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1 Proof of Theorem 1

Theorem 1. For any classification-calibrated loss function ¢ satisfying ¢(0) = 1 and inf,cr ¢(a0) =
0, any measurable function hj, for predicting Y}, we have
Y(R(hie) — R*) < Ry(h) — Ry,

where ¢(9) is a non-decreasing function mapping from [0, 1] to [0, 00).
Lemma 1. For ), Hy and Hg they have following properties.

1. For X € [0,1] and vy € R, p(A\y) < Ap(7).

2. Hy(n) = Hy(n) forn € [0,1].

3. m < Hy(n) forn € 0,1/2].

4. m <1< Hy(n)forn € [0,1].
Proof. Parts 1,2,3 are proved in [1]. For Part 4, note that Hy is concave and symmetric about
1/2, meaning that it gets its minimum at 7 = 0,1 and maximum at n = 1/2 [1]. We have
Hy(0) = Hy(1) = infoer ¢(o) = 0. Meanwhile, we have Hy(1/2) = 1/2-infcr(d(a)+d(—a)).
Due to the convexity and symmetry between ¢(c) and ¢(—a), we can see that H,(1/2) = ¢(0) = 1.

Then, since H, is concave, we have nHy(1/2) + 7H(0) < Hg(n/2 + 7 - 0), which leads to
n < Hy(n/2) < Hy(n) forn € [0,1/2].

For Part 5, note that /" is concave on [0,1/2] and on [1/2, 1] and also symmetric about 1/2 [1I).
Since H (1/2) = Hy(1/2) = 1and H, (0) = Hy (1) = infa<o d(a) = ¢(0) = 1, we have
Hy(n)>1>n. O

Next, we first prove Theorem|I|based on the toy example in the main paper, and then explain how
this proof can be extended to general situations.

1.1 Proof of Theorem 1| Based on Toy Example

Proof of Theorem([I] The causal graph of the toy example is shown in Fig. [T] In the example, we
have two classifiers hq, ho. Note that Ry (hq) is the same as that of a single decision model, so we
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Figure 1: The toy model.

focus on Ry (h2). Denoting Z = {S, X1, Xo}, we define

_ P(yf“%xth) P(y;|5,$17$2)

) = i) T Plarls o)
and define B

mie) = ) a) = Py laa)
and

m(z) =1-m(z), nN(z)=1-n2),
For simplifying representation, in the remaining of this file we omit (z) in all expressions.

Note that
Ry(h2) = E [c1 (mm2¢(h1(21))p(h2(22)) + mn2d(—hi(z1))P(ha(2))
+mn2g(hi(z1))d(—ha(w2)) + MA2d(—h1(21))d(—h2(72)))]
=E [cr(me(hi(z1)) + Mmd(—hi(x1) > 0))(n2d(ha(w2)) + N2¢(—ha(z2)))]
~E [01021(hl(xl))CZZ(hg(xg)) :

we can express Ry (hs) using the generic ¢-conditional risk C;’(a). According to the definition of
RY, we correspondingly have

R} = IZE[C1H¢(771)H¢(772)]~

Similarly we can also express R(hsy) and R* as

R(hz) = E [c1C™ (hi(21))C™ (ha(22))]

R* = ElerH () H (1)),

where C"(«v) and H (1) are defined by replacing ¢ with 1 in Cjj(a) and Hy(n). Note that H(n) is
always obtained when the sign of « is the same as the sign of n — 1/2.
Denote by o the signs of solutions {sign(n; — 1/2), sign(n2 — 1/2)}. Then, we have

R(hz) — R* = E[e1 (C" (ha(21))C™ (h2(x2)) — H(m)H (n2))]

=E[c11(sign(h) # o) (C™ (ha(21))C™ (ha(22)) — H () H (n2))]

Since 1 is convex [1]], it follows that

Y(R(hz) — RY) < E[erl(sign(h) # o”)¢p (C™ (ha(21))C™ (ha(2)) — H(n1) H (n2))]

Without loss of generality, assume 77 < 7; and 73 < 7. Thus, according to the definition,
H(m) = 1 and H(n2) = n2. Then, we want to show that for any h,, ho whose signs are not
equivalent to a*, we have

Y (CM (ha(21))C™ (ha(z2)) — H(m)H(n2)) < Hy (m)Hy (n2) — He(m)He(n2). (1)

To this end, we consider two cases: (1) only one classifier from h, ho makes the prediction that is
opposite to a*; and (2) both h1, ho make predictions that are opposite to o*.



