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1 Proof of Theorem 1

Theorem 1. For any classification-calibrated loss function φ satisfying φ(0) = 1 and infα∈R φ(α) =
0, any measurable function hk for predicting Yk, we have

ψ(R(hk)−R∗) ≤ Rφ(hk)−R∗φ,

where ψ(δ) is a non-decreasing function mapping from [0, 1] to [0,∞).

Lemma 1. For ψ, Hφ and H−φ , they have following properties.

1. For λ ∈ [0, 1] and γ ∈ R, ψ(λγ) ≤ λψ(γ).

2. H−φ (η) ≥ Hφ(η) for η ∈ [0, 1].

3. η ≤ Hφ(η) for η ∈ [0, 1/2].

4. η ≤ 1 ≤ H−φ (η) for η ∈ [0, 1].

Proof. Parts 1,2,3 are proved in [1]. For Part 4, note that Hφ is concave and symmetric about
1/2, meaning that it gets its minimum at η = 0, 1 and maximum at η = 1/2 [1]. We have
Hφ(0) = Hφ(1) = infα∈R φ(α) = 0. Meanwhile, we haveHφ(1/2) = 1/2·infα∈R(φ(α)+φ(−α)).
Due to the convexity and symmetry between φ(α) and φ(−α), we can see that Hφ(1/2) = φ(0) = 1.
Then, since Hφ is concave, we have ηHφ(1/2) + η̄Hφ(0) ≤ Hφ(η/2 + η̄ · 0), which leads to
η ≤ Hφ(η/2) ≤ Hφ(η) for η ∈ [0, 1/2].

For Part 5, note that H−φ is concave on [0, 1/2] and on [1/2, 1] and also symmetric about 1/2 [1].
Since H−φ (1/2) = Hφ(1/2) = 1 and H−φ (0) = H−φ (1) = infα≤0 φ(α) = φ(0) = 1, we have
H−φ (η) ≥ 1 ≥ η.

Next, we first prove Theorem 1 based on the toy example in the main paper, and then explain how
this proof can be extended to general situations.

1.1 Proof of Theorem 1 Based on Toy Example

Proof of Theorem 1. The causal graph of the toy example is shown in Fig. 1. In the example, we
have two classifiers h1, h2. Note that Rφ(h1) is the same as that of a single decision model, so we
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Figure 1: The toy model.

focus on Rφ(h2). Denoting Z = {S,X1, X2}, we define

c1(z) =
P (y+1 |s, x1, x2)

P (y+1 |s, x1)
+
P (y−1 |s, x1, x2)

P (y−1 |s, x1)
,

and define

η1(z) =
P (y−1 |s, x1, x2)

c1(z)
, η2(z) = P (y+2 |x2),

and
η̄1(z) = 1− η1(z), η̄2(z) = 1− η2(z),

For simplifying representation, in the remaining of this file we omit (z) in all expressions.

Note that

Rφ(h2) = E
z

[c1 (η1η2φ(h1(x1))φ(h2(x2)) + η̄1η2φ(−h1(x1))φ(h2(x2))

+η1η̄2φ(h1(x1))φ(−h2(x2)) + η̄1η̄2φ(−h1(x1))φ(−h2(x2)))]

= E
z

[c1(η1φ(h1(x1)) + η̄1φ(−h1(x1) > 0))(η2φ(h2(x2)) + η̄2φ(−h2(x2)))]

= E
z

[
c1C

η1
φ (h1(x1))Cη2φ (h2(x2))

]
,

we can express Rφ(h2) using the generic φ-conditional risk Cηφ(α). According to the definition of
R∗φ, we correspondingly have

R∗φ = E
z

[c1Hφ(η1)Hφ(η2)] .

Similarly we can also express R(h2) and R∗ as

R(h2) = E
z

[c1C
η1(h1(x1))Cη2(h2(x2))] ,

R∗ = E
z
[c1H(η1)H(η2)],

where Cη(α) and H(η) are defined by replacing φ with 1 in Cηφ(α) and Hφ(η). Note that H(η) is
always obtained when the sign of α is the same as the sign of η − 1/2.

Denote by α∗ the signs of solutions {sign(η1 − 1/2), sign(η2 − 1/2)}. Then, we have

R(h2)−R∗ = E
z

[c1 (Cη1(h1(x1))Cη2(h2(x2))−H(η1)H(η2))]

= E
z

[c11(sign(h) 6= α∗) (Cη1(h1(x1))Cη2(h2(x2))−H(η1)H(η2))] .

Since ψ is convex [1], it follows that

ψ(R(h2)−R∗) ≤ E
z

[c11(sign(h) 6= α∗)ψ (Cη1(h1(x1))Cη2(h2(x2))−H(η1)H(η2))] .

Without loss of generality, assume η1 ≤ η̄1 and η2 ≤ η̄2. Thus, according to the definition,
H(η1) = η1 and H(η2) = η2. Then, we want to show that for any h1, h2 whose signs are not
equivalent to α∗, we have

ψ (Cη1(h1(x1))Cη2(h2(x2))−H(η1)H(η2)) ≤ H−φ (η1)H−φ (η2)−Hφ(η1)Hφ(η2). (1)

To this end, we consider two cases: (1) only one classifier from h1, h2 makes the prediction that is
opposite to α∗; and (2) both h1, h2 make predictions that are opposite to α∗.
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For Case (1), assume that h1 makes the opposite prediction. Thus, Cη1(h1(x1)) = η̄1, and
Cη2(h2(x2)) = η2. Then, we have

ψ (Cη1(h1(x1))Cη2(h2(x2))−H(η1)H(η2)) = ψ ((η̄1 − η1)η2) .

