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Abstract

Decision trees are popular machine learning models that are simple to build and
easy to interpret. Even though algorithms to learn decision trees date back to
almost 50 years, key properties affecting their generalization error are still weakly
bounded. Hence, we revisit binary decision trees on real-valued features from
the perspective of partitions of the data. We introduce the notion of partitioning
function, and we relate it to the growth function and to the VC dimension. Using
this new concept, we are able to find the exact VC dimension of decision stumps,

which is given by the largest integer d such that 2¢ > (Lg ] ), where ¢ is the number
2

of real-valued features. We provide a recursive expression to bound the partitioning
functions, resulting in a upper bound on the growth function of any decision tree
structure. This allows us to show that the VC dimension of a binary tree structure
with N internal nodes is of order N log(N/). Finally, we elaborate a pruning
algorithm based on these results that performs better than the CART algorithm on
a number of datasets, with the advantage that no cross-validation is required.

1 Introduction

Decision trees are popular decision models that are versatile, intuitive, and thus useful in critical
fields where the interpretability of a model is important. They are particularly useful when data is
limited and not organized as in a sequence or a picture. This makes them a good alternative to deep
neural networks in several cases.

Due to their expressive power, decision trees are prone to overfitting. To handle this problem,
algorithms usually make use of practical techniques such as cross-validation in the learning or the
pruning step. Unfortunately, cross-validation increases the running time of the learning algorithm
and impairs the generalization of the tree when the number of training examples is small.
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As an alternative, one can use learning algorithms based on generalization bounds. Indeed, this
approach has proven its value in the work of |Drouin et al.|[2019]], where decision trees were learned
on a genomic dataset with success by optimizing a sample-compression-based bound. Such bounds
guarantee that the true risk is bounded asymptotically with high probability (ignoring logarithmic

terms) in 5(M), where k is the number of errors made by the tree, d is the size of a compressed

m—d

sample and m is the size of the initial dataset [Marchand and Sokoloval, 2005].

Relative deviation bounds based on the VC dimension [Vapnikl |1998 [Shawe-Taylor et al., [1998] are

even tighter: in O(%), where d is the VC dimension of the tree. However, to be able to make use
of such algorithms to learn or prune decision trees, we must have a reasonable estimate of the VC
dimension of a decision tree class, given its structure. To the best of our knowledge, there currently
exists no upper bound on the VC dimension nor the growth function of binary decision trees with
real-valued features that share a common structure. The goal of this paper is to provide such bounds.

To do so, we introduce the idea of a realizable partition and define the notion of partitioning function,
a concept closely related to the growth function and the VC dimension. We proceed to bound
tightly the partitioning function of the class of decision stumps that can be constructed from a set of
real-valued features, which leads us, through the use of graph theory, to find an exact expression of
its VC dimension. To the best of our knowledge, this was previously unknown. We then extend our
bound of the partitioning function to general binary decision tree structures, from which we derive
the asymptotic behavior of the VC dimension of a tree with NV internal nodes. Finally, we show how
these results can have practical implications by developing a pruning algorithm based on our bounds
that outperforms CART [Breiman et al., [1984] on a number of datasets.

2 Related Work

For the case of binary features, |[Simon| [[1991]] has shown that the VC dimension of binary decision
trees of rank at most r with ¢ features is given by Y ;_, (Z). However, the set of decision trees with

rank at most r includes multiple tree structures that clearlylpossess different individual generalization
properties. Later,[Mansour|[1997]] claimed that the VC dimension of a binary decision tree with N
nodes and ¢ binary features is between Q(N) and O (N log £), but did not provide the proof. Then,
Maimon and Rokach| [2002] provided a bound on the VC dimension of oblivious decision trees,

which are trees such that all the nodes of a given layer make a split on the same feature.

In 2009, |Aslan et al.| proposed an exhaustive search algorithm to compute the VC dimension of
decision trees with binary features. Results were obtained for all trees of height at most 4. Then, they
used a regression approach to estimate the VC dimension of a tree as a function of the number of
features, the number of nodes, and the VC dimension of the left and right subtrees.

