
A Remaining Proofs from Section 4

Here we provide proofs for all the results in Section 4 that were excluded in the main paper. For each
of these results we dedicate a subsection that provides further details. Combining all these results
from different subsections, in Appendix A.4 we provide the proof for our main result (Theorem 2.1).

A.1 Properties of Convex Program and Proof of Lemma 4.3

Here we prove important properties of our convex program. For convenience, we define the negative
log of function g(X),

f(X)
def
=

∑
i∈[1,`],j∈[0,k]

[−CijXij + Xij log Xij]−
∑
i∈[1,`]

[X1]i log[X1]i = − log g(X) . (7)

In the remainder we prove and state interesting properties of this function that helps us construct
sparse approximate solutions. We start by recalling properties showed in [CSS19a].
Lemma A.1 (Lemma 4.16 in [CSS19a]). Function f(X) is convex in X.

Theorem A.2 (Theorem 4.17 in [CSS19a]). Given a profile φ ∈ Φn with k distinct frequencies, the
optimization problem minX∈Zφ,fracR

f(X) can be solved in time Õ(k2|R|).

The function f(X) is separable in each row and we define following notation to capture it.

fi(Xi)
def
=

∑
j∈[0,k]

[−CijXij + Xij log Xij]− [X1]i log ([X1]i) and f(X) =
∑
i∈[1,`]

fi(Xi) .

The function fi(Xi) defined above is 1-homogeneous and is formally shown next.

Lemma A.3. For any fixed vector c ∈ R[0,k], the function h(v) =
∑
j∈[0,k] [cjvj + vj log vj] −

v>
−→
1 log v>

−→
1 is 1-homogeneous, that is, h(α · v) = α · h(v) for all v ∈ R[0,k]

≥0 and α ∈ R≥0.

Proof. Consider any vector v ∈ Rk+1
≥0 and scalar α ∈ R≥0 we have,

h(α · v) =
∑
j∈[0,k]

[cj(αvj) + (αvj) log(αvj)]− (αv)>
−→
1 log(αv)>

−→
1 ,

=
∑
j∈[0,k]

[cj(αvj) + αvj log vj + αvj logα]− (αv)>
−→
1 log v>

−→
1 − (αv)>

−→
1 logα,

=
∑
j∈[0,k]

[cj(αvj) + αvj log vj]− αv>
−→
1 log v>

−→
1 = α · h(v) .

The above derivation satisfies the conditions of the lemma and we conclude the proof.

In the remainder of this section, we provide the proof of Lemma 4.3 and the description of the
algorithm Sparse is included inside the proof. The Lemma 4.3 in the notation of f(·) can be
equivalently written as follows.

Lemma A.4 (Lemma 4.3). For any X ∈ Zφ,fracR , the algorithm Sparse(X) runs in Õ(|R| kω) time
and returns a solution X′ ∈ Zφ,fracR such that f(X′) ≤ f(X) and

∣∣{i ∈ [1, `] | [X′−→1]i > 0}
∣∣ ≤ k + 1.

Proof. Let ` def
= |R| and fix X ∈ Zφ,fracR , consider the following solution X′i = αiXi for all i ∈ [1, `],

where α ∈ R[1,`]
≥0 and Xi,X′i denote the vectors corresponding to the i’th row of matrices X,X′

respectively. By Lemma A.3, each function fi(Xi) is 1-homogeneous and we get,

f(X′) =
∑
i∈[1,`]

fi(X′i) =
∑
i∈[1,`]

fi(αiXi) =
∑
i∈[1,`]

αifi(Xi) .

15

Let α ∈ R[1,`]
≥0 be such that the following conditions hold,∑

i∈[1,`]

αiXi,j = φj for all j ∈ [1, k] and
∑
i∈[1,`]

αiri[X1]i ≤ 1 . (8)

For the above set of equations, the solution α = 1 is feasible as X ∈ Zφ,fracR . Further for any α
satisfying the above inequalities, the corresponding matrix X′ satisfies,∑

i∈[1,`]

X′i,j =
∑
i∈[1,`]

αiXi,j = φj for all j ∈ [1, k] and
∑
i∈[1,`]

ri[X′1]i =
∑
i∈[1,`]

αiri[X1]i ≤ 1 .

Therefore X′ ∈ Zφ,fracR for all α ∈ R[1,`]
≥0 that satisfy Equation (8). In the remainder of the proof we

find a sparse α that satisfies the conditions of the lemma.

Consider the following linear program.

minα ∈ R[1,`]
≥0

∑
i∈[1,`]

αifi(Xi) .

such that,
∑
i∈[1,`]

αiXi,j = φj for all j ∈ [1, k] and
∑
i∈[1,`]

αiri[X1]i ≤ 1 .

Note in the above optimization problem we fix X ∈ Zφ,fracR and optimize over α. Any basic feasible
solution (BFS) α∗ to the above LP, satisfies |{i ∈ [1, `] | α∗i > 0}| ≤ k+ 1 as there are at most k+ 1
non-trivial constraints. Suppose we find a basic feasible solution α∗ such that the corresponding
matrix X′i = α∗iXi for all i ∈ [1, `] satisfies f(X′) ≤ f(X), then such a matrix X′ is the desired
solution that satisfies the conditions of the lemma. Therefore in the remainder of the proof, we discuss
the running time to find such a BFS given a feasible solution to the LP.

