
We are addressing only the major comments in this document. Most certainly, we will incorporate all minor comments1

relating to presentations, citations, clarifications, etc. In this document, RXCY refers to Comment Y by Reviewer X.2

R1C1 [Heuristic method]: We agree GCOMB is a heuristic. This holds true for [4],[15] as well and, in general, for3

most deep-learning techniques. Our main objective is to scale to billion-sized graphs, where [4],[15], and approximation4

algorithms, such as Greedy, IMM and CELF fail. We will ensure to make this crystal clear.5

R1C2 [Novelty]: GCOMB focuses on the budget-constrained scenario and this leads to several design choices that are6

different from [4]. Examples include a novel probabilistic greedy algorithm to construct budget-focused training data,7

and noise predictor for pruning the search space. In addition GCOMB uses a mixture of supervised learning (GCN) and8

reinforcement learning. In contrast, [4] is an end-to-end reinforcement learning architecture and thus time-consuming.9

R2C1 [Relevance of CELF]: As reported in Table 1, GCOMB is consistently faster than CELF in both MCP and IM.10

Since CELF did not finish in IM even after 2 days, the reported results for IM are based on a random sample containing11

5% of the edges in YouTube. The slowness of CELF in IM is also reported in [2].12

R2C2 [Noise pruning + GREEDY/CELF]: NOISEPRUNER+CELF, i.e., running CELF only on non-noisy nodes, is13

orders of magnitude slower than GCOMB in IM (See Table 1). Pruning noisy nodes does not reduce the graph size; it14

only reduces the number of candidate nodes. To compute expected spread in IM, or coverage in MCP, we still require15

the entire graph, resulting in non-scalability. For ex., at budget b ≥ 100, CELF did not finish in 2 days as computing16

marginal gain is #P-hard. Note that NOISEPRUNER+CELF is much faster than CELF. However, speed-up over CELF in17

Table 1 is smaller since the dataset there is 5% of YouTube. If our accepted, we will use a common dataset for both18

CELF and NOISEPRUNER+CELF, so that the speed-up is better depicted (We could not due to 5-day rebuttal deadline).19

R2C3 [Budget constrained set combinatorial problems]: This is an excellent point. We propose to restate our20

scope as follows: We aim to learn algorithms that can be approximated well by greedy algorithm (or where greedy21

is nearly optimal) and that have cardinality constraints. Although GCOMB may generalize to other combinatorial22

problems, it remains to be investigated. Learning with a small budget and generalizing it to a larger one in test phase is23

quite non-trivial and we tackle it via probabilistic greedy and noise predictor.24

R2C4 [Approx. guarantees]: See R1C1. R2C5 [MVC in MCP formulation] Will do. We lack space in rebuttal.25

R2C6 [Is NOISEPRUNER part of GCN]: The noise prediction is a pre-processing step for GCN. As highlighted in26

Fig. 1, the hidden layers of GCN are trained only with nodes that pass the noise filter. The noise prediction component27

has rbmax as a trainable parameter, which is trained using the first layer information of GCN through linear interpolation.28

R3C1 [Compare with LazyGreedy (CELF), STOCHASTICGREEDY(SG), and OPIM]: GCOMB is faster than all29

three techniques (Table 1). For CELF, see R2C1 and R2C2. GCOMB is faster than OPIM and SG, and on average,30

better in quality. Like CELF, SG did not finish in IM even after 10 hours as it only reduces the number of marginal cost31

computations, but not the cost of computing the marginal gains itself, which is #P-hard. In contrast, GCOMB reduces32

both number of marginal cost computations (Noise pruning) and cost of computing marginal gains (GCN+Q-learning).33

In MCP, GCOMB is up to 20% better in quality at ε = 0.2 and yet 2 times faster. SG fails to match quality even at34

ε = 0.05, where it is even slower. Furthermore, SG is not drastically faster than CELF in MCP due to two reasons: (1)35

cost of computing marginal gain is O(Avg.degree), which is fast. The additional data structure maintenance in SG to36

access sampled nodes in sorted order does not substantially offset the savings in reduced marginal gain computations.37

(2) Due to being scale-free networks, the inner loop of CELF terminates early in the sorted order.38

R3C2 [Comparison to SODA 14]: IMM is an optimized version of the SODA-14 paper. SODA-14 does not scale due39

to the ε−3 factor and other large hidden constants in its time complexity of O(bl2(|E|+ |V |) log2 |V |/ε3).40

R4C1 [Citations]: We will replace/add the citations as suggested.41

R4C2 [Explanation of distribution D] and R4C4 [Choice of real graphs]: We do not assume any known distribution.42

We only assume that the training and test graphs come from the same (unknown) distribution D. For example, if one43

trains on scale-free social networks, the test graphs are expected to be scale-free social networks as well. We hope this44

also clarifies our choice of real graph datasets, all of which are social networks. The metric |X|/|B| is distribution45

agnostic. We have reported the mean. We can also report the standard deviation through error bars.46

R4C3 [Noise prediction and node quality prediction]: The key differentiating factor between noise predictor and47

node quality prediction is their computation complexities. This design choice is motivated by the observation that48

computationally expensive predictive tasks should be performed only for the promising nodes. Thus, the noise predictor49

prunes out nodes that will not be in the solution. For the remaining nodes, node quality prediction is performed.50
Experiment Speedup over CELF NOISEPRUNER+CELF Speedup over OPIM Spread Difference with OPIM SG (MCP in YT)

Budget IM (CO)
in YT 5%

MCP in
YT

Speedup in IM
(CO) in YT

CO in YT TV in YT CO in YT TV in YT Speedup
ε = 0.2

Coverage Differ-
ence ε = 0.2

Coverage Differ-
ence ε = 0.05

20 9 4 12840 35 15 1× 10−5 −1× 10−4 2 −0.09 −0.001
50 11 4 46119 30 10 −3× 10−5 −2× 10−4 2 −0.13 −0.003

100 28 3 − 18 7 2× 10−5 −3× 10−4 2 −0.16 −0.005
150 − 2 − 15 6 −2× 10−5 −3× 10−4 2 −0.18 −0.005
200 − 2 − 13 4 −7× 10−5 −4× 10−4 2 −0.20 −0.006

Table 1: [R2C1, R2C2, R3C1] OPIM (version OPIM-C+, which is the fastest. Code provided by authors) is run with the default parameters recommended by

the authors in the paper. ε is recommended to be kept in range [0.01, 0.1]. Thus, we set it to ε = 0.05. In Spread Difference and Coverage Difference, we compute

(Baseline Performance-GCOMB performance), and thus, a negative difference indicates better performance by GCOMB. CO and TV denote the edge weight models in

IM. YT denotes the YouTube dataset. MCP denotes Max Coverage Problem and IM denotes Influence Maximization.