More recently, |Y1ldiz| [2015]] found the exact VC dimension of the class of decision stumps (i.e.
trees with a single node) that can be constructed from a set of ¢ binary features, which is given by
|log, (¢ 4+ 1)] + 1, and proved that this is a lower bound for the VC dimension of decision stumps
with £ real-valued features. They then used these expressions as base cases to develop a recursive
lower bound on the VC dimension of decision trees with more than one node. However, they did not
provide an upper bound for the VC dimension of decision trees.

On a related topic, Gey|[2018]] found the exact VC dimension of axis-parallel cuts on ¢ real-valued
features, which are a kind of one-sided decision stumps. They showed that the VC dimension of this

class of functions is given by the largest integer d such that ¢ > (Li ] ) As a corollary of their result,
2

one has that the largest integer d that satisfies 2¢ > (Lg J) is an upper bound for the VC dimension of
2

a decision stump, an observation they however do not make. Using a completely different approach,
we here show that this upper bound is in fact exact. We discuss the difference between our results
and theirs in Section 5.1}

Our work distinguishes itself from previous work by providing an upper bound for the VC dimension
of any binary decision tree class on real-valued features. Our framework also extends to the multiclass
setting, and we show that bound-based pruning algorithms are a viable alternative to CART.



3 Definitions and notation

Throughout this paper, each example x € X £ R’ is a vector of £ real-valued featuresﬂ We consider

the multiclass setting with labels y € [n], where [n] £ {1,...,n} for some integer n. Moreover, S
always stands for a sample of m examples, and we let x; be the i-th feature of the j-th example of .S.

Recall that any tree contains two types of nodes: internal nodes, which have one or many children,
and leaves which do not have any children. For simplicity, internal nodes will be referred to as nodes
(in contrast to leaves). In a decision tree, each leaf is associated with a class label and each node
is associated with a decision rule, which redirects incoming examples to its children. Here, we are
concerned with binary decision trees where each node has exactly two children and each decision
rule concerns exactly one feature. A decision stump is a decision tree with only one node and two
leaves. The output ¢(x) of a tree ¢ on an example x is defined recursively as follows.

Definition 1 (Output of a binary decision tree). If the tree t is a leaf, the output t(x), on example X,
is given by the class label associated with the leaf. Otherwise, if the tree t is rooted at a node having
a left subtree t; and a right subtree t,. with a decision rule defined by feature i € [{], threshold § € R
and sign s € {1}, then the output t(x) is given by

t(x) & {tl (x) if sign(z’ —0) = s

t.(x) otherwise,
where sign(u) = +1 if u > 0 and sign(u) = —1 otherwise.

From now on, we use T to represent the class of binary decision trees with some fixed structure. In
that case, the number of nodes and leaves and the underlying graph are fixed, but the parameters of
the decision rules at the nodes and the class labels at the leaves are free parameters.

Definition 2 (Partition). Given some finite set A, an a-partition a(A) of A is a set of a € NN disjoint
and non-empty subsets o; C A, called parts, whose union is A.

Definition 3 (Growth function). We define the growth function 7 of a hypothesis class H C [n]*
as the largest number of distinct functions that H can realize on a sample S of m examples, i.e.

mu(m) = max [{hls:h € HY|, (1)

where h|s £ (h(x1), h(x2), . .., h(xm)), for x; € S, is the restriction of h to S.

The growth function can sometimes be hard to evaluate exactly. Fortunately, in the binary classification
setting, one can use the VC dimension to bound the growth function as it is often easier to estimate
the former than the latter.

Definition 4 (VC dimension). Let H be a class of binary classifiers. A sample S = {x1,...,Xm}
is shattered by H iff all possible Boolean functions on S can be realized by functions h € H. The
VC dimension of H, VCdim H, is defined as the maximal cardinality of a set S shattered by H. In
particular, the VC dimension of H is the largest integer d such that T (d) = 2°.

