Instance Based Approximations to
Profile Maximum Likelihood

Nima Anari Moses Charikar Kirankumar Shiragur
Stanford University Stanford University Stanford University
anari@stanford.edu moses@cs.stanford.edu shiragur@stanford.edu
Aaron Sidford

Stanford University
sidford@stanford.edu

Abstract

In this paper we provide a new efficient algorithm for approximately computing the
profile maximum likelihood (PML) distribution, a prominent quantity in symmetric
property estimation. We provide an algorithm which matches the previous best
known efficient algorithms for computing approximate PML distributions and
improves when the number of distinct observed frequencies in the given instance is
small. We achieve this result by exploiting new sparsity structure in approximate
PML distributions and providing a new matrix rounding algorithm, of independent
interest. Leveraging this result, we obtain the first provable computationally
efficient implementation of PseudoPML, a general framework for estimating a
broad class of symmetric properties. Additionally, we obtain efficient PML-based
estimators for distributions with small profile entropy, a natural instance-based
complexity measure. Further, we provide a simpler and more practical PseudoPML
implementation that matches the best-known theoretical guarantees of such an
estimator and evaluate this method empirically.

1 Introduction

In this paper we consider the fundamental problem of symmetric property estimation: given access ton
i.i.d. samples from an unknown distribution, estimate the value of a given symmetric property (i.e. one
invariant to label permutation). This is an incredibly well-studied problem with numerous applications
[Cha84.[BF93l/ICCG™ 12, [TE]7, [Fiir03, [KLR99, PBG 01, DST13,RCS ™09, [GTPB07, HARBOT] and
proposed property-specific estimators, e.g. for support [VVITb,[WYT3], support coverage [ZVV ™16,
OSW16], entropy [VV11b, WY 16a,JVHWI135], and distance to uniformity [VV1lal JHW16].

However, in a striking recent line of work it was shown that there is a universal approach to
achieving sample optima estimators for a broad class of symmetric properties, including those above.
[ADOS16]] showed that the value of the property on a distribution that (approximately) maximizes
the likelihood of the observed profile (i.e. multiset of observed frequencies) is an optimal estimator
up to accurac € > n~ /%, Further, [ACSS20] which in turn built on [ADOS16}[CSS19al, provided
a polynomial time algorithm to compute an exp(—O(+/nlogn))-approximate profile maximum
likelihood distribution (PML). Together, these results yield efficient sample optimal estimators for
various symmetric properties up to accuracy € > n~ /4,

!'Sample optimality is up to constant factors. See [ADOS16] for details.
2We use ¢ >> n” ¢ to denote ¢ > n~ " for any constant o > 0.
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Despite this seemingly complete picture of the complexity of PML, recent work has shown that there
is value in obtaining improved approximate PML distributions. In [CSS19b,|HO19] it was shown that
variants of PML called PseudoPML and truncated PML respectively, which compute an approximate
PML distribution on a subset of the coordinates, yield sample optimal estimators in broader error
regime for a wide range of symmetric properties. Further, in [HO20] an instance dependent quantity
known as profile entropy was shown to govern the accuracy achievable by PML and their analysis
holds for all symmetric properties with no additional assumption on the structure of the property.
Additionally, in [HS20] it was shown that PML distributions yield a sample optimal universal
estimator up to error € 3> n~ /3 for a broad class of symmetric properties. However, the inability to
obtain approximate PML distributions of approximation error better than exp(—O(y/nlogn)) has
limited the provably efficient implementation of these methods.

In this paper we enable many of these applications by providing improved efficient approximations to
PML distributions. Our main theoretical contribution is a polynomial time algorithm that computes
an exp(—O(k logn))-approximate PML distribution where k is the number of distinct observed
frequencies. As k is always upper bounded by /n, our work generalizes the previous best known
result from [ACSS20] that computed an exp(—O(y/nlogn))-approximate PML. Leveraging this
result, our work provides the first provably efficient implementation of PseudoPML. Further, our
work also yields the first provably efficient estimator for profile entropy and efficient estimators with
instance-based high-accuracy guarantees via profile entropy. We obtain our approximate PML result
by leveraging interesting sparsity structure in convex relaxations of PML [ACSS20,|CSS19al] and
additionally provide a novel matrix rounding algorithm that we believe is of independent interest.

