We thank the reviewers for the constructive comments. We will revise the paper accordingly.

Reviewer#1

- Our paper exactly deals with the dynamic situation where feature distribution could change over time due 3 to the deployment of classifiers. Regarding the situation where training data arrive sequentially, it is a different setup.
- Our code is available online as given in lines 88-89 in the supplementary file.
- As we pointed out in lines 76-79, Dwork's compound decision-making process or pipelines differ from our setting
- in that individuals drop out at any stage and classification in subsequent stages depends on the remaining cohort of
- individuals. Wang's paper assumes that multiple functions over the same set of attributes are multiplied to produce an
- overall score. To the best of our knowledge, our paper is the first work to study the fair learning scenario where there
- exist multiple related classifiers at different stages and the feature distribution may change due to the deployment of 10
- classifiers. We will narrow down our claim to be more accurate. 11
- For complexity and scalability, if there is only one classifier, then our problem formulation is a convex constrained
- optimization. If there are multiple classifiers, neither the loss function nor constraints are convex. However, their 13
- gradients can be easily computed since each classifier is involved as a single term in the multiplication (e.g., Eqs. (7,8)). 14
- Thus, adaptive gradient methods for non-convex optimization such as Adam can be straightforwardly adopted. The 15
- convergence of Adam-type algorithms for non-convex optimization has been studied, e.g., in [Chen, et.al. ICLR'19]. 16
- Multiple sensitive attributes are not a bottleneck of the paper as most fairness notions can be easily extended to handle 17
- multiple sensitive attributes. For example, $P(y^+|do(s))$ in the total effect can be extended to $P(y^+|do(s))$ where s is a 18
- value assignment to the combination of multiple sensitive attributes.

Reviewer#3

20

- The assumption that the causal graph is given is common in the fairness research based on Pearl's struc-21 tural causal models. In addition to the PC algorithm, there are also quite a number of algorithms to build causal graphs 22
- from the data. The sensitivity of causal inference on the learned causal graph structure is beyond the scope of our paper. 23
- In optimization, we actually add constraints to the objective function as regularization terms. As mentioned in responses to Reviewer#1, the gradients can be easily computed. Then, we adopt Adam for the optimization. 25
- Regarding complexity, please refer to the corresponding response to Reviewer#1. 26
- We plan to do experiments with more datasets. 27
- In this paper we assume Markovian models for simplicity. However, our method can also be extended to scenarios 28
- where the Markovian assumption does not hold, a.k.a., semi-Markovian models. As discussed in lines 318-322, we will 29
- explore the use of σ -calculus for judging identifiability and computing post-intervention distributions. Furthermore, in 30
- the case of unidentifiable, we will resort to bounding approaches to deal with soft interventions.

Reviewer#4 32

- Clarity. In our paper, we use y_k to denote both classification label and prediction, and use soft intervention 33
- to distinguish between them: if the distribution is pre-interventional (i.e., observational), such as $P(y_k^+|\mathbf{z}_k), y_k^+$ is the 34
- label; if the distribution is post-interventional, such as $P(y_k^+|do(\cdots,h_k,\cdots))$ or $P_{h_k}(y_k^+|\mathbf{z}_k)$, y_k^+ is the prediction. After we convert post-intervention distributions to observable distributions, all probabilities are to be estimated from the 35
- 36
- training data. We originally planed to use y_k to denote the label and \hat{y}_k to denote the prediction. However, this would 37
- make the notations too tedious and decrease the readability since most y_k^+, y_k^- in all equations would become \hat{y}_k^+, \hat{y}_k^- . On the other hand, from the viewpoint of soft intervention, the prediction is simply an interventional variant of the label 38
- 39
- upon performing the soft intervention and hence can be distinguished by soft intervention without ambiguity. We will
- remove notations \hat{Y}_k and \hat{y}_k and more clearly state our notations. Regarding your specific questions: (1) In Definition 1, 41
- y_k^+ means the prediction. (2) In lines 211-212, y_i also means the prediction. (3) We will also revise lines 204, 207, and 42
- 253-262 of the paper to improve the readability following your suggestions. 43
- For the separate method, each classifier uses the direct parents of each label and is learned directly from the training
- data. For the serial method, each classifier also uses the direct parents of each label but is learned from the distribution 45
- after upstream classifiers are deployed. 46
- For the separate method, we did a grid search on τ_1, τ_2 to find classifier pairs h_1, h_2 whose fairness is between -0.05 47
- and 0.05 in training. Then, we evaluated these classifiers in testing and found that in 71.43% of these pairs, h_2 exceeded 48
- the interval [-0.05, 0.05] and hence violated the fairness criterion.
- In the Adult dataset, Workclass and Income are two decisions with disproportionate (imbalanced) ratios (31:69 for
- Workclass and 24:86 for Income). We oversampled the data twice to adjust the ratios of two decisions to 48:52 and 51
- 50:50 respectively which helps us focus on utility-fairness evaluation without distraction from imbalanced classifiers.