne' £ — longm— exp(—nly,;)
i=1

. n 1
> —net -, — log; vei(1 = nlei + 57724{1) (56)

) 1 n
= —neZ . ft — IOg(l — NVt 'Et + 5772 Z; Utﬂ[t%i)

) 1 n

> (v £y — €' - £;) — 5772 > vl (57)

i=1
using inequalities e < 1 — x + %2 for x > 0 and log(1 + z) < « for (56) and respectively.

Summing over ¢ and rearranging we have

T n
1 _ .
E vy by — € Et) < ;( (e',v1) — d(ez,vm_H g E g Ut,ié?,z‘
t=1 t=1i=1

1 T n
ogn Zz_:z_;”tn@i (58)




where (58) comes from noting that d(u, v1) < logn, —d(u, vy11) < 0, and Zthl S vy <
T'. Finally we substitute the value of 1 and obtain the theorem.

O

C.2 Review of Reproducing Kernel Hilbert Spaces

For convenience we provide a minimal review of RKHS see [5. [56] for more details.

A real RKHS #H is induced by a kernel K : X x X — R. Where K is a symmetric and positive
definite function. A function K is (strictly) positive definite iff the matrix (K (2, 2"))y o7ex is
(strictly) positive definite for every finite cardinality X C X. In this paper we are only concerned
with strictly positive definite kernels. The pre-Hilbert space induced by kernel K is the set Hy :=
span({K (z, ) }vzex) with the inner product of f = 37" a; K (2;,-) and g = Y7, afjk(a, )
defined as (f, g) 5 == > i, D5, @i; K (x4, 2;). The completion of Hy is denoted . Finally
the fact that K is positive definite implies the reproducing property: if f € Hyi and x € X then

C.3 Proof of the Online Gradient Descent Regret Bound

In this section, we will prove expected regret bounds for Online Gradient Descent for both the
switching and non-switching case. The proofs are adapted from the material in [8} [11}I57] (see [58]]
for the seminal work on worst case bounds for online gradient descent with the square loss). Recall
that we wish to proof the following for the non-switching case:

T
S ElLo (e, 90)] — Lot (yr, b)) € O (\/nmi X%T) (VheHy) (59

t=1

where X2 1= maxy¢|7) K (24, 2¢). For the switching case, we wish to prove

T
> B{Con(1,30)] = oo, h(a0) € O ([ Il X3.7). (60)
t=1

For simplicity, we prove for an arbitrary inner product (-, -) space with induced norm ||-||. The RKHS

setting reduces to this setting by identifying « := K(z,-), u := h, and (u, ) := h(z).

Algorithm 5 Randomized Constrained Online Gradient Descent Algorithm
Parameters: Learning rate 7, radius

Initialization: Initialize w; = 0
For t=1,...,T
e Receive vector x;.
e Predict
Y: ~ UNIFORM(—1,1) ; g ¢ (wy, @4) ; §r <—sign(ge — V) .
e Receive label y; € {—1,1}.
o If gtyt S 1 then
wi" < wi + YTy

W41 — P»Y(’U.Jtm)

o Else w;" +— wy; Wiy + wy

In the following, we define the hinge loss Lpni(y',y") = [1 — y'y"]4 for ¢/, y” € R. We define
zp = —ywy][l — ye(wy, @) > 0] € Vi Lyi(ye, (w, x;)), where wy, x4 and y; are as defined in
Algorithm We denote P, (w) to be the projection into the closed origin-centered ball with radius ~,

so that
i <
P, (w) {U“ if [lwl|] <~

R w i
otherwise .
VTl

We also present a lemma, used as a starting point for both the switching and non-switching proofs.
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Lemma 52. For Algorithm[5and any w lying in the convex set {w : [|w]|| < ~},

1
(we =,z < o (lwe =l = e —al® +07 |z0)°)

Proof. Using the update rule of the algorithm, we have
lwp® = ul|* = s = nz; — ul)®
= |[w; — ul* = 2n(w;, — u, z,) +n* ||z
Next note that
e = ul® < Jlwier = w]"|* + weer =l < o — ull?

where the rightmost inequality is the Pythogorean inequality for projection onto a convex set where
w1 is the projection of w]™ on to the convex set {w : ||w|| < v} which contains w. Thus,

wepr —ul® < lwe —u)® = 2n(w;, —u, z0) +0? ||z

Rearranging then results in the lemma. O

We will use the following lemma to upper bound the zero-one loss of our randomized prediction by
the hinge loss.