Finally, beyond the above theoretical results we provide a simplified instantiation of these results
that is sufficient for implementing PseudoPML. We believe this result is a key step towards practical
PseudoPML. We provide preliminary experiments in which we perform entropy estimation using the
PseudoPML approach implemented using our simpler rounding algorithm. Our results match other
state-of-the-art estimators for entropy, some of which are property specific.

Notation and basic definitions: Throughout this paper we assume to receive a sequence of n
independent samples from an underlying distribution p € AP, where D is a domain of elements and

AP is the set of all discrete distributions supported on this domain. We let [a, b] and [a, b]r denote

the interval of integers and reals > a and < b respectively, so AP def {q € [0,1]P] Hq”1 =1}. Let

D™ be the set of all length n sequences and y™ € D™ be one such sequence with y;* denoting its ith

element. Let f(y", z) of |{¢ € [n] | y* = x}| and p,, be the frequency and probability of x € D
respectively. For a sequence y" € D", let M = {f(y", x)},ep\{0} be the set of all its non-zero
distinct frequencies and my, mo, ..., my be these distinct frequencies. The profile of a sequence
y™ denoted ¢ = ®(y") is a vector in lerw, where ¢; e {z € D | f(y",x) = m;}| is the number
of domain elements with frequency m;. We call n the length of profile ¢ and let ®" denote the set
of all profiles of length n. The probability of observing sequence y™ and profile ¢ with respect to a
distribution p are as follows,

P(p,y") = [[ " and P(p,¢) = > P(p,y") .
€D {ymeD" | 2(y™)=¢}
For a profile ¢ € ®", p,, is a profile maximum likelihood (PML) distribution if p, € arg max,c oo
P(p, ¢). Further, a distribution pg is a B-approximate PML distribution if ]P’(pg, ¢) > B-P(py, d)-

For a distribution p and n, let X be a random variable that takes value ¢ € ®™ with probability
Pr (p, ¢). The distribution of X depends only on p and n and we call H (X) (entropy of X) the profile
entropy with respect to (p,n) and denote it by H (9", p).

We use O(-), ©(+) notation to hide all polylogarithmic factors in n and N.

Paper organization: In[Section 2|we formally state our results. In[Section 3| we provide the convex
relaxation JCSS19al, [ACSS20] for the PML objective. Using this convex relaxation, in

we state our algorithm that computes an exp(—O(k log n))-approximate PML and sketch its proof.
Finally, in we provide a simpler algorithm that provably implements the PseudoPML
approach; we implement this algorithm and provide experiments in the same section. Due to space
constraints, we defer most of the proofs to appendix.



2 Results

Here we provide the main results of our paper on computing approximations to PML where the ap-
proximation quality depends on the number of distinct frequencies, as well as efficiently implementing
results on profile entropy and PseudoPML.

Distinct frequencies: Our main approximate PML result is the following.

Theorem 2.1 (Approximate PML). There is an algorithm that given a profile ¢ € ®™ with k distinct
frequencies, computes an exp (—O(k log n))-approximate PML distribution in time polynomial in n.

Our result generalizes [ACSS20] which computes an exp(—O(y/nlogn))-approximate PML.
Through [[ADOS16] our result also provides efficient optimal estimators for class of symmetric
properties when € > n~'/%. Further, for distributions that with high probability output a profile with
O(n'/?3) distinct frequencies, through [HS20] our algorithm enables efficient optimal estimators for
the same class of properties when e > n~1/3, Inwe provide a proof sketch for the above

theorem and defer all the proof details to

Profile entropy: One key application of our instance-based, i.e. distinct-frequency-based, approxi-
mation algorithm is the efficient implementation of the following approximate PML version of the
profile entropy result from [HO20] See for the definition of profile entropy.

Lemma 2.2 (Theorem 3 in [HO20)). Let f be a symmetric property. For any p € AP and a profile
@ ~ p of length n with k distinct frequencies, with probability at least 1 — O(1/+/n),

10) ~ 102 < 2 (%) ,

where pg is any (B-approximate PML distribution for > exp(—O(klogn)) and €;(n) is the
smallest error that can be achieved by any estimator with sample size n and success proabilityE] 9/10

As the above result requires an exp(—O(k log n))-approximate PML, our [Theorem 2.1]immediately
provides an efficient implementation of it. holds for any symmetric property with no
additional assumptions on the structure. Further, it trivially implies a weaker result in [ADOS16]
where [ H(®"™, p)] is replaced by \/n. For further details and motivation, see [HOZ20].