4 Partitions as a framework

Binary decision trees are traditionally defined as in Section [3] However, it is useful to represent
decision trees as some kind of “partitioning machines”. Indeed, consider a set S of examples that is
sieved through some tree, so that all examples are distributed among the leaves. Then, setting aside
the labels, the set of non-empty leaves exactly satisfies the definition of a partition of .S. However,
when the leaves are labelled, if some leaves have the same label, we take the union of the identically
labelled leaves to form a single part. Since we are interested in the set of distinct a-partitions that a
tree class can realize, we need the following definition.

Definition 5 (Realizable partition). Let T" be a binary decision tree class (of a fixed structure). An
a-partition &(S) of a sample S is realizable by T iff there exists some tree t € T such that

! While decision trees are often used on a mixture of real-valued and categorical features, we limit the scope
of this paper to real-valued features only, mainly because categorical features require a different analysis than
the one presented. We discuss the obstacles that limit the direct generalization of our framework to this type of
features in more detail in the conclusion.



e For all parts a; € &(S), and for all examples x1,%X2 € o, we have that t(x1) = t(x2);
o For all distinct o, oy, € &(S), and for all x1 € aj,X2 € ay, we have that t(x1) # t(x2).

Hence, the set #$.(S) of all distinct a-partitions a tree class 7' can realize on S is obtained by
considering all possible rules that we can use at each node of 7" and all possible labelings in [a] that
we can assign to the leaves of T'. We can link the growth function 7 (m) of T to |P%(S)] as follows.
Given some realizable a-partition @(.5), we have n choices of label for any one part, then we have
n — 1 choices for the next one, because assigning it the same label would effectively create an (a — 1)-

partition. This process continues until no more parts or labels are left. Therefore, for any a-partition

with a < n, one can produce (n), distinct functions, where (n), = n(n —1)---(n — a + 1) is the

falling factorial. Consequently, the growth function 77-(m) can be written as

min{m,n,Lp}

mr(m) = slmax (n)a [PF(9)] 2)
T a=1

where L denotes the number of leaves of the tree class 7' and where the sum goes up to
min {m, n, Ly} so that every term in the sum stays well defined. This hints us to an important
property of a tree class, that we call the partitioning functions.

Definition 6 (Partitioning functions). The a-partitioning function 7% of a tree class T is defined as
the largest number of distinct a-partitions that T' can realize on a sample S of m examples, i.e.

m4(m) = max |PL(S)] . 3)
S:|S|=m
Moreover, we refer to the set of all possible a-partitioning functions of T for all integers a € [Lr),
with Lt being the number of leaves of T', as the partitioning functions of the tree class T

Since the maximum of a sum is less than or equal to the sum of the maxima of its summands, we
have that

mr(m) < ) _(n)amp(m). )
a=1
Moreover, we have equality whenever n = 2 or Ly = 2 since the first term of the sum of Equation )
is always |#1.(S)| = 1 for any S with m > 0.

Having linked the partitioning functions to the growth function, we can relate them to the VC
dimension in the following way. On one hand we have that the total number of a-partitions that exist
on a set of m elements is given by the Stirling number of the second kind, denoted {"; } [|[Graham
et al.,|1989). In particular, for m > 1, we have that { 7'} = 1 and { "% } = 2™~! — 1. In the binary
classification setting, each of these partitions yield exactly 2 distinct functions by labeling the parts
with the two available classes. Thus, T" can realize 2" binary functions iff 7" realizes every 1- and
2-partition on S. On the other hand, Definition @] implies that a tree 7" shatters a sample S iff it can
realize all 2™ functions on S. Therefore, since any tree class 7" can realize the single 1-partition, we
have that 7" shatters a sample S iff it realizes every 2-partition on S. Hence, the VC dimension of any
tree class 7" having at least one internal node is given by

VCdim T = max {d : 77.(d) = 2d=1 _ 1}. )

5 Analysis of decision trees

In this section, we analyze the partitioning behavior of decision trees. First, we present an upper
bound on the 2-partitioning function of decision stumps, which allows us to recover their exact VC
dimension. Second, we extend our result to general tree classes, which leads us to find the asymptotic
behavior of the VC dimension of a binary decision tree in terms of its number of internal nodes.