Leveraging these insights, we design the following iterative algorithm. In each iteration i we maintain
a set Si ⊆ Rk+1 of 1 ≤ ki ≤ k + 1 linearly independent rows of matrix X. We update the solution
α and try to set a non-zero coordinate of it to value zero while not increasing the objective. Our
algorithm starts with ki = 1 and Si to be the set containing an arbitrary row of X in iteration i = 1.
The next iteration is computed by considering an arbitrary row r of matrix X that corresponds to a
non-zero coordinate in α. Letting Ai ∈ R(k+1)×ki be the matrix where the columns are the vectors
in Si we then consider the linear system A>i Aix = r. Whether or not there is such a solution can be
computed in O(kω), where ω < 2.373 is the matrix multiplication constant [Wil12, LG14, AV20]
using fast matrix multiplication as in this time we can form the (k + 1) × (k + 1) matrix A>i Ai
directly and then invert it. If this system has no solution we let Si+1 = Si ∪ r and proceed to the
next iteration as the lack of a solution proves that Si ∪ r are linearly independent (as Si is linearly
independent). Otherwise, we consider the vector α′ in the null space of the transpose of X formed by
setting α′i to the value of xj for the associated rows and setting α′i for the row corresponding to row r

to be −1. As x is a solution to A>i Aix = r, clearly X>α′ = 0. Now consider the solution α+ cα′

for some scaling c. Since the objective and constraints are linear, there exists a direction, that is, sign
of c such that the objective is non-increasing and the solution α + cα′ satisfies all the constraints
(Equation (8)). We start with c = 0 and keep increasing it in the direction where the objective in
non-increasing till one of the following two conditions hold: either a new coordinate in the solution
α + cα′ becomes zero or the objective value of the LP is infinity. In the first case, we update our
current solution α to α+ cα′ and repeat the procedure. As the goal our algorithm is to find a sparse
solution, we fix the co-ordinates in α that have value zero and never change (or consider) them in the
later iterations of our algorithm. We repeat this procedure till all the non-zero co-ordinates in α are
considered at least once and the solution α returned at the end corresponds to a BFS that satisfies the
desired conditions. As the total number of rows is at most `, our algorithm has at most ` iterations and
each iteration takes only O(kω) time (note that we only update O(k) coordinates in each iteration).
Therefore the final running time of the algorithm Sparse is Õ(`kω) time and we conclude the proof.

A.2 Remaining Parts of the Proof for Theorem 4.4

We first finish the proof of Lemma 4.6. That only leaves us with proving Lemma 4.8.

16

Proof of Lemma 4.6 in the general case. Since the input graph is arbitrary, we have no guarantee
about edge-connectivity. We will show that we can remove O(k|V |) edges from G so that the
remaining subgraph is a vertex-disjoint union of 6k-edge-connected induced subgraphs. To do this,
look at the connected components of G. Either they are all 6k-edge-connected or at least one of them
has a cut with < 6k edges. Moreover we can check this in polynomial time (and find violating cuts if
there are any) by a global minimum cut algorithm [Kar00]. If a component is not 6k-edge-connected,
remove all edges of the small cut, and repeat. Every time we remove the edges of a cut, the number
of connected components increases by 1, so this can go on for at most O(|V |) iterations. In each
iteration, at most 6k edges are removed, so the total number of removed edges is O(k|V |).

So by removing O(k|V |) edges, we have transformed G into a vertex-disjoint union of 6k-edge-
connected graphs. We simply apply the already-proved case of Lemma 4.6 to each of these compo-
nents to get our desired result for the original graph G.

In the remainder of this section we prove Lemma 4.8. We do this by showing how to make the
proof of Lemma 4.7 due to [Tho14] algorithmic. [Tho14] reduced Lemma 4.7 to an earlier result by
[LTWZ13] which we state below.

Lemma A.5 ([LTWZ13, Theorem 1.12]). Let k ≥ 3 be an odd integer and G = (V,E) a (3k − 3)-
edge connected undirected graph. For any given β : V → {0, . . . , k − 1} where

∑
v β(v) ≡ 0

(mod k), there is an orientation of G which makes degout(v) − degin(v) equal to β(v) modulo k
for every vertex v.

Here an orientation is an assignment of one of the two possible directions to each edge, and degout
and degin count outgoing and incoming edges of a vertex in such an orientation. We simply note that
the reduction of Lemma 4.7 to Lemma A.5, as stated in [Tho14], is already efficient. This is done
by a simple transformation on f from Lemma 4.7 to get β, and at the end a subgraph is extracted
from an orientation by considering edges oriented from one side to the other. Since the reduction is
efficient, we simply need to prove Lemma A.5 can be made efficient.

Lemma A.6. There is a polynomial time algorithm that outputs the orientation of Lemma A.5.

To obtain this algorithm, our strategy is to make the steps of the proof presented in [LTWZ13]
(efficiently) constructive. [LTWZ13] prove Lemma A.5 by generalizing the statement and using a
clever induction. To state this generalization, we need a definition from [LTWZ13].

Definition A.7 ([LTWZ13]). Suppose that k is an odd integer, andG = (V,E) is an undirected graph.
For a given function β : V → {0, . . . , k − 1}, we define a set function τ : 2V → {0,±1, . . . ,±k}
by the following congruences

τ(S) ≡
∑
v∈S

β(S) (mod k)

τ(S) ≡
∑
v∈S

deg(S) (mod 2)

The two given congruences uniquely determine τ(S) modulo 2k; this in turn is a unique element of
{0,±1, . . . ,±k}, except for k and −k which are the same value modulo 2k. The choice of which
value to take in this case is largely irrelevant, as we will mostly be dealing with |τ(·)|. Note that τ(S)
is the same, modulo 2k, as the number of edges going from S to Sc minus the number of edges going
from Sc to S in any valid orientation as promised by Lemma A.5.

The definition of τ is used to give a generalization of Lemma A.5 that is proved by induction.

Lemma A.8 ([LTWZ13, Theorem 3.1]). Let k be an odd integer, G = (V,E) an undirected graph
on at least 3 vertices, and β : V → {0, . . . , k − 1} be such that

∑
v β(v) ≡ 0 (mod k). Let z0 be

a “special” vertex of G whose adjacent edges are already pre-oriented in a specified way. Assume
that τ is defined as in Definition A.7 and V0 = {v ∈ V − {z0} | τ({v}) = 0}; let v0 be a vertex of
minimum degree in V0. If the following conditions are satisfied, then there is an orientation of edges,
matching the pre-orientation of z0, for which degout(v)− degin(v) ≡ β(v) (mod k) for every v.

1. deg(z0) ≤ (2k − 2) + |τ({z0})|,

17

2. |E(S, Sc)| ≥ (2k − 2) + |τ(S)| for every set S where z0 /∈ S, and S 6= ∅, {v0}, V − {z0}.

Here E(S, Sc) is the set of edges between S and Sc. Note that we always have |τ(·)| ≤ k. So a
(3k − 3)-edge-connected graph automatically satisfies condition 2 in Lemma A.8. Lemma 4.7 is
proved by adding an isolated vertex z0 and setting β(z0) = 0, for which condition 1 is automatically
satisfied.