PseudoPML: Our approximate PML algorithm also enables the efficient implementation of Pseu-
doPML [CSS19bl [ HO19]. Using PseudoPML, the authors in [CSS19b, [HO19] provide a general
estimation framework that is sample optimal for many properties in wider parameter regimes than
the previous universal approaches. At a high level, in this framework, the samples are split into two
parts based on the element frequencies. The empirical estimate is used for the first part and for the
second part, they compute the estimate corresponding to approximate PML. To efficiently implement
the approach of PseudoPML required efficient algorithms with either strong or instance dependent
approximation guarantees and our result achieves the later. We first state a lemma that
relates the approximate PML computation to the PseudoPML.

Lemma 2.3 (PseudoPML). Let ¢ € O™ be a profile with k distinct frequencies and ¢, u € [0, 1]. If
there exists an algorithm that runs in time T'(n, k,u, £) and returns a distribution p’ such that

P(p',¢) = exp (~O((u — O)nlogn + klogn)) max P(g,9), (1
9€R8 )
where A[De,u] et {p € AP|p, € [¢,u] Vz € D}. Then we can implement the PseudoPML approach
with the following guarantees,

log N
Nl—«a

complexity optimal and runs in T'(n, O(logn), O(logn/n),1/poly(n)) time.

* For entropy, when error parameter € > ) ( ) for any constant o« > 0, the estimator is sample

3Theorem 3 in [HO20] discuss instead exact PML and the authors discuss the approximate PML case in
the comments; we confirmed the sufficiency of approximate PML claimed in the theorem through private
communication with the authors.

*Please refer [HO20] for general success probability 1 — §; our work also holds for the general case.



* For distance to uniformity, when € > () (ﬁ) for any constant o > 0, the estimator is sample
complexity optimal and runs in T(n, O(1/€), O(1/N), Q(1/N)) time.

The proof of the lemma is divided into two main steps. In the first step, we relate (I)) to conditions
considered in PseudoPML literature. In the second step, we leverage this relationship and the analysis
in [CSS19b, HO19] to obtain the result. See for the proof of the lemma and other
details. As discussed in [CSS19b,[HO19], the above results are interesting because we have a general
framework (PseudoPML approach) that is sample optimal in a broad range of non-trivial estimation
settings; for instance when € < g N for entropy and € < ﬁ for distance to uniformity where
C > 0 s a constant, we know that the empirical estimate is optimal.

As our approximate PML algorithm runs in time polynomial in n (for all values
of k) and returns a distribution that satisfies the condition of the above lemma; we immediately
obtain an efficient implementation of the results in However for practical purposes, we
present a simpler and faster algorithm that outputs a distribution which suffices for the application of
PseudoPML. We summarize this result in the following theorem.

Theorem 2.4 (Efficient PseudoPML). There exists an algorithm that implements in time

T(n,k,u,¢) = O(n k“log %), where w is the matrix multiplication constant. Consequently, this

provides estimators for entropy and distance to uniformity in time O(n) and O(n/e* =) under their
respective error parameter restrictions.

See for a description of the algorithm and proof sketch. The running time in the above
result involves: solving a convex program, n/k number of linear system solves of k x k matrices
and other low order terms for the remaining steps. In our implementation we use CVX[GB14] with
package CVXQUADIFESP17] to solve the convex program. We use couple of heuristics to make our