Lemma 53. Fory € {-1,1}, § € R, Y ~ UNIFORM(—1,1), and §j := sign(g — Y"),

2E[£01 (y, 37)] < ﬁhi(y, Zj)

Proof. We have

0 ifg<—1
pi=1)=qi1+y) if-1<y<1
1 ify, > 1
and
1 ifg <—1
pH=-1)=430-9y) if —1<y<l1
0 ifg > 1.

The possible cases are as follows.

1. If |g] < 1 then 2E[Lo1(y,4)] = Lui(y,y). This is since if y = 1 then E[Lo1(y, )] =
11— g_j) and Ehi(_y, y) =1 — . Similarly if y = —1 then E[Lo1(y,9)] = 5(1 + §) and
Lii(y,y) = (1 +9).

2. 1f [g] = 1 and E[Lo1(y, §)] = 0, then Lyi(y,§) = [1 = [g]l4 = 0
3.1f [g] = 1 and E[Lo1 (y, §)] = 1 then, Lyi(y,§) = [1 + [yll+ = 2 = 2E[Lo1 (y, §)]-

O
C.3.1 Non-switching bound
Lemma 54. ForAlgorithm@ given X = maxy ||z, [|[u|| < U andn = XL\/T we have that
T
Zﬁhi(ytaﬂt) = Lyi(ye, (u, ze)) < VU2X?T, (61)
t=1

for any vector u.
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Proof. Using the convexity of the hinge loss (with respect to its second argument), we have
Lhi (Y, Gt) — Lai(ye, (w, 1)) < (wr — u, 2).

We may therefore proceed by bounding Zthl (w; — u, z;). Starting with Lemma and summing
over t, we have

T T
1 2 2 2
D (w—u,z) < % (le —ul® = wrsa —ul? + 72 [zl

t=1 t=1

T
1
<o (IIUII2 +712Z ||zt||2> (62)

AN

T
= gz el [1 — e (wr, @) > 0]
L T
= 5 Z |$f||
M52
< Ly Oxer
< 5 U+ 3
=VU2X?T
where Equation (62)) results from the fact that w; = 0. O
22
a 1
> E[Lor(ye, 61)] — Loa (yr, (u, x)) < 3 U2X?T,
t=1

for any vector w such that |(u, ;)| = 1fort =1,...,T.

Proof. Applying the lower bound on the hinge loss from Lemma [53]to gives
T

T
23 E[Loi (g, 30)] < D Lailye, (u,ae)) + VU2 X2T

t=1

observe that Ly (y;, (u, x)) = 2Lo1(y, (u, ;) since we have the condition |(u,x;)| = 1 for
t =1,...,T dividing both sides by 2 proves the theorem. O

The bound for the non-switching case in (39) then follows by setting U = ||u|.

C.3.2 Switching bound

Lemma 56. ForAlgorithm given X = maxy ||@¢|, {u1,...ur} C{uw:||u|| <~} n= XLﬁ

and \/||uT||2 + 2y ZtT:_ll lutr1 — ue|| < U, we have that

T
Zﬁhi(yt’ﬂt) — Lni(ye, (e, ) < VU2X?T.
t=1

Proof. Using the convexity of the hinge loss (with respect to its second argument), we have
Lhi(Ye Ge) — Lni(Ye, (we, 1)) < (wp — g, 24).
We may therefore proceed by bounding Zthl (wi — wy, z¢). Starting with Lemma and summing

over t, we have
T

1
;«wt —unz) < 5 ; (e = well® = s = wel* + 72 122]) (63)