The reason behind this generalization is the ability to prove it by induction. The authors of [LTWZ13]
state this induction in the form of proof by contradiction. They consider a minimal counterexample,
and argue the existence of a smaller counterexample. We do not state all of their proof again here, but
note that all processes used to produce smaller counterexamples are readily efficiently implementable,
except for one. In the proof of Theorem 3.1 in [LTWZ13], in Claim 1, the authors argue that for
non-singleton S the inequality in condition 2 of Lemma A.8 cannot be strict, or else the size of
the problem can be reduced. They formally prove that a smallest counterexample must satisfy for
|S| ≥ 2,

|E(S, Sc)| ≥ 2k + |τ(S)| > (2k − 2) + |τ(S)|. (9)
In case a non-singleton does not satisfy the above inequality, the authors produce two smaller
instances, once by contracting S into a single vertex, and once by contracting Sc, and combining the
resulting orientations together for all of G. The main barrier in making this into an efficient algorithm
is finding the set S that violates the inequality. A priori, it might seem like an exhaustive search over
all subsets S is needed, but we show that this is not the case.

We now show how to make this part algorithmic.
Lemma A.9. Suppose that the graph G satisfies the conditions of Lemma A.8. Then there is a
polynomial time algorithm which produces a list of sets S1, . . . , Sm for a polynomially bounded m,
such that any violation of Eq. (9) must happen for some Si.

Proof. Our high-level strategy is to use the fact that condition 2 of Lemma A.8 implies G is already
sufficiently edge-connected. If z0, v0 did not exist, condition 2 would imply that G is (2k − 2)-edge-
connected. On the other hand any violation of Eq. (9) can only happen when |E(S, Sc)| < 2k + k =
3k. So it would be enough to simply produce a list of all near-minimum-cuts S with |E(S, Sc)| < 3k.
If G was (2k − 2)-edge-connected, we could appeal to results of [KS96], who proved that for any
constant α, the number of cuts of size at most α times the minimum cut is polynomially bounded and
all of them can be efficiently enumerated.

The one caveat is the existence of v0, z0, which might make G not (2k − 2)-edge-connected. Note
that the only cuts that can potentially be “small” are the singletons {v0}, {z0}. We can solve this
problem by contracting the graph. We enumerate over the edges e1, e2 that are adjacent to v0, z0, and
for every choice of e1, e2, we produce a new graph by contracting the endpoints of e1 followed by
contracting the endpoints of e2. If a cut (S, Sc) does not have v0, z0 as a singleton on either side,
there must be a choice of e1, e2 that do not cross the cut, which means that the cut “survives” the
contraction. Note that the contracted graph is always (2k − 2)-edge-connected, so we can proceed as
before and produce a list of all of its cuts of size < 3k. Taking the union of the list of all such cuts for
all choices of e1, e2 produces the desired list we are seeking.

We remark that a simple modification of our proof also shows that checking conditions 1 and 2 of
Lemma A.8 can be done in polynomial time.

A.3 Simplification and Details on Lemma 4.5

Here we state the lemma that captures the guarantees of the algorithm CreateNewProbabilityValues
from [ACSS20]. We later apply this lemma in a specific setting where the conditions of Lemma 4.5
are met and provide its proof.

For a given profile φ, the algorithm CreateNewProbabilityValues takes input (A,B,R) and creates
a solution pair (B′,R′) that satisfy the following lemma.
Lemma A.10. Given a profile φ ∈ Φn with k distinct frequencies, a probability discretization set R
and matrices A,B ∈ R[`]×[0,k] that satisfy: A ∈ Zφ,fracR and Bi,j ≤ Ai,j for all i ∈ [`] and j ∈ [0, k].
There exists an algorithm that outputs a probability discretization set R′ and A′ ∈ R[`+(k+1)]×[0,k]

that satisfy the following guarantees,

18

1.
∑
j∈[0,k] A′i,j =

∑
j∈[0,k] Bi,j for all i ∈ [`].

2. For any i ∈ [`+ 1, `+ (k + 1)], let j ∈ [0, k] be such that i = `+ 1 + j then A′`+1+j,j′ = 0 for
all j′ ∈ [0, k] and j′ 6= j. (Diagonal Structure)

3. For any i ∈ [`+ 1, `+ (k + 1)], let j ∈ [0, k] be such that i = `+ 1 + j, then
∑
j′∈[0,k] A′i,j′ =

A′`+1+j,j = φj −
∑
i′∈[`] Bi′,j .

4. A′ ∈ Zφ,fracR′ and
∑
i∈[`+(k+1)]

∑
j∈[0,k] A′i,j =

∑
i∈[`]

∑
j∈[0,k] Ai,j .

5. Let αi
def
=
∑
j∈[0,k] Ai,j −

∑
j∈[0,k] Bi,j for all i ∈ [`] and ∆

def
= max(

∑
i∈[`](A

−→
1)i, `× k), then

g(A′) ≥ exp
(
−O

(∑
i∈[`] αi log ∆

))
g(A) .

6. For any j ∈ [0, k], the new level sets have probability value equal to, r`+1+j =
∑
i∈[1,`](Aij−Bij)ri∑
i∈[1,`](Aij−Bij) .

W are now ready to provide the proof of Lemma 4.5

Proof of Lemma 4.5. By Lemma A.10, we get a matrix A′ ∈ R[`+(k+1)]×[0,k] that satisfies A′ ∈
Zφ,fracR′ (guarantee 4 in Lemma A.10) and g(A′) ≥ exp

(
−O

(∑
i∈[`] αi log ∆

))
g(A), where

αi
def
=
∑
j∈[0,k] Ai,j −

∑
j∈[0,k] Bi,j for all i ∈ [`] and ∆

def
= max(

∑
i∈[`](A−→1)i, `× k).