algorithm more practical and we discuss them in

2.1 Related work

PML was introduced by [OSS™04]. Since then, many heuristic approaches [OSS™04, ADM™ 10,
PIW17, Vonl2, [Von14] have been proposed to compute an approximate PML distribution. Re-
cent work of [CSS19a] gave the first provably efficient algorithm to compute a non-trivial
exp(—O(n?/? log n))-approximate PML distribution. The proof of this result is broadly divided
into three steps. In the first step, the authors in [CSS19a]] provide a convex program that approxi-
mates the probability of a profile for a fixed distribution. In the second step, they perform minor
modifications to this convex program to reformulate it as instead maximizing over all distributions
while maintaining the convexity of the optimization problem. The feasible solutions to the modified
convex program represent fractional distributions and in the third step, a rounding algorithm is applied
to obtain a valid distribution. The approximation quality of this approach is governed by the first
and last step and [[CSS19a] showed a loss of exp(—O(n?/3logn)) for each and thereby obtained
exp(—0(n?/? logn))-approximate PML distribution. In follow up work, [ACSS20] improved the
analysis for the first step and then provided a better rounding algorithm in the third step to output
an exp(—O(y/n log n))-approximate PML distribution. The authors in [ACSS20] showed that the
convex program considered in the first step by [CSS19a]] approximates the probability of a profile
for a fixed distribution up to accuracy exp(—O(klogn)), where k is the number of distinct observed
frequencies in the profile. However they incurred a loss of exp(—O(y/nlogn)) in the rounding step;
thus returning an exp(—O(y/n logn)) PML distribution. To prove these results, [CSS194] used a
combinatorial view of the PML problem while [ACSS20] analyzed the Bethe/Sinkhorn approximation
to the permanent [Vonl12| [Von14].

Leveraging the connection between PML and symmetric property estimation, [CSS19a] and
[ACSS20] gave efficient optimal universal estimators for various symmetric properties when
e > n /6 and € > n~1'/* respectively. The broad applicability of PML in property testing
and to estimate other symmetric properties was later studied in [HO19]. [HS20]] showed interesting
continuity properties of PML distributions and proved their optimality for sorted ¢; distance and
other symmetric properties when € >> n~'/3; no efficient version of this result is known yet.

There have been other approaches for designing universal estimators, e.g. [VV11b] based on [ET76],
[HIW18]] based on local moment matching, and variants of PML by [[CSS19bl [HO19] that weakly



depend on the property. Optimal sample complexities for estimating many symmetric properties were
also obtained by constructing property specific estimators, e.g. sorted ¢; distance [VV1la, HIW18],
Renyi entropy [AOST14,|AOST17]], KL divergence [BZLV 16, HIW16] and others.

2.2 Overview of techniques

Here we provide a brief overview of the proof to compute an exp(—O(k log n))-approximate PML
distribution. As discussed in the related work, both [[CSS19a,|ACSS20] analyzed the same convex
program; [ACSS20]] showed that this convex program approximates the probability of a profile for
a fixed distribution up to a multiplicative factor of exp(—O(klogn)). However in the rounding
step, their algorithms incurred a loss of exp(—O(n?/?logn)) and exp(—O(y/nlogn)) respectively.
Computing an improved exp(—O(k log n))-approximate PML distribution required a better rounding
algorithm which in turn posed several challenges. We address these challenges by leveraging
interesting sparsity structure in the convex relaxation of PML [ACSS20), [CSS19a] (Lemma 4.3)) and
provide a novel matrix rounding algorithm (Theorem 4.4J).

In our rounding algorithm, we first leverage homogeneity in the convex relaxation of PML and
properties of basic feasible solutions of a linear program to efficiently obtain a sparse approximate
solution to the convex relaxation. This reduces the problem of computing the desired approximate
PML distribution to a particular matrix rounding problem where we need to “round down” a matrix
of non-negative reals to another one with integral row and column sums without changing the
entries too much (O(k) overall) in ¢;. Perhaps surprisingly, we show that this is always possible by
reduction to a combinatorial problem which we solve by combining seemingly disparate theorems
from combinatorics and graph theory. Further, we show that this rounding can be computed efficiently
by employing algorithms for enumerating near-minimum-cuts of a graph [KS96].

3 Convex Relaxation to PML

Here we define the convex program that approximates the PML objective. This convex program was
initially introduced in [CSS19a] and rigorously analyzed in [CSS19al[ACSS20]. We first describe the
notation and later state the theorem in [ACSS20] that captures the guarantees of the convex program.

Probability discretization: Let R def {ri}iep1,¢ be afinite discretization of the probability space,
where r; = 55 (1 + )i foralli € [1,£/ —1],r, = 1 and ¢ et IR| be such that 515 (1 + )’ > 1;

2n2 2n2

therefore ¢ = O(l(’%). Letr € Zﬂ_ be a vector where the i’th element is equal to r;. We call
q € [0,1]® a pseudo-distribution if ||q||x < 1 and a discrete pseudo-distribution with respect to R if
all its entries are in R as well. We use A;)Seu 4o @and AP to denote the set of all pseudo-distributions
and discrete pseudo-distributions with respect to R respectively. For all probability terms defined
involving distributions p, we extend those definitions to pseudo distributions q by replacing p, with
q, everywhere. The effect of discretization is captured by the following lemma.