For Case (1), assume that h; makes the opposite prediction. Thus, C™ (hy(z1)) = 71, and
C"(ha(x2)) = n2. Then, we have

Y (O™ (hi(21))C™ (ho(z2)) — H(m)H (n2)) = ¢ (I —m)n2) -
Based on Lemmal[T} Part 1, it follows that
G (0 = m)m) < o (i —m) = e (Hy (m) = Ho(m))

Based on Lemma Part 3, we have 1y < Hy(n2). So it follows that

6 (1 = m)me) < (Hg (m) = Ho(m) ) Hon2):
Based on Lemmal(T} Part 2, we prove Eq. (I)).
For Case (2), we have C"™ (hy(x1)) = 71, and C"2 (hg(z2)) = 2. Thus,
U (C™ (M (21))C™ (ha(22)) — H(m)H(n2)) = ¢ (]2 — m2) -

Without loss of generality, assume 1; < 17, i.e., 72 < 7;. We have that

Mz — mnz = M2 — M7N2 — M2 + M

=2(M —m) + (72 —n2) (2)

< (7 —m) +m(n2 —n2)-
Since 1 is convex, we have

Y (M2 —mn2) < (M0 — 1) +m(h2 —n2))
< my(m —m) +m(nz — n2).

According to the definition of t, we have ¢(77 — ) = H, () — Hy(n). According to Lemma ,
Parts 4&3, we have ij; <1 < H (m2), m < Hg(m). As aresult, we have

b (i = mune) < Hy () (H7 () = Hy(m)) + Ho () (H () = Ho(ne) )
which proves Eq. (T).

Finally, we have
V(R(ho) = BY) < E |erL(sign(h) # o) (Hg (m)Hy (n2) = Hy(m) Hy(me) ) |
< E [e11(sign(h) # o) (C (ha (21))C (ha(w2)) = Ho(m) Ho(m) )|

< E e (CF (ha(20)C (hal2)) = Holm) Hy(m2) ) |
Ry(h2) — R},

1.2 Extending to General Situations

We prove that Theorem [I]can be extended to kg, then, it can be similarly extended to any k. Note that
the key is to prove

Y (C™ (h1(21))C™ (ho(22))C™ (hs(z3)) — H (1) H (n2)H(n3))

< H () H (1) H (15) — Hop (1) Ho (1) H (1), )

Similarly, we consider three cases: (1) only one classifier from h1, ho, hs makes the prediction that is
opposite to a*; (2) two classifiers from h1, ho, h3 make predictions that are opposite to a*; and (3)
all three classifiers make predictions that are opposite to a*.

For Case (1), the proof is similar to that in Section[I.1}



For Case (2), assume that h;, ho make the opposite predictions. Then, we have
P (C™ (ha (1)) C™ (ha(x2))C™ (hs(x3)) — H(m)H (n2)H (ns))
= (M2 — mn2)n3) < N3y (M2 — mn2) -

Thus, based on Eq. (), we can prove Eq. (3).

For Case (3), without loss of generality, assume that 77 < 19 < 73, i.e., 13 < 72 < 1. Then, we
have

Y (C™ (h1(21))C™ (ho(22))C™ (hs(z3)) — H(m)H (n2)H(ns3))
= (M 7273 — M 1213)
= (M3(M72 — mn2) +mn2(nz —n3)) -

Based on Eq. (@), it follows that

Y (M3(M72 — mn2) + mn2(73 — 13))

= (a2 — m) + 7am (M2 — n2) + mna2(z — n3))
<Y (M2 —m) + 2 (G2 — n2) + mn2(73 —n3))
<y (M —m) + N2m (72 — n2) + mn2t (73 — n3) -

Then, since 7jy < 1 < Hy (n2). 712 < 1 < Hy (n3). m < Hy(m). m2 < Hy(np), it follows that
M2 (M —m) + fam (2 — n2) + mn2e (73 — n3)
< H; (1) Hy (15) (Hy (m) = Ho(m) ) + Hy () Ho(m) (H; (12) = Hy ()
+ Ho () Ho(n2) (Hy (1) = Ho(ns))

= Hy (m)Hg (n2)Hy (13) — Ho () Hy (n2) H (13),
which proves the Eq. (3).
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