To prove the lemma we need to show two things: A′ ∈ ZφR′ and g(A′) ≥ exp (−O (t log n)) g(A).
We start with the proof of the first expression. Note that A′ ∈ Zφ,fracR′ and we need to show that A′ has
all integral row sums. For i ∈ [`], the i’th row sum, that is [A′1]i is integral by combining guarantee
1 of Lemma A.10 and [B1]i ∈ Z+ (condition of our current lemma). For i ∈ [` + 1, ` + (k + 1)],
[A′1]i = φj − [B>1]j (guarantee 3 of Lemma A.10) and the i’th row sum is integral because
[B>1]j ∈ Z+ (condition of our current lemma) and [B>1]j ≤ [A>1]j ≤ φj .

We now shift our attention to the second expression, that is g(A′) ≥ exp (−O (t log n)) g(A). We
prove this inequality by providing bounds on the parameters ∆, αi. Observe that ∆ ≤ 1/rmin+`k ≤
1/rmin+k(k+1) ≤ O(n2) because A ∈ Zφ,fracR and therefore satisfies

∑
i∈[1,k+1] ri[A1]i ≤ 1 that

further implies
∑
i∈[1,k+1][A

′1]i ≤ 1/rmin ≤ 2n2 (see the definition of probability discretization).
In the second inequality for the bound on ∆ we used ` ≤ k + 1, as without loss of generality the
number of probability values in |R| can be assumed to be at most k + 1 (because of the sparsity
lemma Lemma 4.3) and the actual size of |R| only reflects in the running time. Now note that∑
i∈[k+1] αi =

∑
i∈[`],j∈[0,k](Aij −Bij) ≤ t because of the condition of the lemma. Combining the

analysis for ∆ and αi, we get g(A′) ≥ exp (−O (t log n)) g(A) and we conclude the proof.

A.4 Proof of Theorem 4.1 and Theorem 2.1

Here we provide the proof of Theorem 4.1, that provides the guarantees of our first rounding algorithm
(Algorithm 1) for any probability descritization set R. Later we choose this discretization set carefully
to prove our main theorem (Theorem 2.1).

Proof of Theorem 4.1. By Lemma 4.2, the Step 1 returns a solution S′ ∈ Zφ,fracR that satisfies,
Cφ · g(S′) ≥ exp (O (−k log n)) maxq∈∆DR

P(q, φ). By Lemma 4.3, the Step 2 takes input S′ and

outputs S′′ ∈ Zφ,fracR such that g(S′′) ≥ g(S′) and
∣∣{i ∈ [`] | [S′′−→1]i > 0}

∣∣ ≤ k + 1. As the matrix
S′′ has at most k + 1 non-zero rows and columns, by Theorem 4.4 the Step 3 returns a matrix B′′ that
satisfies: B′′ij ≤ S′′ij ∀ i ∈ [`], j ∈ [0, k], B′′−→1 ∈ Z`+, B′′>−→1 ∈ Z[0,k]

+ and
∑
i∈[`],j∈[0,k](S′′ij−B′′ij) ≤

O(k). The matrices S′′ and B′′ satisfy the conditions of Lemma 4.5 with parameter t = O(k) and
the algorithm CreateNewProbabilityValues returns a solution (Sext,Rext) such that Sext ∈ ZφRext

and g(Sext) ≥ exp(−O(k log n))g(S′′). Further substituting g(S′′) ≥ g(S′) from earlier (Step 2) we
get, g(Sext) ≥ exp(−O(k log n))g(S′). As Sext ∈ ZφRext , by Lemma 3.4 the associated distribution
p′ satisfies P(p′, φ) ≥ exp(−O(k log n))Cφ · g(Sext) ≥ exp(−O(k log n))Cφ · g(S′). Further

19

combined with inequality Cφ · g(S′) ≥ exp (O (−k log n)) maxq∈∆DR
P(q, φ) (Step 1) we get,

P(p′, φ) ≥ exp (O (−k log n)) max
q∈∆DR

P(q, φ) .

All the steps in our algorithm run in polynomial time and we conclude the proof.

Proof of Theorem 2.1. Choose R with parameters α = k log n/n and |R| = ` = O(n/k) in
Lemma 3.1 and we get that maxq∈∆DR

P(q, φ) ≥ exp (−k log n) maxp∈∆D P(p, φ). As the |R|
is polynomial in n, the previous inequality combined with Theorem 4.1 proves our theorem.

B PseudoPML Approach, Remaining Proofs from Section 5 and
Experiments

Here we provide all the details regarding the PseudoPML approach. PseudoPML also known as
TrucatedPML was introduced independently in [CSS19b] and [HO19]. In Appendix B.1, we provide
the proof for the guarantees achieved by our second rounding algorithm (Theorem 5.1) that in
turn helps us prove Theorem 2.4. In Appendix B.2, we provide notations and definitions related
to the PseudoPML approach. In Appendix B.3, we provide the proof of Lemma 2.3. Finally in
Appendix B.4, we provide the remaining experimental results and the details of our implementation.

B.1 Proof of Theorem 5.1 and Theorem 2.4

Here we provide the proof of Theorem 5.1 that provides the guarantees satisfied by our second
approximate PML algorithm. Further using this theorem , we provide the proof for Theorem 2.4.

Proof of Theorem 5.1. By Lemma 4.2, the first part of Step 1 returns a solution X ∈ Zφ,fracR that
satisfies,

Cφ · g(X) ≥ exp (O (−k log n)) max
q∈∆DR

P(q, φ) . (10)

We also sparsify the solution X in Step 1 that we call X′. By Lemma 4.3, the solution X′ ∈ Zφ,fracR
satisfies g(X′) ≥ g(X) and

∣∣{i ∈ [`] | [X′−→1]i > 0}
∣∣ ≤ k + 1. The Steps 2-3 of our algorithm

throw away the zero rows of matrix X′ and consider the sub matrix S′ corresponding to its non-
zeros rows. Let R′ be the probability values that correspond to these non-zero rows of X′ and
S′ ∈ Zφ,fracR′ . As S′ changes during Steps 4-8 of the algorithm, we use Y to denote the unchanged
S′ from Step 2. The matrix Y ∈ Zφ,fracR′ satisfies: g(Y) = g(X′) ≥ g(X) and has `′ ≤ k + 1
rows. In the remainder of the proof we show that the distribution p′ outputted by our algorithm
satisfies P(p′, φ) ≥ exp (−O((rmax − rmin)n+ k log(`n)))Cφ · g(Y) that further combined with
g(Y) ≥ g(X) and Equation (10) proves the theorem. Now recall the definition of g(Y),

g(Y)
def
= exp

(∑
i∈[1,`′],j∈[0,k]