Lemma 3.1 (Lemma 4.4 in [CSS19a]). For any profile ¢ € ®" and distributionp € AP, there exists
q € AP that satisfies P(p, $) > P(q, ) > exp (—an — 6) P(p, ¢) and therefore,

P(p, ¢) > P(q, ) > exp (—an — 6 P(p, $) .
nax (paﬁ)_qrgii; (¢,¢) > exp(—an )prgggg P, 9)

For any probability discretization set R, profile ¢ and q € AR, we define the following sets that help

lower and upper bound the PML objective by a convex program.
g s e RGO [ s1ez 871, = ¢ forall j € [LK and TSI 1), @

zpIree {s e RO ‘ [ST1]; = ¢; forall j € [1,k] and r' S1 < 1} , 3)

where in the above definitions the 0’th column corresponds to domain elements with frequency 0

(unseen) and we use mg 4" 0. We next define the objective of the convex program. Let C;; e
m; log r; and for any S € RZ;O[O’]“] define,
def
g(s) = exp( Z [Ci;Xij — X5 log X5] + Z [Xl]ilog[Xl]Z) . 4)
i€[1,£],5€[0,k] i€[1,£]



The function g(S) approximates the IP(q, ¢) term and the following theorem summarizes this result.

Theorem 3.2 (Theorem 6.7 and Lemma 6.9 in [ACSS20]]). Let R be a probability discretization set.
Given a profile ¢ € ®™ with k distinct frequencies the following inequalities hold,

exp (—O(klogn)) - Cy -Smef;gg(S) < max P(g,¢) < exp (O (klogn)) - Cy - ?ggg(S) , (5

max P(q,¢) < exp (O (klogn))-Cs- max g(S), (6)
q€AR Sezgfrac

where Cy, def #!(m')d,j is a term that only depends on the profile.
je1, k]

See|Appendix A.l|for citations related to convexity of the function g(S) and running time to solve
the convex program. For any S € Zf{, define a pseudo-distributions associated with it as follows.

Definition 3.3. For any S € Z;’i, the discrete pseudo-distribution g associated with S and R is
defined as follows: For any arbitrary » i€[0,k] S;,; number of domain elements assign probability r;.

Further pg e qs/|lqg|l1 is the distribution associated with S and R.

Note that qg is a valid pseudo-distribution because of the third condition in and these
pseudo distributions pg and qg satisfy the following lemma.
Lemma 3.4 (Theorem 6.7 in [ACSS20]]). Let R and ¢ € ®™ be any probability discretization set

and a profile respectively. For any S € Z%, the discrete pseudo distribution q¢ and distribution pg
associated with S and R satisfies: exp (—O(klogn)) Cy - g(S) < P(q,¢) < P(p,¢) .

4 Algorithm and Proof Sketch of

Here we provide the algorithm to compute an exp (—O(k log n))-approximate PML distribution,
where k is the number of distinct frequencies. We use the convex relaxation from the
maximizer of this convex program is a matrix S € Zﬁ’f "*¢ and its 7’th row sum denotes the number of
domain elements with probability r;. As the row sums are not necessarily integral, we wish to round S
to a new matrix S’ that has integral row sums and 8’ € Zﬁ, for some probability discretization set R’.
Our algorithm does this rounding and incurs only a loss of exp (—O(k logn)) in the objective; finally
the distribution associated with S’ and R’ is the desired exp (—O(k log n))-approximate PML. We
first provide a general algorithm that holds for any probability discretization set R and the guarantees
of this algorithm are stated below.

Theorem 4.1. Given a profile ¢ € ®™ with k distinct observed frequencies and R, there exists an
algorithm that runs in polynomial of n and |R| time and returns a distribution p’ that satisfies,

P (p',$) > exp (~O(klogn)) max P (¢.¢) .
lSAY

For an appropriately chosen R, the above theorem immediately proves|Theorem 2.1|and we defer its
proof to In the remainder of this section we focus our attention towards the proof of
Theorem 4.1]and we next provide the algorithm that satisfies the guarantees of this theorem.