5.1 The class of decision stumps

As the class T' of decision stumps has only one root node and two leaves, the only non-trivial a-
partitioning function of 7" is 72.(m), the maximum number of 2-partitions achievable on m examples.
The following theorem gives a tight upper bound of this quantity.



Theorem 7 (Upper bound on the 2-partitioning function of decision stumps). Let T' be the hypothesis
class of decision stumps on examples of ¢ real-valued features. Then

o< (1))

and this is an equality for 20 < m, for 20 (LZJ) andfor1 <m < T.
2

DN | —

Proof. The proof is presented in Appendix [A] and relies on a permutation representation of the
decision rules as well as on graph-theoretical arguments to prove the equality for 2/ > (LZ | ) O
2

We conjecture that the bound is an equality for all m, but it is not clear how to show this.

Let us compare the theorem with the frivial bound that is often used for decision stumps. The
trivial bound consists in exploiting the fact that for each available feature, a stump can realize at
most m — 1 different 2-partitions, which gives 7.(m) < ¢{(m — 1) = (1/2) Y} 11 2¢. This yields

mr(m) < 2+ 2¢(m — 1) for the growth function. Comparmg the trivial bound with Theorem [7]
we see that the trivial bound becomes an equality for 2/ < m and becomes strictly larger than
the bound of Theorem [7]for 2¢ > m. Also, the trivial bound exceeds the bound of Theorem [7] by
{(m—1)+1—2m"1for2¢ > ( /2J) — a gap which is at least

V() - (D]

Each term of the sum being positive, the trivial bound can be much larger than the proposed bound.

Now that we have a tight upper bound on the 2-partitioning function of decision stumps, it is
straightforward to find the exact VC dimension of decision stumps.

Corollary 8 (VC dimension of decision stumps). Let T be the hypothesis class of decision stumps
on examples of ¢ real-valued features. Then, the VC dimension of T is implicitly given by solving for
the largest integer d that satisfies 20 > (Lﬁ ] )

2

Proof. According to Equation (3), the VC dimension is given by the largest integer m such that

72(m) = 2™~! — 1. Theorem [7|gives an upper bound on the 2-partitioning function of decision

m

stumps. Notice that for 2¢ > b J) this theorem simplifies to 72.(m) = 2™~! — 1, while for
2
20 < (L J) it implies 72 (m) < 2™~! — 1. Since (L J) is a strictly increasing function of m, the
largest integer m such that 7% (m) = 2™~! — 1 is the largest m that satisfies 2¢ > (Lm J) O
2

Remark Let us mention the similarities with the result of |Gey| [2018]], where they find the VC
dimension of axis-parallel cuts. They define axis-parallel cuts as some kind of asymmetric stump,
where the left leaf is always labeled 0 and the right leaf is always labeled 1. The main difference is

that the VC dimension of axis-parallel cuts is given by the largest integer d that satisfies ¢ > (Lg J)

2
(the factor 2 is absent). Their approach is a set theoretic one, and we expect it would be hard to
extend it to decision stumps, particularly for the case where m is odd. Moreover, the graph theoretic
approach used here (see Appendix [A.3) allows us to recover a tight upper bound for the growth
function (and therefore applies to the multiclass setting), while theirs does not.

5.2 Extension to general decision tree classes
We now provide an extension of Theorem [7] that applies to any binary decision tree class, before
deriving the asymptotic behavior of the VC dimension of these classes.