[
C′ijYij − Yij log Yij

]
+
∑

i∈[1,`′]

[Y1]i log[Y1]i

)
, (11)

where C′ij = mj log r′i. We refer to the linear term in Y of function g(Y) as the first term and
the remaining entropy like terms as the second. We denote the elements of set R′ by r′i and let
r′1 < . . . r′`′ . The Steps 4-8 of our rounding algorithm transfer the mass of S′ from lower probability
value rows to higher ones while maintaining the integral row sum for the current row . Formally at
iteration i, our algorithm takes the current fractional part of the i’th row sum ([S′1]i − b[S′1]ic) and
moves it to row i+ 1 (corresponding to higher probability value) by updating matrix S′. As the first
term in function g(·) is strictly increasing in the values of r′i, it is immediate that the final solution
Sext satisfies, ∑

i∈[1,`′],j∈[0,k]

C′ijS
ext
ij ≥

∑
i∈[1,`′],j∈[0,k]

C′ijYij . (12)

The movement of the mass between the rows happen within the same column, therefore Sext satisfies
the column constraints, that is [Sext>1]j = φj for all j ∈ [k]. As [Sext1]i = b[S′1]ic for all i ∈ [1, `],

20

we also have that all the row sums are integral. Therefore to prove the theorem all that remains is to
bound the loss in objective corresponding to the second term for Steps 4-8 and analysis of Steps 9-11.

In Steps 4-8 at iteration i, note that we move at most 1 unit of mass (b[S
′1]ic

[S′1]i
) from row i to i + 1.

Therefore the updated matrix S′ after Step 6 satisfies
∑
j∈[0,k](S′i+1,j − Yi+1,j) ≤ 1. As Sext

i+1,j =

S′i+1,j
b‖S′i+1‖1c
‖S′i+1‖1

we have
∑
j∈[0,k](S′i+1,j − Sext

i+1,j) ≤ 1 and further combined with the previous

inequality we get
∑
j∈[0,k] |S

ext
i+1,j − Yi+1,j | ≤ 1 for all i ∈ [1, `′ − 1]. For the first row, we have

Sext
1,j = Y1,j

b‖Y1‖1c
‖Y1‖1 which also gives

∑
j∈[0,k] |S

ext
1,j − Y1,j | ≤ 1. Therefore for all i ∈ [1, `′] the

following inequality holds, ∑
j∈[0,k]

|Sext
i,j − Yi,j | ≤ 1 . (13)

As the function x log x and −x log x are O(log n)-Lipschitz when x ∈ [1
n10 ,∞] ∪ {0} and all the

terms where Yi,j , [Y1]i,Sext
i,j , [S

ext1]i take values less than 1/n10 contribute very little (at most
exp(O(1/n8))) to the objective. Therefore by Equation (13) we get,∑

i∈[1,`′],j∈[0,k]

(
−Sext

ij log Sext
ij

)
≥

∑
i∈[1,`′],j∈[0,k]

(−Yij log Yij)−O(`′ log n) , (14)

∑
i∈[1,`′]

[Sext1]i log[Sext1]i ≥
∑

i∈[1,`′]

[Y1]i log[Y1]i −O(`′ log n) , (15)

where in the above inequalities we used the Lipschitzness of entropy and negative of entropy functions.
Therefore Steps 4-8 of the algorithm outputs a solution Sext that along with other conditions also
satisfies Equations (12), (14) and (15). Now observe that we are not done yet as the solution
Sext might violate the distributional constraint

∑
i∈[1,`′] r′i‖S

ext
i ‖1 ≤ 1; to address this in Steps

9-10 we construct a new probability Rext where we scale down the probability values in R′ by
c =

∑
i∈[1,`′] r′i‖S

ext
i ‖1. Such a scaling immediately ensures the satisfaction of the distributional

constraint with respect to Rext. As the row sums of Sext are integral and it satisfies all the column
constraints as well, we have that Sext ∈ ZφRext . Let r′′i = r′i/c be the probability values in set Rext,
then note that,∑

i∈[1,`′],j∈[0,k]

mjSext
ij log r′′i =

∑
i∈[1,`′],j∈[0,k]

mjSext
ij log

r′i
c

=
∑

i∈[1,`′],j∈[0,k]

C′i,jS
ext
ij − log c

∑
i∈[1,`′],j∈[0,k]

mjSext
ij

=
∑

i∈[1,`′],j∈[0,k]

C′i,jS
ext
ij − log c

∑
j∈[0,k]

mjφj

=
∑

i∈[1,`′],j∈[0,k]

C′i,jS
ext
ij − n log c .

(16)

All that remains is to provide an upper bound on the value of c. Observe that, c =∑
i∈[1,`′] r′i‖S

ext
i ‖1 =

∑
i∈[1,`′] r′i‖Yi‖1 +

∑
i∈[1,`′] r′i(‖S

ext
i ‖1 − ‖Yi‖1) ≤ 1 + rmax − rmin,

where in the last inequality we used Y ∈ ZφR′ and
∑
i∈[1,`′](‖S

ext
i ‖1 − ‖Yi‖1) = 0. Substituting the

bound on c back into Equation (16) we get,∑
i∈[1,`′],j∈[0,k]

mjSext
ij log r′′i =

∑
i∈[1,`′],j∈[0,k]

C′i,jS
ext
ij − n log c

≥
∑

i∈[1,`′],j∈[0,k]

C′i,jS
ext
ij −O((rmax − rmin)n) .

(17)

Using Equations (12), (14), (15) and (17), the function value g(Sext) with respect to Rext satisfies,

g(Sext) ≥ exp (−O(rmax − rmin)n−O(`′ log n)) g(Y)

≥ exp (−O(rmax − rmin)n−O(k log n)) g(Y),
(18)

21

where in the last inequality we used `′ ≤ k+ 1. As Sext ∈ ZφRext , by Lemma 3.4 the associated distri-
bution p′ satisfies P(p′, φ) ≥ exp(−O(k log n))Cφ · g(Sext). Further combined with Equation (18),
g(Y) ≥ g(X) and Equation (10) we get,

P(p′, φ) ≥ exp (−O(rmax − rmin)n−O(k log n)) max
q∈∆DR

P(q, φ) .