Algorithm 1 ApproximatePML(¢, R)

1: Solve S’ = arg maxg_,e.srac 10g g(S). > Step 1
R

2: S” = Sparse(S'). > Step 2

3: (S”,B"”) = MatrixRound(S"). > Step 3

4: (S, R™") = CreateNewProbability Values(S”, B”,R). > Step 4

5: Return distribution p’ with respect to S®™* and R*** (See [Definition 3.3)). > Step 5

We divide the analysis of the above algorithm into 5 main steps. See for the guarantees of
Step 5 and here we state results for the remaining steps; we later combine it all to prove



Lemma 4.2 ([CSS19a, [ACSS20]). Step 1 of the algorithm can be implemented in O(|R| k?) time
and the maximizer S' satisfies: Cy - g(S") > exp (O (—klogn)) max,car P(g, ¢).

The running time follows from Theorem 4.17 in [[CSS19a] and the guarantee of the maximizer follows
from Lemma 6.9 in [ACSS20]. The lemma statements for the remaining steps are written in a general
setting; we later invoke each of these lemmas in the context of the algorithm to prove

Lemma 4.3 (Sparse solution). Forany A € Zy!", the algorithm Sparse(A) runs in O(|R| k*) time
and returns a solution A’ € Zy'™* such that g(A") > g(A) and [{ie[1,4] [A'?]i >0} <k+1.

We defer description of the algorithm Sparse(X) and the proof tOZAppendix A. ll In the proof, we use
homogeneity of the convex program to write an LP whose optimal basic feasible solution satisfies the
lemma conditions.

Theorem 4.4. For a matrix A € Rixot, the algorithm MatrixRound(A) runs in time polynomial in

- -
s,t and returns a matrix B € R such that B;j < A;; Vi€ [s],j € [t B1 € Zs, B'1 e Zt
and ), i(Aij — Bij) < O(s' +1'), where s',t' denote the number of non-zeros rows and columns.

For continuity of reading, we defer the description of MatrixRound(A) and its proof to

Lemma 4.5 (Lemma 6.13 in [ACSS20]). ForanyA € Zy'™** € R\ ana B € REJ"M such thar
Bij S AiijFall’i € [g],] € [0, k], B? € Zé ’ BT? S ZEEJC] andZiE[@],jE[O,k] (AijfBij) S t. The
algorithm CreateNewProbability Values(A, B, R) runs in polynomial time and returns a solution
A" and a probability discretization set R’ such that A’ € Zf;, and g(A") > exp (—O (tlogn))g(A) .

The algorithm CreateNewProbability Values is the same algorithm from [ACSS20] and the above
lemma is a simplified version of Lemma 6.13 in [ACSS20]; see for its proof.

The proof of follows by combining results for each step and we defer it to

4.1 Matrix rounding algorithm and proof sketch of

In this section we prove Given a matrix A € R‘;ﬁt, our goal is to produce a rounded-
down matrix B with integer row and column sums, such that 0 < B < A (entry wise) and the total
amount of rounding 3, ;(A;; —B;) is bounded by O(s’ +t'), where s', ¢’ are the number of nonzero
rows and columns respectively. For simplicity we may assume s = s’ and ¢t = ¢’ by simply dropping
the zero rows and columns from A and re-appending them to the resulting B. As our first step, we
reduce the problem to a statement about graphs. Below we use deg(v) to denote the number of
edges adjacent to a vertex v within a set of edges F'.

Lemma 4.6. Suppose that G = (V, E) is a bipartite graph and k is a positive integer. There exists a
polynomial time algorithm that outputs a subgraph F C E, such that degp(v) = 0 modulo k for
every vertex v, and |E — F| < O(k|V|).

Proof of[Lemma 4.6| =—> [Theorem 4.4] Let k = min(s,t). Given A we produce a bipartite graph
with s and ¢ vertices on two sides; for every entry A;; we round down to the nearest integer multiple
of 1/k, say c¢;;/k, and introduce c;; parallel edges between vertices 4 and j of the bipartite graph.
Now [Lemma 4.6|produces a subgraph F', and we let B;; be 1/k times the number of edges left in F
between 4, j. By|[Lemma 4.6, B will have integer row and column sums, and 0 < B < A. We next
show that the total amount of rounding is bounded by O(s + t).