Theorem 9 (Upper bound on the c-partitioning function of decision trees). Let T be a binary decision
tree class that can construct decision rules from { real-valued features, and let T; and T, be the



hypothesis classes of its left and right subtrees. Let L denote the number of leaves of T. Then, for
m < Ly, we have 75.(m) = { "¢ }, whereas for m > Ly, the c-partitioning function must satisfy

1 Oir m—Lr,
mi) < (3) % min {20 (1) X (2 () a+b— ot Bk (- ) )
k=L, 1<a,b<c
a+b>c

where 01 = 1 if T} = T, and 0 otherwise.

The proof is provided in Appendix B} It relies on a recursive decomposition of #5.(S) exposed at the
beginning of the Appendix. Note that the inequality (7) of Theorem [9|reduces to the inequality (6) of
Theorem|7|when T is the class of decision stumps.

Theorem [9] can be used recursively to compute an upper bound on the VC dimension of decision
trees. Indeed, starting with m = L7 + 1, one can evaluate the bound on W%(m) incrementally until it
is less than 2m~! — 1, according to Equation (). The algorithm is presented in Appendix[ﬁ

From this Theorem, one can find the asymptotic behavior of the VC dimension of a binary decision
tree class on examples with real-valued features. It is stated in the following corollary.

Corollary 10 (Asymptotic behavior of the VC dimension). Let T" be a class of binary decision
trees with a structure containing N internal nodes on examples of { real-valued features. Then,
VCdim T € O (N log(NY)).

The proof is given in Appendix |C|and relies on inductive arguments.

6 Experiments

To demonstrate the utility of our framework, we apply our results to the task of pruning a greedily
learned decision tree with a structural risk minimization approach. We first describe the algorithm,
then we carefully explain the methodology and the choices made, and finally we discuss the results.

6.1 The pruning algorithm

We base our pruning algorithm on Theorem 2.3 of [Shawe-Taylor et al.|[1998]], which states that for
any distribution D over a set of m examples, for any countable set of hypothesis classes H,; (with
growth function 7p,) indexed by an integer d, and any distributions pg on IN and ¢, on [m], with
probability at least 1 — 4, the true risk Rp(h) of any predictor h € Hy is at most

e(m, k,d, 5) % L (Qk +4In (47(1;(2771)» . )
m qkPd

Although that theorem was originally stated for binary classification and for a sequence of nested
hypothesis classes Hy indexed by their VC dimension, it is also valid in the multiclass setting with
zero-one loss if we use the growth function directly instead of the upper bound provided by Sauer’s
lemma. Furthermore, it is not necessary to have nested hypothesis classes, since the main argument
of the proof uses the union bound which applies for any countable set of classes.

The goal of our pruning algorithm is to try to minimize the true risk Rp(t) of a given tree ¢ by
minimizing the upper bound e. It goes as follows. Given a greedily grown decision tree ¢, fixed
distributions ¢ and pg, and a fixed confidence parameter d, we compute the bound e associated to
this tree. Then, for each internal node of the tree, we prune the tree by replacing the subtree rooted at
this node with a leaf and we compute the bound associated with the resulting tree. Among all such
pruned trees, let ¢’ be the one that has the minimum bound value. If the bound of ¢’ is less than or
equal to the bound of ¢, we discard ¢ and we keep ¢’ instead. We repeat this process until pruning the
tree doesn’t decrease the bound. The formal version of the algorithm is presented in Algorithm 3]of

Appendix [E.T]

A key distinction between our proposed algorithm and CART’s cost-complexity pruning algorithm
is that, for each pruning step, the cost-complexity algorithm makes the choice to prune a subtree
based on local information, i.e. it depends only on the performance of that subtree. In contrast, our
algorithm takes into account global information about the whole tree via its growth function.



We would like to emphasize that the bound (8] could not be used to prune trees prior to our work,
since no upper bound on the growth function of decision trees was known. Our paper provides such a
bound via Equations (@) and (7).