In the remainder we provide the analysis for the running time of our algorithm. By Theorem A.2
we can solve the convex optimization problem in Step 1 in time Õ(|R|k2). By Lemma 4.3, the sub
routine Sparse can be implemented in time Õ(|R|kω) and all the remaining steps correspond to
the low order terms; therefore the final run time of our algorithm is Õ(|R|kω) and we conclude the
proof.

The above result holds for a general R and we choose this set carefully to prove Theorem 2.4.

Proof of Theorem 2.4. As the probability values lie in a restricted range, we just need to discretize
the interval [`, u]. We choose the probability discretization set R with parameters α = k/n,
rmax = u, rmin = ` and |R| = O(

n log u
`

k). By Lemma 3.1, we have maxq∈∆DR
P (q, φ) ≥

exp (−k − 6)P (p, φ). Further combined with Theorem 5.1, we conclude our proof.

B.2 Notation and the General Framework

Here we provide all the definitions and description of the general framework for symmetric property
estimation using the PseudoPML [CSS19b, HO19]. We start by providing definitions of pseudo
profile and PseudoPML distributions.

Definition B.1 (S-pseudo Profile). For any sequence yn ∈ Dn and S ⊆ D, let M def
= {f(yn, x)}x∈S

be the set of distinct frequencies from S and let m1,m2, . . . ,m|M| be these distinct frequencies. The
S-pseudo profile of a sequence yn and set S denoted by φS = ΦS(yn) is a vector in Z|M|+ , where

φS(j)
def
= |{x ∈ S | f(yn, x) = mj}| is the number of domain elements in S with frequency mj . We

call n the length of φS as it represents the length of the sequence yn from which the pseudo profile
was constructed. Let ΦnS denote the set of all S-pseudo profiles of length n.

The probability of a S-pseudo profile φS ∈ ΦnS with respect to p ∈ ∆D is defined as follows,

Pr(p, φS)
def
=

∑
{yn∈Dn | ΦS(yn)=φS}

P(p, yn), (19)

we use notation Pr instead of P to differentiate between the probability of a pseudo profile from the
profile.
Definition B.2 (S-PseudoPML distribution). For any S-pseudo profile φS ∈ ΦnS , a distribution
pφS ∈ ∆D is a S-PseudoPML distribution if pφS ∈ arg maxp∈∆D P(p, φS). Further, a distribution
pβφS ∈ ∆D is a (β, S)-approximate PseudoPML distribution if P(pβφS , φS) ≥ β · P(pφS , φS).

We next provide the description of the general framework from [CSS19b]. The input to this general
framework is a sequence of 2n i.i.d sample denoted by x2n from an underlying hidden distribution p,
a symmetric property of interest f and a set of frequencies F. The output is an estimate of f(p) using
a mixture of PML and empirical distributions.

Algorithm 3 General Framework for Symmetric Property Estimation
1: procedure PROPERTY ESTIMATION(x2n, f,F)
2: Let x2n = (xn1 , x

n
2), where xn1 and xn2 represent first and last n samples of x2n respectively.

3: Define S def
= {y ∈ D | f(xn1 , y) ∈ F}.

4: Construct profile φS , where φS(j)
def
= |{y ∈ S | f(xn2 , y) = j}|.

5: Find a (β, S)-approximate PseudoPML distribution pβφS and empirical distribution p̂ on xn2 .
6: return fS(pβφS) + fS̄(p̂) + correction bias with respect to fS̄(p̂).
7: end procedure

22

We call the procedure of estimation using the above general framework as the PseudoPML approach.

B.3 Proof of Lemma 2.3 and the Implementation of General Framework

Here we provide the proof of Lemma 2.3. The main idea behind the proof of this lemma is to use
an efficient solver for the computation of approximate PML to return an approximate PseudoPML
distribution. The following lemma will be useful to establish such a connection and we define the
following notations: ∆S

[`,u]

def
= {p ∈ ∆S

∣∣∣px ∈ [`, u] ∀x ∈ S} and further define ∆DS,[`,u]

def
= {p ∈

∆D
∣∣∣px ∈ [`, u] ∀x ∈ S}, where ∆S are all distributions that are supported on domain S.

Lemma B.3. For any profile φ′ ∈ Φn
′

with k′ distinct frequencies, domain S ⊂ D and `′, u′ ∈ [0, 1].
If there is an algorithm that runs in time T (n′, k′, u′, `′) and returns a distribution p′ ∈ ∆S such
that,

P(p′, φ′) ≥ exp (−O((u′ − `′)n′ log n′ + k′ log n′)) max
q∈∆S

[`,u]

P(q, φ′) .

Then for domain D, any pseudo φS ∈ ΦnS with k distinct frequencies and `, u ∈ [0, 1], such an
algorithm can be used to compute p′′S , part corresponding to S ⊆ D of distribution p′′ ∈ ∆D in time
T (n, k, u, `) where the distribution p′′ further satisfies,

Pr(p′′, φS) ≥ exp (−O((u− `)n log n+ k log n)) max
q∈∆D

S,[`,u]

Pr(q, φS) .

Proof. Recall that,
Pr(q, φS)

def
=

∑
{yn∈Dn | ΦS(yn)=φS}

P(q, yn) .

Let qS and qS̄ denote the part of distribution q corresponding to S, S̄ ⊆ D; they are pseudo
distributions supported on S and S̄ respectively. Let n1 =

∑
mj∈φS mj and n2

def
=
∑

mj∈φS̄ mj then,

P(qS , φS)
def
=

∑
{yn1∈Sn1 | Φ(yn1)=φS}

∏
x∈S

qf(yn1 ,x)
x

P(qS̄ , φS̄)
def
=

∑
{yn2∈S̄n2 | Φ(yn2)=φS̄}

∏
x∈S̄

qf(yn2 ,x)
x

We can write the probability of a pseudo profile in terms of the above functions as follows,

Pr(q, φS) = P(qS , φS)P(qS̄ , φS̄).