Based on Lemma 1, Part 1, it follows that

ψ ((η̄1 − η1)η2) ≤ η2ψ (η̄1 − η1) = η2

(
H−φ (η1)−Hφ(η1)

)
.

Based on Lemma 1, Part 3, we have η2 ≤ Hφ(η2). So it follows that

ψ ((η̄1 − η1)η2) ≤
(
H−φ (η1)−Hφ(η1)

)
Hφ(η2).

Based on Lemma 1, Part 2, we prove Eq. (1).

For Case (2), we have Cη1(h1(x1)) = η̄1, and Cη2(h2(x2)) = η̄2. Thus,

ψ (Cη1(h1(x1))Cη2(h2(x2))−H(η1)H(η2)) = ψ (η̄1η̄2 − η1η2) .

Without loss of generality, assume η1 ≤ η2, i.e., η̄2 ≤ η̄1. We have that

η̄1η̄2 − η1η2 = η̄1η̄2 − η1η2 − η1η̄2 + η1η̄2
= η̄2(η̄1 − η1) + η1(η̄2 − η2)

≤ η̄1(η̄1 − η1) + η1(η̄2 − η2).

(2)

Since ψ is convex, we have

ψ (η̄1η̄2 − η1η2) ≤ ψ (η̄1(η̄1 − η1) + η1(η̄2 − η2))

≤ η̄1ψ(η̄1 − η1) + η1ψ(η̄2 − η2).

According to the definition of ψ, we have ψ(η̄ − η) = H−φ (η) −Hφ(η). According to Lemma 1,
Parts 4&3, we have η̄1 ≤ 1 ≤ H−φ (η2), η1 ≤ Hφ(η1). As a result, we have

ψ (η̄1η̄2 − η1η2) ≤ H−φ (η2)
(
H−φ (η1)−Hφ(η1)

)
+Hφ(η1)

(
H−φ (η2)−Hφ(η2)

)
which proves Eq. (1).

Finally, we have

ψ(R(h2)−R∗) ≤ E
z

[
c11(sign(h) 6= α∗)

(
H−φ (η1)H−φ (η2)−Hφ(η1)Hφ(η2)

)]
≤ E

z

[
c11(sign(h) 6= α∗)

(
Cη1φ (h1(x1))Cη2φ (h2(x2))−Hφ(η1)Hφ(η2)

)]
≤ E

z

[
c1

(
Cη1φ (h1(x1))Cη2φ (h2(x2))−Hφ(η1)Hφ(η2)

)]
= Rφ(h2)−R∗φ.

1.2 Extending to General Situations

We prove that Theorem 1 can be extended to h3, then, it can be similarly extended to any k. Note that
the key is to prove

ψ (Cη1(h1(x1))Cη2(h2(x2))Cη3(h3(x3))−H(η1)H(η2)H(η3))

≤ H−φ (η1)H−φ (η2)H−φ (η3)−Hφ(η1)Hφ(η2)Hφ(η3).
(3)

Similarly, we consider three cases: (1) only one classifier from h1, h2, h3 makes the prediction that is
opposite to α∗; (2) two classifiers from h1, h2, h3 make predictions that are opposite to α∗; and (3)
all three classifiers make predictions that are opposite to α∗.

For Case (1), the proof is similar to that in Section 1.1.
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For Case (2), assume that h1, h2 make the opposite predictions. Then, we have

ψ (Cη1(h1(x1))Cη2(h2(x2))Cη3(h3(x3))−H(η1)H(η2)H(η3))

= ψ ((η̄1η̄2 − η1η2)η3) ≤ η3ψ (η̄1η̄2 − η1η2) .

Thus, based on Eq. (1), we can prove Eq. (3).

For Case (3), without loss of generality, assume that η1 ≤ η2 ≤ η3, i.e., η̄3 ≤ η̄2 ≤ η̄1. Then, we
have

ψ (Cη1(h1(x1))Cη2(h2(x2))Cη3(h3(x3))−H(η1)H(η2)H(η3))

= ψ (η̄1η̄2η̄3 − η1η2η3)

= ψ (η̄3(η̄1η̄2 − η1η2) + η1η2(η̄3 − η3)) .

Based on Eq. (2), it follows that

ψ (η̄3(η̄1η̄2 − η1η2) + η1η2(η̄3 − η3))

= ψ (η̄3η̄2(η̄1 − η1) + η̄3η1(η̄2 − η2) + η1η2(η̄3 − η3))

≤ ψ (η̄1η̄2(η̄1 − η1) + η̄2η1(η̄2 − η2) + η1η2(η̄3 − η3))

≤ η̄1η̄2ψ (η̄1 − η1) + η̄2η1ψ (η̄2 − η2) + η1η2ψ (η̄3 − η3) .

Then, since η̄1 ≤ 1 ≤ H−φ (η2), η̄2 ≤ 1 ≤ H−φ (η3), η1 ≤ Hφ(η1), η2 ≤ Hφ(η2), it follows that

η̄1η̄2ψ (η̄1 − η1) + η̄2η1ψ (η̄2 − η2) + η1η2ψ (η̄3 − η3)

≤ H−φ (η2)H−φ (η3)
(
H−φ (η1)−Hφ(η1)

)
+H−φ (η3)Hφ(η1)

(
H−φ (η2)−Hφ(η2)

)
+Hφ(η1)Hφ(η2)

(
H−φ (η3)−Hφ(η3)

)
= H−φ (η1)H−φ (η2)H−φ (η3)−Hφ(η1)Hφ(η2)Hφ(η3),

which proves the Eq. (3).
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