6.2 Methodology

We benchmark our pruning algorithm on 19 datasets taken from the UCI Machine Learning Repository
[Dua and Graff, |2017]]. We chose datasets suited to a classification task with exclusively real-valued
features and no missing entries. Furthermore, we limited ourselves to datasets with 10 or less classes,
as Equation (@) becomes computationally expensive for a large number of classes.

These datasets do not come with a defined train/test split. As such, we chose to randomly split each
dataset so that the models are trained on 75% of the examples and tested on the remaining 25%. To
limit the effect of the randomness of the splits, we run each experiment 25 times and we report the
mean test accuracy and the standard deviation.

We compare our pruning algorithm to CART’s cost-complexity algorithm as proposed by Breiman
et al| [1984], as it is one of the most commonly used algorithms in practice (indeed, it is the
implementation of the popular scikit-learn Python package). Another main reason is that it
is natural to compare against the cost-complexity pruning algorithm, since it approximates the
complexity of a tree via the number of leaves of the tree (which is an ad hoc educated guess), while
our bounds on the growth function provide a theoretically valid quantifier of the tree’s complexity.

We consider 4 models: the fully grown unpruned tree as generated by CART, the pruned tree after
using the cost-complexity pruning algorithm, a modification of CART’s cost-complexity pruning
algorithm inspired by our work, and our pruning algorithm.

The first model we consider is the greedily learned tree, grown using the Gini index until the tree
has 100% classification accuracy on the training set or reaches 40 leaves. We impose this limit since
the computation times for pruning trees become prohibitive for a large number of leaves. We expect
that this constraint does not affect results significantly since all three pruning algorithms considered
reduce the number of leaves well below 40.

The second model is the CART tree, which prunes the tree from the first model according to chapter
3 of | Breiman et al.|[[1984]]. The idea is to assume that the true risk of a tree can be approximated via
its empirical risk by adding a complexity term of the form L to it, where « is a constant and L is
the number of leaves of the tree 7. We did a 10-fold cross-validation on the training set to find c.

The third model is a modification to CART’s cost-complexity algorithm, where instead of assuming
that the excess risk of a tree is controlled solely by the number of leaves (as in the CART algorithm),
we suppose that the dependence is of the form % log %7, where d = Ly log(L¥), m is the number
of examples and ¢ is the number of features. The form of the dependence is inspired by the form
of bound (8], replacing the growth function by the approximation of Sauer’s lemma and using the
dependence of Corollary [I0] for the VC dimension. The rest of the algorithm is then identical to
CART.

Finally, the fourth model is the one proposed in the previous section. As parameters, we fixed
0 = 0.05 for all experiments. The choices of distributions p4 and ¢;, are arbitrary and should reflect
our prior knowledge of the problem. We would like p4 to go to 0 slowly as d grows in order not to
penalize large trees too severely. As we are working in a multiclass setting, we cannot use the VC
dimension to index the hypothesis classes. Instead, as an approximation to the complexity index of a
tree, we use the number of leaves, and we give the same plrobability pg to every tree with the same

number of leaves. We thus choose to let p; = % WE(LT)? where WE(Lr) denotes the Lp-th
Ty d

Wedderburn-Etherington number [Bona, 2015]], which counts the number of structurally different
binary trees with L1 leaves.

We observed that, in the bound (8), the penalty accorded to the complexity of the tree is dispro-
portionately larger that the penalty accorded to the number of errors. This is because much of the
looseness of the bound comes from the growth function. Indeed, it is already an upper bound for
the annealed entropy, and our bound of the growth function adds even more looseness on top of
that. The distribution g offers us a chance to compensate this fact by introducing a large penalty
for the number of errors k. We chose gy, of the form (1 — r)r* for some r < 1, such that y_, g is a



geometric series summing to 1. We made a 5-fold cross-validation of r on a single dataset and we
stuck with this value of r for all others. We tried inverse powers of 2 for r and we took the geometric
mean of 10 draws as the final value. The Wine dataset from the UCI Machine Learning Repository
[Dua and Graff, [2017] gave a value of r = 27137 ~ ﬁ. This choice makes the value of the
bound ¢ larger; however, it allows to correct the gap between the complexity dependence and the

dependence of the bound on the number of errors, which gives better results in practice.