Therefore,

max
q∈∆D

Pr(q, φS) = max
q∈∆D

P(qS , φS)P(qS̄ , φS̄) ,

In the applications of PseudoPML, we just require the part of the distribution corresponding to S ⊆ D
and in the remainder we focus on its computation by exploiting the product structure in the objective.

max
q∈∆D

P(qS , φS)P(qS̄ , φS̄) = max
α∈[0,1]

(
αn1 max

q′∈∆S
P(q′, φS)

)(
(1− α)n2 max

q′′∈∆S̄
P(q′′, φS̄)

)
,

where in the above objective we converted the terms involving the pseudo distributions to distributions.
The above equality holds because scaling all the probability values of a distribution by a factor of α
scales the PML objective by a factor of α to the power of length of the profile, which is n1 and n2

for φS and φS̄ respectively. The above objective is nice as we can just focus on the first term in the
objective corresponding to S given the optimal α value. Note in the above optimization problem the
terms maxq′∈∆S P(q′, φS) and maxq′′∈∆S̄ P(q′′, φS̄) are independent of α and we can solve for the
optimum α by finding the maximizer of the following optimization problem.

max
α∈[0,1]

αn1(1− α)n2 .

The above optimization problem has a standard closed form solution and the optimum solution is
α∗ = n1

n1+n2
= n1

n . To summarize, the part of distribution p′′ corresponding to S that satisfies the

23

guarantees of the lemma can be computed by solving the optimization problem maxq′∈∆S Pr(q′, φS)
upto multiplicative accuracy of exp (−O((u− `)n log n+ k log n)) and then scaling all the entries
of the corresponding distribution supported on S by a factor of n1/n; which by the conditions of the
lemma can be computed in time T (n, k, `, u) and we conclude the proof.

Using the above lemma we now provide the proof for Lemma 2.3.

Proof of Lemma 2.3. Let p,pβφS be the underlying hidden distribution and (β, S)-approximate Pseu-
doPML distribution. The guarantees stated in the lemma are the efficient version of Theorem 3.9
and 3.10 in [CSS19b]. Both these theorems are derived using Theorem 3.8 in [CSS19b] that in turn
depends on Theorem 3.7 which captures the performance of an approximate PseudoPML distribution.
In all these proofs the only expression where the definition of (β, S)-approximate PseudoPML
distribution was used is the following: Pr

(
pβφS , φS

)
≥ βPr (p, φS). Any other distribution p′ that

satisfies Pr (p′, φS) ≥ βPr (p, φS) also has the same guarantees and provides the efficient version of
Theorem 3.9 and 3.10, that is the guarantees of our lemma.

As described in Appendix B.2, the general framework works in two steps. In the first step, it takes
the first half of the samples (xn1) and determines the set S def

= {y ∈ D | f(xn1 , y) ∈ F}, where
F is a predetermined subset of frequencies (input to the general framework) that depends on the
property of interest. The pseudo profile φS is computed on the second half of the samples, that is
φS(j)

def
= |{y ∈ S | f(xn2 , y) = j}|. Based on the frequency of the elements of S in the first half

of the sample (they all belong to F), with high probability (in the number of samples) we have an
interval I = [`, u] in which all the probability values of elements in S ⊆ D for p lie. Therefore
finding a distribution p′ that satisfies,

Pr (p′, φS) ≥ β max
q∈∆DS,I

Pr (q, φS) =⇒ Pr (p′, φS) ≥ βPr (p, φS) ,

where ∆DS,I
def
= {q ∈ ∆D

∣∣∣ qx ∈ I for all x ∈ S}; therefore p′ can be used as a proxy for pβφS and
both these distributions satisfy the guarantees of our lemma (for entropy and distance to uniformity)
for an appropriately chosen β. The value of β depends on the size of F that further depends on the
property of interest and we analyze this parameter for each property in the final parts of the proof.

Now note that we need to find a distribution p′ that satisfies, Pr (p′, φS) ≥ βmaxq∈∆DS,I
Pr (p, φS)

and to implement the PseudoPML approach all we need is p′S , the part of the distribution correspond-
ing to S. The Lemma B.3 helps reduce the problem of computing PseudoPML to PML and we use
the algorithm given to us by the condition of our lemma to compute p′S .

In the remainder, we study the running time and the value of β for entropy and distance to uniformity.

Entropy: In the application of general framework (Algorithm 3) to entropy, the authors in [CSS19b]
choose F = [0, c log n], where c > 0 is a fixed constant (See proof of Theorem 3.9 in [CSS19b]).
Recall the definition of subset S def

= {y ∈ D | f(xn1 , y) ∈ F} and as argued in the proof of Theorem
3.9 in [CSS19b], with high probability all the domain elements x ∈ S have probability values
px ≤

2c logn
n . Further, we can assume that the minimum non-zero probability of distribution p to be

Ω(1/poly(n)), because in our setting n ∈ Ω(N/ logN) for all error parameters ε and the probability
values less than 1/poly(n) contribute very little to the probability mass or entropy of the distribution
and we can ignore them. Therefore to implement the PseudoPML approach for entropy all we need is
the part corresponding to S of distribution p′ that satisfies,

Pr (p′, φS) ≥ β max
q∈∆DS,I

Pr (q, φS) , (20)

for any β > exp
(
−O(log2 n)

)
(Theorem 3.9 in [CSS19b]) and I = [1

poly(n) ,
2c logn
n]. Based on our

discussion at the start of the proof, this corresponds to computing the β-approximate PML distribution
supported on S for the profile φS . As the number of distinct frequencies in the profile φS is at most
O(log n), length of the profile φS is at most n and interval I = [`, u] take values ` = 1/poly(n) and
u = O(logn

n), the algorithm given by the conditions of our lemma computes the part corresponding

24

to S of distribution p′ that satisfies Equation (20) with approximation factor β > exp
(
−O(log2 n)

)
in time T (n,O(log n), 1/poly(n), O(logn

n)).

The proof for distance to uniformity is similar to that of entropy and is described below.