~
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To transform the right hand side of the above equation into a telescoping sum, we add and subtract
2 2 ..
the term A; = ||wy 41 — w||” — ||wit1 — w41, giving

T T
Z [|[w: — Ut||2 — w1 — UtHQ = Z [|w: — utHz = [lwir — Ut+1||2 - A
t=1 t=1

T
2 2 2 2
= llwn||* = fwrs1 = wria|* =Y (lwesr = wel® = [lwer — wep||)
t=1
T-1
2 2 2 2
= llwr ] = llwrsr —ur|® = Y (lwerr = wil* = Jwen = wen|)
t=1

(64)
T—1
< Jlwa|® - Z(Hwt+1 — || = wigr — wea [*), (65)
t=1
where Equation (64) comes from evaluating ¢ = 7" in the summation.
Computing the sum, we obtain
T-1 T-1
Z [wegr — utHQ = [lwea — ut+1||2 = Z HUtH2 - ||Ut+1||2 = 2w, (U — Ury1))
t=1 t

I
—_

T

— 2 2

> > luell® = ewesal® = 2w | flue — ]
t=1

T—1

> || = flur|® = 2y Y flee = wes | (66)
t=1

where Equation (66) comes from ||w;1]| < 7, a consequence of the projection step. Substituting
this back into Equations (63) and (65), we then obtain

T

T-1 T
1
Z<wt —ug, zg) < o <||UT||2 +2v Z lwe — wea || + 2772 ||Zt||2>
t=1 t=1

t=1

Lo Mo
— —X°T.
Qr]U + 2
=VU2X2T,

where the second inequality comes from the definitions of z;, U and X, and the equality comes from
the definition of 7. O

Theorem 57. For Algorithm[3] given X = max, ||x¢|, {u1,...ur} C {u : |lul| < ~}, and
2 T—1
\/||uT|| + 2> uerr —ue|| U, and n = XL\/T we have that

T

N 1
> ElLox(ye, 61)] — Lo (yr, (ue, @) < 3 U2X°T,
t=1
for any sequence of vectors w1, . .. wr such that |[{(us, z;)| = 1fort =1,...,T.

Proof. The proof follows the structure of the proof of Theorem 55| except that Lemma [56]is the base
inequality. O

The bound for the switching case then follows from Theoremby setting v = max; ||u¢||, and

U = /(4k + 1) max, ||u¢||2, noting that

T-1
lurl® +29 D fawer = well < [lur® + 2 max ||u|| (2k max|u])
t=1
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e
< (4k + l)m?x||ut|\2
=U2%

This gives us a regret bound of

Sk D max | PX7T

N | =

> E[Lo1 (g1, 50)] — Loa (g, (ue, 1)) <

t=1

as desired.

59



	Introduction
	Online Learning with Switching, Memory, and Multiple Tasks
	Switching Multitask Model
	Related Work
	Preliminaries

	Finite Hypothesis Classes
	RKHS Hypothesis Classes
	Discussion
	Acknowledgements
	Analysis of Algorithm 1
	Overview of Analysis
	The Specialist Allocation Game
	The Specialist Hedge Algorithm
	The Specialist Hedge Bound
	Definition of a Markov Circadian
	Reduction to the Specialist Allocation Game and Specialist Hedge
	Implicit Specialist Hedge Updates and Choices
	A bound for Markov circadians
	The Multitask Markov Circadian
	Derivation of Algorithm 1
	Participating Circadian Instances
	The Bound

	Proofs
	Theorem 5
	Theorem 6
	Theorem 7
	Theorem 8
	Theorem 9
	Theorem 10
	Theorem 11
	Theorem 12
	Theorem 13
	Theorem 14
	Theorem 15
	Theorem 16


	Proofs for Section 4
	Proofs and Details for Section 2
	Proof the MW Bound
	Review of Reproducing Kernel Hilbert Spaces
	Proof of the Online Gradient Descent Regret Bound
	Non-switching bound
	Switching bound