When running the experiments, we observed that Equation (7)) was computationally too expensive to
be used directly because of the sum over k. Hence, we used the following upper bound instead

5
1 Ir
win) < () Gm = L) 2 3 (2)()a b= 0w (m — L yah, (o~ L),
1<a,b<c
a+b>c

which simply replaces the sum over k by m — Ly times the greatest term of the sum. This modified
expression was much faster to compute and had only a small impact on the bound ¢ because of
the logarithmic dependence on the growth function. It is straightforward to modify Algorithm [T]of
Appendix [D]to compute this looser bound.

All experiments were done in pure Python. The source code used in the experiments and
to produce the tables is freely available at the address https://github.com/jsleb333/
paper-decision-trees-as-partitioning-machines.

6.3 Results and discussion

Table [T] presents the results of the four models we tested. The column “Original” corresponds to
the unpruned tree, the “CART” column is the original tree pruned with the cost-complexity pruning
algorithm, “M-CART” is the modified CART algorithm with the complexity dependencies changed
to reflect our findings and the “Ours” column is the original tree pruned with Shawe-Taylor’s bound.
More statistics about the models and the datasets used are gathered in Appendix [E]

Table 1: Mean test accuracy and standard deviation on 25 random splits of 19 datasets taken from
the UCI Machine Learning Repository [Dua and Graff] |2017]]. In parenthesis is the total number of
examples followed by the number of classes of the dataset. The best performances up to a 0.0025
accuracy gap are highlighted in bold.

Model
Dataset .
Original CART M-CART Ours

BCWD* (569, 2) 0.928 £0.024 0.923 £0.027 0.930 £0.017 0.942 4+ 0.022
Cardiotocography 10 (2126, 10) 0.566 £ 0.023 0.562 +0.023 0.566 + 0.024 0.567 £ 0.022
CMSC® (540, 2) 0.903 £0.024 0.920 +0.021 0.922+0.017 0.921 £0.014
CBS* (208, 2) 0.727 +£0.061 0.702+£0.054 0.695+0.084 0.724 +0.053
DRD! (1151, 2) 0.613 £0.027 0.576 =0.044 0.602+0.040 0.622 £ 0.023
Fertility (100, 2) 0.790 £0.060 0.878 +0.051 0.878 £0.051 0.866 £ 0.056

Habermans Survival (306, 2) 0.660 £ 0.062 0.746 £0.043 0.721 £0.043 0.719 £0.043
Image Segmentation (210, 7) 0.862 +0.048 0.814+0.144 0.844+£0.050 0.858 £ 0.050

Ionosphere (351, 2) 0.891 +£0.035 0.772+£0.108 0.867 £0.057 0.892 + 0.032
Iris (150, 3) 0.933 £0.030 0.860+=0.139 0.838 £0.158 0.937 £ 0.028
Parkinson (195, 2) 0.859 £0.062 0.848 £0.064 0.858 £0.065 0.863 +0.065
Planning Relax (182, 2) 0.595 £0.075 0.725+£0.049 0.729 £0.048 0.595 £ 0.075

QSAR Biodegradation (1055,2) 0.752+£0.031 0.741 £0.033 0.757 £0.026 0.761 + 0.028
Seeds (210, 3) 0.918 £0.034 0.914 +£0.040 0.905+0.081 0.925 £ 0.033
Spambase (4601, 2) 0.844 £0.027 0.839+£0.028 0.842+0.029 0.846 £+ 0.026
Vertebral Column 3C (310, 3) 0.800 £ 0.050  0.725+0.139 0.804 £0.046 0.819 £+ 0.044
WEFR24° (5456, 4) 0.995 +0.002 0.994 £+ 0.002 0.994 +0.002 0.994 + 0.001
Wine (178, 3) 0.908 +0.041 0.902£0.045 0.903 £0.043 0.904 4= 0.046