Notice that when rounding each entry of A down to ¢;;/k, the total amount of change is at most
st/k = O(s + t). By the guarantee that |E — F| < O(k|V|), the total amount of rounding in the
second step is also bounded by O(k(s +t))/k = O(s + t). O

So it remains to prove[Lemma 4.6] As our main tool, we will use a result from [Thol4] which was
obtained by reduction to an earlier result from [LTWZ13l]. Roughly, this result says that as long as G
is sufficiently connected, we can choose a subgraph whose degrees are arbitrary values modulo k.

Lemma 4.7 ([Thol4, Theorem 1]). Suppose that G = (V, E) is a bipartite (3k — 3)-edge-connected
graph. Suppose that f : V. — {0, ...,k — 1} is an arbitrary function, with the restriction that the



sum of f on either side of the bipartite graph G yields the same result modulo k. Then, there is a
subgraph F' C E, such that for each vertex v, degp(v) = f(v) modulo k.

Note that (3k — 3)-edge-connectivity means that for every cut, i.e., every partitioning of vertices
into two nonempty sets S, .S¢, the number of edges between S and S¢ is > 3k — 3. We show that

[Cemma 4.7|can also be made constructive, giving the polynomial time guarantee for[Cemma 4.6]
Lemma 4.8. There is a polynomial time algorithm that produces the subgraph of[Lemma 4.7}

We defer the proof of [Cemma 4.8|to[Appendix A.2l At a high level, the proof of works
by formulating an assumption about the graph that is more general and more nuanced than edge-
connectivity; instead of a constant lower bound on every cut, this assumption puts a cut-specific lower
bound on each cut, the details of which can be found in The rest of the argument
follows a clever induction. To make this argument constructive, we show how to check the nuanced
variant of edge-connectivity in polynomial time. We do this by proving that only cuts of size smaller
than a constant multiple of the minimum cut have to checked, and these can be enumerated in
polynomial time [KS96].

Note that[Lemma 4.7]does not guarantee anything about |E — F|, even when f is the zero function
(the empty subgraph is actually a valid answer in that case). We will fix this using a theorem of
[NW61]]. We will first prove with the extra assumption that G is 6k-edge-connected, and
then prove the general case.

Proof of[Lemma 4.6|when G is 6k-edge-connected. By afamous theorem due to [NW61]], a 6k-edge-
connected graph contains 6k/2 = 3k edge-disjoint spanning trees. Moreover the union of these 3k
edge-disjoint spanning trees can be found in polynomial time by matroid partitioning algorithms
[GWO92]. Let H be the subgraph formed by these 3k edge-disjoint spanning trees. We will ensure
that all edges outside H are included in F’; as a consequence, we will automatically get that |E — F|
is bounded by the number of edges in H, which is at most 3k(|V| — 1) = O(k|V]).

Let H¢ denote the complement of H in G. Define the function f : V' — {0,...,k — 1} in the
following way: let f(v) be — degy.(v) modulo k. Note that f has the same sum on either side
of the bipartite graph, modulo k. We will apply and 48] to the graph H (which is

3k > (3k — 3)-edge-connected) and the function f. Then we take the union of the subgraph returned
by |Lemma 4.8|and /¢ and output the result as F'. Then degx(v) = deggc(v) + f(v) = 0 modulo

k, for every vertex v. Note again that since we only deleted edges in H to get F', the total number of
edges we have removed can be at most O(k|V]). O

We have shown [Cemma 4.6|for highly-connected graphs and the proof for the general case follows by
partitioning the graph into union of vertex-disjoint highly-connected subgraphs while removing a

small number of edges. We defer the proof for this general case to

5 Algorithm, Proof Sketch of and Experiments

Here we present a simpler rounding algorithm that further provides a faster implementation of the
pseudo PML approach with provable guarantees. Similar to[Section 4} we first provide an algorithm
with respect to a probability discretization set R that proves [Theorem 5.1} we later choose the

discretization set carefully to prove [Theorem 2.4] We perform experiments in|Section 5.1|to analyze

the performance of this rounding algorithm empirically. We defer all remaining details to[Appendix B]