Distance to Uniformity: For distance to uniformity, the authors in [CSS19b] choose F = [nN −√
cn logn
N , nN +

√
cn logn
N], where c is a fixed constant (See proof of Theorem 3.10 in [CSS19b]). The

subset S def
= {y ∈ D | f(xn1 , y) ∈ F} and as argued in the proof of Theorem 3.10 in [CSS19b], with

high probability all the domain elements x ∈ S have probability values px ∈ [1
N −

√
2c logn
nN , 1

N +√
2c logn
nN]. Therefore to implement the PseudoPML approach for distance to uniformity all we need

is the part corresponding to S of distribution p′ that satisfies,
Pr (p′, φS) ≥ β max

q∈∆DS,I

Pr (q, φS) , (21)

for any β > exp

(
−O(

√
cn log3 n

N

)
(Theorem 3.10 in [CSS19b]) and I = [1

N −
√

2c logn
nN , 1

N +√
2c logn
nN]. This corresponds to computing the β-approximate PML distribution supported on S for

the profile φS . As the number of distinct frequencies in the profile φS is at most
√

2cn logn
N ∈ O(1/ε)

(because n = Θ(N
ε2 logN) for distance to uniformity), length of the profile φS is at most n and

interval I = [`, u] take values ` = 1
N −

√
2c logn
nN ∈ Ω(1/N) and u = 1

N +
√

2c logn
nN ∈ O(1/N),

the algorithm given by the conditions of our lemma computes the part corresponding to S of

distribution p′ that satisfies Equation (21) with approximation factor β > exp

(
−O(

√
cn log3 n

N

)
in

time T (n,O(1/ε),Ω(1/N), O(1/N). We conclude the proof.

B.4 Experiments

In this section, we provide details related to PseudoPML implementation and some additional experi-
ments. We perform different sets of experiments for entropy estimation – first to compare performance
guarantees of PseudoPML approach implemented using our rounding algorithm to the other state-of-
the-art estimators and the other to compare the performance of the PseudoPML approach implemented
using our approximate PML algorithm (Algorithm 2) with a heuristic algorithm [PJW17].

All the plots in this section depict the performance of various algorithms for estimating entropy
of different distributions with domain size N = 105. Each data point represents 50 random trials.
“Uniform” is the uniform distribution, “Mix 2 Uniforms” is a mixture of two uniform distributions,
with half the probability mass on the first N/10 symbols and the remaining mass on the last 9N/10
symbols, and Zipf(α) ∼ 1/iα with i ∈ [N]. In the PseudoPML implementation for entropy, we
divide the samples into two parts. We run the empirical estimate on one (this is easy) and the PML
estimate on the other. Similar to [CSS19b], we pick threshold = 18 (same as [WY16a]) to divide
the samples, i.e. we use the PML estimate on frequencies ≤ 18 and empirical estimate on the rest.
As in [CSS19b], we do not perform sample splitting. In all the plots, “Our work” corresponds to
the implementation of this PseudoPML approach using our second approximate PML algorithm
presented in Section 5 (Algorithm 2). Refer to [CSS19b] for further details on the PseudoPML
approach.

In Figure 2, we compare performance guarantees of our work to the other state-of-the-art estimators for
entropy. We already did this comparison in Section 5.1 and here we do it for three other distributions.
As described in Section 5.1, MLE is the naive approach of using the empirical distribution with
correction bias; all the remaining algorithms are denoted using bibliographic citations.

An advantage of the pseudo PML approach is that it one can use any algorithm to compute the part
corresponding to the PML estimate as a black box. In Figure 3, we perform additional experiments
for six different distributions comparing the PML estimate computed using our algorithm (“Our
work”) versus the algorithm in [PJW17] (“Pseudo-PJW17”), a heuristic approach to compute the
approximate PML distribution.

25

102 103 104 105 106

Sample Size

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

102

R
M

S
E

Entropy - Uniform

Our Work
JVHW15
VV11b
PJW17
MLE

102 103 104 105 106

Sample Size

10 -3

10 -2

10 -1

100

101

R
M

S
E

Entropy - Zipf(1)

Our Work
JVHW15
VV11b
PJW17
MLE

102 103 104 105 106

Sample Size

10 -3

10 -2

10 -1

100

101

R
M

S
E

Entropy - Zipf(0.5)

Our Work
JVHW15
VV11b
PJW17
MLE

Figure 2: Experimental results for entropy estimation.

102 103 104 105 106

Sample Size

10 -3

10 -2

10 -1

100

101

R
M

S
E

Entropy - Mix 2 Uniforms

Our Work
Pseudo-PJW17

102 103 104 105 106

Sample Size

10 -3

10 -2

10 -1

100

101

R
M

S
E

Entropy - Zipf(-1)

Our Work
Pseudo-PJW17

102 103 104 105 106

Sample Size

10 -3

10 -2

10 -1

100

101

102

R
M

S
E

Entropy - Zipf(-0.5)

Our Work
Pseudo-PJW17

102 103 104 105 106

Sample Size

10 -4

10 -3

10 -2

10 -1

100

101

102

R
M

S
E

Entropy - Uniform

Our Work
Pseudo-PJW17

102 103 104 105 106

Sample Size

10 -3

10 -2

10 -1

100

101

R
M

S
E

Entropy - Zipf(1)

Our Work
Pseudo-PJW17

102 103 104 105 106

Sample Size

10 -3

10 -2

10 -1

100

101

R
M

S
E

Entropy - Zipf(0.5)

Our Work
Pseudo-PJW17

Figure 3: Experimental results for entropy estimation.

In the remainder we provide further details on the implementation of our algorithm (Algorithm 2). In
Step 1, we use CVX[GB14] with package CVXQUAD[FSP17] to solve the convex program. The
accuracy of discretization determines the number of variables in the convex program and for practical
purposes we perform very coarse discretization which reduces the number of variables to our convex
program and helps implement Step 1 faster. The size of the discretization set we choose is slightly
more than the number of distinct frequencies. Even with such coarse discretization, we still achieve
results that are comparable to the other state-of-the-art entropy estimators. The intuition behind to
choice of such a discretization set is because of Lemma 4.3, which guarantees the existence of a
sparse solution. As the discretization set is already of small size, we do not require to perform further
scarification and we avoid invoking the Sparse subroutine; therefore providing a faster practical
implementation.

26