Yeast (1484, 10) 0.429 £0.019 0.368 £0.059 0.384 £0.058 0.442 £ 0.019

“Breast Cancer Wisconsin Diagnostic, "Climate Model Simulation Crashes, “Connectionist Bench Sonar,
Diabetic Retinopathy Debrecen, “Wall Following Robot 24
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Our algorithm performs better than or similarly to the other algorithms on 13 out of 19 datasets,
and on 16 out of 19 when excluding the original unpruned tree. Furthermore, our algorithm is able
to do well on datasets of different sizes: it has the best performance on the Iris dataset with only
150 examples as well as on the Spambase dataset with 4601 examples. The mean accuracy gain of
our algorithm versus the CART algorithm is of 2.02%, which suggests that it could be profitable to
use our bound-based algorithm to prune trees instead of CART. Another advantage of our pruning
algorithm is that it is on average 19.5 times faster than the pruning process of CART, due to the fact
that our algorithm does not rely on cross-validation.

While our algorithm works well in practice, it is unfortunate that the computed bound € of the pruned
tree is uninformative (i.e. greater than 1) most of the time. On the other hand, the good performances
of our algorithm shows that Shawe-Taylor’s bound () and our bound (7) capture the behavior of
decision trees well, up to a possibly large constant factor.

It is interesting to see that our pruning algorithm and the CART algorithm do not perform the same
trade-off; indeed, the final tree produced by CART has three times less leaves on average than
the pruned tree generated by our algorithm. This suggests that CART prunes decision trees more
aggressively than necessary.

As for our modified version of CART, it generally does better than the original CART algorithm (it
has a mean accuracy gain of 1.20%), but it is not as good as the algorithm based on the bound, and as
such is of limited interest.

7 Conclusion

By considering binary decision trees as partitioning machines, and introducing the set of partitioning
functions of a tree class, we have found that the VC dimension of a tree class is given by the largest
integer d such that 72.(d) = 29~ — 1. Then, we found at tight upper bound on the 2-partitioning
function of the class of decision stumps on /¢ real-valued features. This bound allowed us to find the

exact VC dimension of decision stumps, which is given by the largest d such that 2¢ > (Lj ] ) It was
2

then possible to extend these results to yield a recursive upper bound of the c-partitioning functions
of any class of binary decision tree. As a corollary, we found that the VC dimenion of a tree class
with N internal nodes is of order O(N log(N¢)). Based on our findings, we proposed a pruning
algorithm which performed better or similarly to CART on 16 out of 19 datasets, showing that our
bound-based algorithm is a viable alternative to CART.

In the future, we wish to extend our framework to decision trees on categorical features. While
our partitioning framework can also be applied to categorical features, there are some obstacles to
overcome at first. Most notably, as opposed to the case of real-valued features, there exist multiple
ways to produce splitting rules on categorical features. For example, ID3 [Quinlan, |1986] produces a
subtree for each category, LightGBM [Ke et al.,|2017] bundles features together, and CART [Breiman
et al.L|1984] examines all possible split combinations. Other techniques involve binary encodings such
as one-versus-all or one-versus-one. Every such way to proceed may result in different partitioning
patterns requiring different analyses. Furthermore, one must introduce new notation to be able to
handle the specific feature distribution relevant to each problem, i.e. there could be a certain number
of features that are binary, another number that are ternary, and so on for all category sizes. We think
these difficulties can be resolved and we aim to do so in a subsequent paper.

Broader Impact

This work could be profitable to machine learning practitioners that use decision trees to produce
predictive models. The methods and results presented in this work are not incompatible with methods
that try to correct the bias present in some datasets and with machine learning fairness methods that
should be applied when the learned model attempts to make predictions on some aspects of human
behaviour.
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