Theorem 5.1. Given a probability discretization set R (¢ def |R|) and a profile ¢ € @™ with k distinct
frequencies, there is an algorithm that runs in time O(Lk®) and returns a distribution p’ such that,

P(p',¢) = exp (~O((rmax = Fmin)n + klog(¢n))) max P (¢,9) .
q9c g

For an appropriately chosen R, the above theorem immediately proves and we defer

both their proofs to We now present the algorithm that proves



Algorithm 2 ApproximatePML2(¢, R)

1: Solve X = arg MaXgezo.frac log g(S) and let X' = Sparse(X). > Step 1
2: Let S’ be the sub matrix of X’ corresponding to its non-zero rows. > Step 2
3: Let R’ denote the elements in R corresponding to non-zero rows of X'. Let # %' |R/|. > Step 3
4: fori=1...¢ —1do > Step 4
s set =) U foranl j € [0, 4] > Step 5
6: 11y = Sip1, + (Si,; — S5 forall j € [0, k]. > Step 6
7: end for > Step 7
8: S5 =Sy LH:;;HH forall j € [0, k. > Step 8
9: Letc = Zie[l,;’] r:[|SS*°||1, where r/, are the elements of R'. > Step 9
10: Define R™" = {r//};c(1,¢1), where r} = % foralli € [1,¢]. > Step 10
11: Return distribution p’ with respect to S™* and R™" (See . > Step 11

5.1 Experiments

Here we present experimental results for entropy estimation. We analyze the performance of the
PseudoPML approach implemented using our rounding algorithm with the other state-of-the-art
estimators. Each plot depicts the performance of various algorithms for estimating entropy of
different distributions with domain size N = 10°. The x-axis corresponds to the sample size (in
logarithmic scale) and the y-axis denotes the root mean square error (RMSE). Each data point
represents 50 random trials. “Mix 2 Uniforms” is a mixture of two uniform distributions, with half
the probability mass on the first N/10 symbols and the remaining mass on the last 9N /10 symbols,
and Zipf(a) ~ 1/i* with i € [N]. MLE is the naive approach of using empirical distribution with
correction bias; all the remaining algorithms are denoted using bibliographic citations.

Entropy - Mix 2 Uniforms Entropy - Zipf(-1) Entropy - Zipf(-0.5)
107 10%
—
+ + 10%
~ ==
*
N N 2
1 N 10
w \ w w
4] \ %] )
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Figure 1: Experimental results for entropy estimation.

In the above experiment, note that the error achieved by our estimator is competitive with the other
state-of-the-art estimators. As for the running times in practice, the other approaches tend to perform
better than the current implementation of our algorithm. To further improve the running time of our
approach or any other provable PML based approaches involves building an efficient practical solver
for the convex optimization problem [[CSS19a, |ACSS20] stated in the first stepﬂ of our
we think building such an efficient practical solver is an important research direction.

In we provide experiments for other distributions, compare the performance of
the PseudoPML approach implemented using our algorithm with a heuristic approximate PML
algorithm [PJW17]] and provide all the implementation details.

3In our current implementation, we use CVX[GB14] with package CVXQUAD[ESP17] to solve the convex

program stated in the first step of



Broader Impact

Symmetric property estimation has a broad range of applications, ranging from ecology [Cha84,
CL92, BF93, ICCGT12], to physics [VBBT12], to neuroscience [RWdRvSB99], and beyond
[HIWWT17, [HIMT7, [AOSTT4, RVZI7, ZVVT16, WYT16b, RRSS07, WYT3l [OSWT6, VVTITbl
WY16a,JVHW 1S5,JHW16,[VV11a]. By providing new, broadly applicable, computationally efficient
tools for obtaining higher accuracy estimates to symmetric properties this work could enable a variety
of applications in machine learning and the sciences more broadly. Though the primary contributions
of this work are theoretical, the preliminary experimental results show that this work could ultimately
lead to obtaining higher quality answers to statistical questions at lower computational cost, with less
manual tuning to the particular statistical question of interest. This could ultimately help save time,
energy, and the many costs associated with data collection. There are always risks in widespread
application of statistical tools, we are unaware of any particular biases or harm from the methods
proposed. Further research may be required before the results of this paper can have a broad societal
1mpact.
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